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ABSTRACT

Both tumor and adjacent normal tissues are valuable in cancer research. 
Transcriptional response profiles represent the changes of gene expression levels 
between paired tumor and adjacent normal tissues. In this study, we performed a pan-
cancer analysis based on the transcriptional response profiles from 633 samples across 
13 cancer types. We obtained two interesting results. Using consensus clustering 
method, we characterized ten clusters with distinct transcriptional response patterns 
and enriched pathways. Notably, head and neck squamous cell carcinoma was divided 
in two subtypes, enriched in cell cycle-related pathways and cell adhesion-related 
pathways respectively. The other interesting result is that we identified 92 potential 
pan-cancer genes that were consistently upregulated across multiple cancer types. 
Knockdown of FAM64A or TROAP inhibited the growth of cancer cells, suggesting that 
these genes may promote tumor development and are worthy of further validations. 
Our results suggest that transcriptional response profiles of paired tumor-normal 
tissues can provide novel perspectives in pan-cancer analysis.

INTRODUCTION

Cancer accounted for approximately 8.2 million 
deaths in 2012. About 14.1 million new cancer cases 
occur globally each year [1]. Cancer is typically a genetic 
disease derived from genome aberrances such as somatic 
mutations, copy-number alterations, DNA methylations, 
and gene fusions [2]. In recent years, there are growing 
evidences that genomic molecular characteristics can 
classify patients with distinct clinical outcomes and 
contribute to the development of precision medicine 
[3–9]. For example, PAM50, a widely used breast cancer 
classifier based on gene expression profile, can divide 
patients into five subtypes corresponding to different 
clinical outcomes [3]. By examining the expression levels 
of specific target molecules (e.g. HER2), targeted therapy 
such as trastuzumab and pertuzumab can inhibit tumor 

growth by interfering with these cancer driver genes [4, 
5]. The Cancer Genome Atlas (TCGA) Research Network 
[10] has reported a series of genome-wide studies in 
which cancer heterogeneity within single cancer type is 
well described at the molecular level and most cancer 
types possess multiple subtypes with distinct molecular 
characteristics [6, 7, 9].

On the other hand, there are also common alterations 
of cancer-related genes (e.g. EGFR) and pathways (e.g. 
the p53 pathway) [11] which are shared across different 
cancer types or subtypes. These facts have led to the 
“pan-cancer” analysis which integrates various cancer 
types [11–14]. For example, by integrating thousands of 
genetic and epigenetic features, 3,299 TCGA tumors from 
12 cancer types were classified into two major classes 
which were dominated by mutations and copy number 
changes, respectively [15]. Furthermore, cancer therapies 
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may also benefit from pan-cancer analysis by targeting the 
driving molecular events despite tissue origin [16–18]. 
For example, a fraction of non-small cell lung carcinoma 
(NSCLC), inflammatory myofibroblastic tumor, and 
anaplastic large cell lymphoma, which share ALK fusions, 
can be treated with ALK inhibitors and this strategy has 
shown clinical efficacy [16].

As is known, normal tissues adjacent to tumor 
is valuable for cancer research. Studies on mutations, 
structural variations, or DNA copy number alterations 
have demonstrated the value of normal tissues in 
identifying cancer-associated genome variations accurately 
[19]. Accumulative evidences have demonstrated that 
transcriptome from adjacent normal tissue is also valuable 
in cancer classification and biomarker discovery [20, 21]. 
One example is that a reproducible gene expression 
signature correlated with survival in patients with 
hepatocellular carcinoma (HCC) was derived from tumor-
adjacent normal tissues, while tumor tissues failed to yield 
significant results [21].

Nonetheless, the impact of involving normal 
tissues in transcriptome-based pan-cancer analysis is 
still unknown. In this study, we performed a systematic 
analysis based on transcriptional response profiles of 633 
paired tumor-normal tissue samples from 13 cancer types 
available in TCGA. Transcriptional response profiles of 
paired tumor and adjacent normal tissues can reduce both 
individual differences and the impact of tissue-specific 
genes. Our analysis identified some interesting results that 
were different from tumor-only pan-cancer studies. Ten 
clusters with distinct molecular features were distinguished 
and one of them contained four cancer types. Head and 
neck squamous (HNSC) samples were divided into two 
subtypes, one enriched in cell cycle-related pathways 
and the other enriched in cell adhesion-related pathways. 
Furthermore, 92 genes were consistently upregulated in 
multiple cancer types compared to adjacent normal tissues. 
Knockdown of two of these genes, FAM64A and TROAP, 
in MDA-MB-231 cell line inhibited cancer cell growth. 
Our results suggest that involvement of paired tumor-
normal tissues may provide novel perspectives in pan-
cancer analysis.

RESULTS

Transcriptional response profile-based pan-
cancer clustering

We collected gene expression profiles of 633 
paired tumor-normal samples from 13 TCGA cancer 
data sets [6–9, 22–29]: bladder urothelial carcinoma 
(BLCA, n = 19), breast cancer (BRCA, n = 111), colon 
adenocarcinoma (COAD, n = 41), head and neck squamous 
cell carcinoma (HNSC, n = 41), kidney chromophobe renal 
cell carcinoma (KICH, n = 25), kidney clear cell renal cell 
carcinoma (KIRC, n = 72), kidney renal papillary cell 

carcinoma (KIRP, n = 32), liver hepatocellular carcinoma 
(LIHC, n = 50), lung adenocarcinoma (LUAD, n = 57), 
lung squamous cell carcinoma (LUSC, n = 51), prostate 
adenocarcinoma (PRAD, n = 52), thyroid carcinoma 
(THCA, n = 59), and uterine corpus endometrial 
carcinoma (UCEC, n = 23) (Supplementary Table 1). 
The gene expression profiles from tumor and normal 
tissues were processed according to the previous pan-
cancer analysis [11, 13]. Transcriptional responses were 
represented by the log2(fold-change) of gene expression 
levels from paired tumor and normal samples. Genes 
with log2(fold-change) ≥ 