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ABSTRACT

Compared to analytical reconstruction by Feldkamp-Davis-Kress (FDK), 
simultaneous algebraic reconstruction technique (SART) offers a higher degree of 
flexibility in input measurements and often produces superior quality images. Due to 
the iterative nature of the algorithm, however, SART requires intense computations 
which have prevented its use in clinical practice. In this paper, we developed a 
fast-converging SART-type algorithm and showed its clinical feasibility in CBCT 
reconstructions. Inspired by the quasi-orthogonal nature of the x-ray projections 
in CBCT, we implement a simple yet much faster algorithm by computing Barzilai 
and Borwein step size at each iteration. We applied this variable step-size (VS)-
SART algorithm to numerical and physical phantoms as well as cancer patients for 
reconstruction. By connecting the SART algebraic problem to the statistical weighted 
least squares problem, we enhanced the reconstruction speed significantly (i.e., less 
number of iterations). We further accelerated the reconstruction speed of algorithms 
by using the parallel computing power of GPU.

INTRODUCTION

In recent years, the introduction of cone-beam 
computed tomography (CBCT) in radiation therapy 
has enabled precise on-line positioning (and on-line/
off-line re-planning) of patients [1, 2]. This is possible 
due to the wealth of information contained in the three-
dimensional (3D)-CBCT images including 1) anatomical 
information [1, 2], 2) geometrical information [3, 4], and 
3) CT numbers for possible dose calculations for treatment 
verifications and plan re-optimizations [5, 6].

Filtered backprojection (i.e., Feldkamp-Davis-Kress 
algorithm (FDK) for 3D-CBCT [7]) has been the most 
widely used reconstruction method, but there has been 
attempts to improve the quality of image with iterative 
techniques. Simultaneous algebraic reconstruction 

technique (SART) proposed by Anderson and Kak 
[8] had a significant impact in the CT imaging field. 
Compared to ART [9], SART algorithm showed a major 
advantage especially when samples were incomplete 
and noisy. Given the non-negative characteristic of 
imaging coefficients, SART was proved to converge and 
the sequence generated by SART was represented as a 
weighted least squares problem [10]. Several variants 
of SART such as ordered-subset (OS)-SART [11] have 
been proposed since then mainly to improve the rate of 
convergence. These studies employed various step-size 
computation methods and demonstrated the importance 
of choosing the step-size for enhancing the rate of 
convergence and computational complexity per iteration 
[12, 13]. Since SART is essentially a solution to weighted 
least squares problem, these step step-size computation 
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methods can be directly applied to SART algorithms. 
When a sufficient number of projections are available, 
SART with fast step-size computation will be of favorable 
choice for image reconstruction.

In this work, we propose a novel variable step-
size (VS)-SART algorithm that handles the least 
squares problem based on the Barzilai and Borwein 
(BB) formulation [14, 15]. First, VS-SART algorithms 
were formulated as iterative algorithms for solving the 
objective function. Then, various step-size computation 
methods including the BB approach were tested with 
the Shepp-Logan phantom on the image quality as 
well as the computational complexity. Reconstructed 
image quality of CatPhan 600 phantom and pancreatic/
prostate cancer patients were also evaluated to ensure the 
consistency of VS-SART algorithms. We envision that 
our fast-converging algorithm along with advancements 
in GPU technology will even further reduce the total 
CT reconstruction time and minimize the computational 
burden for real-time applications.

Notations. Matrices are denoted by boldface 
uppercase letters and vectors are denoted by boldface 
lowercase letters. For a given matrix A, the i-th column 
vector is denoted by ai, the j-th row vector is denoted by 
a j , and the (i, j)-th element is denoted by aij. For a given 
vector x, the n-th element is denoted by xn . Superscript 
( )⋅ T  is used to denote the transpose of a matrix or a vector.

RESULTS

Figure 1 illustrates the image quality of 
reconstructed Shepp-Logan phantom using Conventional 
SART, VS-SART-BL, VS-SART-EL, VS-SART-BB, and 
FDK. From the sinogram of the Shepp-Logan phantom, 
180 projections from 360° degree beam angle was 
sampled for reconstruction. It is seen from the figure that 
the image quality of all the algorithms are improved as 
the number of iterations increased. For a given number of 
iterations, however, VS-SART-BL always outperformed 

Figure 1: Reconstructed Shepp-Logan phantom images using Conventional SART (α = 1.2), VS-SART-BL, VS-SART-
EL, and VS-SART-BB with 10, 20, and 30 iterations. These images are compared with the original image and a FDK reconstructed 
image. A total of 180 projections from 360-degree angle (fan-beam geometry) was used for reconstructions.
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the conventional SART as well as VS-SART-EL and VS-
SART-BB always outperformed VS-SART-BL and the 
conventional SART. There was no visual difference in the 
image quality of VS-SART-EL and VS-SART-BB. The 
features of FDK were generally dimmer than SART type 
algorithms especially at high number of iterations.

Figure 2(A) shows the mean-square error (MSE) 
of the four SART algorithms with increase in number 
of iterations. All SART algorithms showed a decrease 
in MSE as they iterate more loops. As seen in Figure 1, 
VS-SART-BL showed a faster decrease in MSE than the 
conventional SART. Likewise, VS-SART-EL and VS-
SART-BB showed even faster decrease in MSE than VS-
SART-BL. VS-SART-EL and VS-SART-BB presented 
spiky MSE curve since they choose step sizes that are 
highly adaptive at each iteration. VS-SART-BB did not 
monotonically decrease the MSE, however, provided 
the best performance especially with lower number of 
iterations. Figure 2(B) shows line profiles of the Shepp-
Logan phantom with 20 iterations. In line with the above-
mentioned characteristics, VS-SART-BL performed better 
than the conventional SART, as well as VS-SART-EL and 
VS-SART-BB performed better than VS-SART-BL. At 20 
iterations, VS-SART-EL and VS-SART-BB were able to 
follow along the features of the ground truth image with 
very minimal error. Only VS-SART-EL and VS-SART-BB 
had lower MSE than FDK, however, features presented 
in line profiles showed that the contrast ratio of FDK was 
very poor.

Table 1 demonstrates the computational 
complexities of the four SART algorithms. The number 
of forward and backward projections can be derived 
from the formulations presented in the method section 
of this paper. In terms of computational complexity per 
iteration, VS-SART-BL and VS-SART-EL were similar 
and the conventional SART and VS-SART-BB were 
similar, which were reflected to the actual processing time 

per iteration. Figure 1 showed that 20 iterations of VS-
SART-EL and VS-SART-BB provided close to converged 
images, which is approximately 2 minutes for VS-SART-
BB. Note that these numbers only represent the efficiency 
of each algorithm per iteration, but does not take into 
account the efficiency of each algorithm as a whole (e.g., 
does not consider the rate of convergence per iteration). To 
compare algorithms in a fair manner, we should limit the 
number of iterations of each algorithm for a given amount 
of time.

Figure 3 shows the reconstructed CatPhan 600 
images of the four SART algorithms in a given time of 
approximately 230 seconds. Since VS-SART-BL and VS-
SART-EL were slower than the conventional SART and 
VS-SART-BB, they were only able to run approximately 
20 iterations while the other two algorithms run 40 
iterations. Note the quality of the conventional SART 
is not any greater than VS-SART-BL or VS-SART-EL 
although it iterated roughly twice more than the two 
algorithms. VS-SART-BB clearly provided the best image 
quality in the given timeframe. As can be also seen from 
Figure 4, the image quality of VS-SART-BB outperforms 
the FDK algorithm in terms of artifacts that is shown at 
FDK as the resultant of beam hardening. Although VS-
SART-BB has similar convergence rate compared to VS-
SART-EL, its computational complexity is superior than 
VS-SART-EL, and hence it is why we see such a result. 
One drawback of the BB algorithm is its non-monotonic 
nature in reducing the cost function as seen in Figure 2(A). 
However, with a sufficiently high number of iterations to 
ensure convergence this is of a minor issue.

DISCUSSION

We can rank order the performance of the four 
SART type algorithms compared in this study to be: VS-
SART-BB>VS-SART-EL>VS-SART-BL>Conventional 

Figure 2: (A) MSE of the four algorithms as a function of number of iterations and (B) Line profiles of the midline of the Shepp-Logan 
phantom image with the four SART algorithms. For conventional SART α = 1.2. Results of FDK is also presented for comparison. 180 
projections were used with 20 iterations.
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Table 1: Computational complexities of the four SART type algorithms. 180 projections from the Shepp-Logan 
phantom

Algorithm # forward 
projection(s)

# backward 
projection(s) Step size computation Time / Iteration (Sec)

Conventional SART 1 1 None 6.047

VS-SART-BL 2 1 Armijo Line Search 10.187

VS-SART-EL 2 1 Vector Operation 10.083

VS-SART-BB 1 1 Vector Operation 7.032

Figure 4: Reconstruction images of pancreatic (A), (B) and prostate (C), (D) cancer patient treated under radiation therapy. (A), (C) FDK, 
(B), (D) VS-SART-BB. A total of 655 x-ray projections were acquired in half-fan mode.

Figure 3: Reconstructed CatPhan 600 phantom images using the four SART algorithms. The number of iterations for each 
algorithm was set to not exceed 230 seconds.
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SART. With the conventional SART, the major pitfall of 
using a constant step size α ( )i  is that it is not convergence 
proofed and often requires too many iterations to acquire 
a good image quality. VS-SART-BL ensures convergence 
with faster rate than the conventional SART as it employs 
an adaptive step size α ( )i , however, still converges 
relatively slowly than VS-SART-EL and VS-SART-BB. 
This is because testing for Armijo inequality does not 
equate testing whether the step size is optimum. The 
Armijo inequality only oversees the step size to be within 
a reasonable range so that the solution can converge. 
By contrast, VS-SART-EL and VS-SART-BB look for 
an optimum step size and thus are much faster than VS-
SART-BL. VS-SART-EL, as seen with its formulation, 
uses the first derivative of f i i( )( ) ( )x p+α  respect to 
α ( )i  to find an optimum α ( )i  by leveraging the quadratic 
characteristic. This step requires two projections to be 
performed per iteration. VS-SART-BB, however, requires 
only one projection per iteration, rendering the processing 
time to be twice faster than VS-SART-EL. This is a 
significant reduction in time, or a significant increase in 
number of iterations if times were set equal.

It is worth mentioning that the modern iterative 
reconstruction methods utilizing sparsifying transforms 
(e.g., L1 norm or TV) have the advantage of reducing the 
imaging dose. With the introduction of a regularization 
parameter, those algorithms are specifically suited when 
only few number of x-ray projections are available. 
However, the regularization operator that suppresses 
noise is also applied to anatomical features that need to 
be preserved. Thus, there is always a tradeoff between 
noise suppression and resolution preservation. Studies 
have indicated that a sufficient number of projections 
are required to reconstruct images with minimal streak 
artifacts for subtle anatomy [16]. This means that SART, 
which does not use the regularization term, is better a 
choice for higher number of projections considering the 
computational burden of regularization.

Overall, SART type algorithms benefit from an 
iterative process, in the sense that noise (i.e., mainly streak 
artifacts) is significantly reduced compared to the FDK 
algorithm. This enables SART algorithms to utilize fewer 
number of projections than FDK while still acquiring a 
reasonably good image quality for real-time applications. 

Figure 5: Reconstructed images as a function of number-of-projections and number-of-iterations. The window and level 
were kept the same for all images.
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Even though we have set x 0( )0 =  in our study for easier 
comparison, x( )0  can be initialized with FDK and even 
fewer number of iterations would be needed to produce a 
well reconstructed image. As presented in Figure 2, FDK 
initialized SART algorithms converge rapidly within 
approximately 10 iterations.

There are several challenges associated with 
practical implementation of SART algorithms, one of 
them being imaging organs with motion. 4D-CBCT 
reconstruction algorithm would need to factor in time 
domain into its cost function. Rather than independently 
reconstructing 3D-CBCT in series, use of correlative 
information would benefit the reconstruction process. 
However, complexity would be the main obstacle and a 
modified algorithm that is computationally efficient and 
robust to motion artifacts will need to be devised.

CONCLUSION

We have evaluated the image quality and 
computational complexity of several SART type 
algorithms for CBCT reconstruction. Using the Shepp-
Logan phantom and CatPhan 600 phantom, we identified 
the slow convergence nature of the conventional SART 
algorithm. VS-SART-BB which adopts the efficient 
Barzilai-Borwein method for calculating the step size 
showed its superior performance over the conventional 
SART, VS-SART-BL, and VS-SART-EL. Using a GPU, 
we obtained high quality reconstructed images of Shepp-
Logan phantom using 180 CBCT projections with less than 
20 iterations within 2 minutes. Its enhanced computational 
cost allows for more iterations to be performed in a given 
time. We anticipate that our GPU friendly version of VS-
SART-BB algorithm has the potential to handle CBCT 
reconstructions in a clinically feasible timeframe.

MATERIALS AND METHODS

Conventional SART

An iterative image reconstruction technique takes 
either an algebraic approach or a statistical approach. 
Algebraic CBCT reconstruction algorithms formulate the 
following algebraic equations using the X-ray projection 
data and solve them using iterative techniques:

Ax b 0− =           (1)

where x∈RN  denotes the unknown CBCT volume image, 
A∈ ×RM N  denotes the forward projection matrix (i.e., 
Radon transform operator), and b∈RM  is the measured 
projections data. The well-known SART method solves (1) 
by conducting the iterations given by [8, 17]
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On the other hand, the statistical method takes a 

statistical estimation that considers the noisy nature of 
X-ray projections. This results in the following weighted 
least squares problem

min min ( ) ( )
x 0 W x 0

Ax b Ax b W Ax b
≥ ≥

− = − −  
2 T . (3)

whose weight matrix W can be determined by various 
weighting strategies proposed in the past [18, 19]. This 
equation can be solved with various types of non-linear 
optimization algorithms.

We show that the SART algorithm (2) is essentially 
an iterative algorithm for solving the following weighted 
least squares problem [10]:

min min ( ) ( )
x 0 x 0

x Ax b W Ax b
≥ ≥

−( ) = − −f T
r 1  (4)

where Wr  is an M M×  diagonal matrix whose m-
th diagonal element is the m-th row sum ( am+ ) of 
the forward projection matrix A. To see this, we first 
stack the equations in (2) together and succinctly 
express as

x x W A W Ax b( ) ( ) ( ) ( )( )i i i
c

T
r

i+ − −= − −1 1 1α   (5)

where Wc  is an N N×  diagonal matrix whose n-
th diagonal element is the n-th row sum ( an+ ) of the 
backward projection matrix AT . If we ignore Wc

−1  for 
now, it can be easily seen that (5) is essentially a gradient 
descent algorithm for solving (4) as the gradient of f ( )x  
is computed as

∇ = −−f T
r( ) ( )x A W Ax b1 .    (6)

This further implies that eq. (5) is simply a variant of a 
gradient descent algorithm that employs

s W x( ) ( )( )i
c

if≡ ∇−1      (7)

to a descent direction1 to solve (4), demonstrating the 
equivalence of the algebraic SART-type approach and the 
statistical weighted least squares approach.

This connection motivates us to interpret the 
SART relaxation parameter α ( )i{ }  as the step-size of 
a gradient descent iteration. The conventional SART 
method that chooses a constant α α α( )i i= < < ∀ ( )   0 2  
can be considered as a constant step size gradient descent 
algorithm.

1 Weighted gradient (by positive weights) produces a 
descent direction.
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VS-SART-BL

We now present the variable step size SART-type 
(VS-SART) algorithms that choose different α ( )i ’s to 
accelerate the convergence of the SART-type algorithms. 
For the rest of the paper, we consider the projected SART 
descent direction p( )i  given by

p s s x
p
n
i

n
i

n
i

n
i

n
i

( ) ( ) ( ) ( )

( )

= ≤ ≥

=

     if  or 

        otherw

0 0

0 iise.
  (8)

to effectively incorporate the non-negativity constraint in 
(4).

We begin with considering two conventional 
approaches for selecting α ( )i . The first approach is a 
backtracking line search method (VS-SART-BL). Let p( )i  
denote the search direction at iteration i. The algorithm 
finds the largest α α βα β α∈{ }max max max, , ,...2  that satisfies 
the Armijo condition given by

f f fi i i i T i( ) ( ) ( )( ) ( ) ( ) ( ) ( )x p x x p− ≤ − ∇α σα  (9)

where β ∈ ( , )0 1  and σ ∈ ( , )0 1

2
. Once the proper α ( )i  is 

found, eq. (5) becomes

x x p( ) ( ) ( ) ( )i i
BL
i i+ +

= − 
1 α   (10)

where x x 0[ ] ≡+
max( , )  is used to incorporate the non-

negativity constraint in problem (4). Regarding the 
complexity, it can be easily seen that just one projection 
operation is sufficient to find α ( )i . As inequality (9) is 
equivalent to

α α σα2

2

2
1
2 2 0|| || ( ) ( ) ( )( ) ( ) ( ) ( ) ( )W Ap p x x pr

i i T i i T if f− − ∇ + ∇ ≤ , (11)

the initial check requires the computationally expensive 
projection once to compute Ap( )i  to compute the first 
term. By storing the matrix and vector multiplication 
results, one can complete the subsequent checks with only 
scalar multiplications, greatly simplifying the backtracking 
line search.

VS-SART-EL

The second approach, an exact line search (VS-
SART-EL), leverages the quadratic nature of f ( )x  and 
computes the step size that minimizes f i i( )( ) ( )x p−α  
given by [20]
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and the VS-SART-EL iteration becomes

x x d( ) ( ) ( ) ( )i i
EL
i i+ +

= − 
1 α     (13)

where d W p( ) ( )i
c

i≡ . Note d( )i  is used instead of p( )i  as 
(12) is valid in the absence of Wc

−1 . Similar to VS-SART-
BL, VS-SART-EL requires one projection operation to 
compute the denominator in (12), indicating that their 
computational complexity is in the same order.

VS-SART-BB

In this paper, we further investigate the geometric 
structure of the problems (3) and (4) and propose a step-
size determination method for exploiting that structure. 
The n-th column of matrix A represents the backprojection 
operation from different detector pixels to the n-th voxel. 
As illustrated in Figure 5, two different voxels ( xi  and 
x j ) are backprojected from different sets of detector 
pixels. Therefore, ai  and a j  have disjoint sets of non-
zero positions, resulting in a ai

T
j = 0 . This orthogonal 

relationship holds for predominant cases (i.e., unless 
two voxels are adjacent to each other and backprojected 
by one or more same detector pixels), and suggests that 
AT  and  A are quasi-orthogonal. Therefore, the Hessian 
matrices in (3) and (4), A AT  and A W AT

r
−1 , can also 

be approximated by a diagonal matrix. Based on this 
observation, we propose to use the Barzilai-Borwein 
method (VS-SART-BB) to determine the step size [14, 
15, 21, 22]]. Let IN  denote the N N×  identity matrix. 
The Barzilai-Borwein method approximates the Hessian 
at iteration i by H I=η ( )i

N  and finds the scalar η ( )i to 
approximate the true Hessian by approximately solving 
the Secant condition in the quasi-Newton method as

p p x x( ) ( ) ( ) ( ) ( )( )i i i i i− ≈ −− −1 1η    (14)

(or d d x x( ) ( ) ( ) ( ) ( )( )i i i i i− ≈ −− −1 1η )

The least squares solution is given by
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)

Then, once η ( )i  is calculated, the VS-SART-BB iteration 
is given by

x x p( ) ( ) ( ) ( )( )i i i i+ − +
= − 

1 1η .    (16)

(or, equivalently, x x d( ) ( ) ( ) ( )( )i i i i+ − +
= − 

1 1η )

As η ( )1  is arbitrary, we set η α( ) ( )1 1= EL  in this paper. 
Note that some surprising super-linear convergence results 
are reported in [14] and its convergence for quadratic 
functions is proved in [21, 22].

The theoretical advantage of VS-SART-BB over 
VS-SART-BL and VS-SART-EL is that eq. (15) does 
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not require any computationally expensive projection 
operation, indicating less computations in each 
operation. Moreover, for a given number of iterations, 
the aforementioned geometric structure of problems (3) 
and (4) motivates us to investigate whether even faster 
convergence can be achieved with VS-SART-BB.

In order to effectively handle the large dimension of 
the iterative CBCT reconstruction problem, all algorithms 
are implemented using a parallel processing hardware and 
the associated reconstruction time is recorded. In addition 
to Intel CoreTM i7 CPU with 2.68 GHz clock speed, and 
12.0 GB DDR3 RAM on a 64-bit Vista OS, we used a 
single GTX 295 card (NVIDIA, Santa Clara, CA) that 
consists of 480 processing cores with 1.24 GHz clock 
speed and 1,792 MB memory. The most computationally 
intensive forward and backward projection operations 
are implemented using the GPU in CUDA C/C++ 
programming (NVIDIA, Santa Clara, CA). Computational 
tasks involving Radon transform were parallelized 
including the forward projection A, backward projection 
AT , and vector operations such as p( )i  and Ax b− . Each 
detector pixel of Awas assigned to one GPU thread. Then, 
the image voxels along the path between the source and 
the detector were summed independently for each detector 
pixel. For AT , each image voxels were assigned to a GPU 
thread. Vector operations were implemented in a similar 
fashion.

We applied SART algorithms to Shepp-Logan 
numerical phantom, CatPhan 600 physical phantom 
(The Phantom Laboratory, Salem, NY), and pancreatic 
and prostate cancer patient using TrueBeamTM system 
(Varian Medical Systems, Palo Alto, CA) from a 360° 
beam angle. The imager has 1024×768 detector pixels of 
size 0.388×0.388 mm2. In this paper, we downsampled 
this to 512×384 pixels of size 0.776×0.776 mm2 for 
reconstruction. The reconstruction volume of 512×512×70 
voxels, each of dimension 0.49×0.49×0.2 mm3, is 
vectorized to construct X.
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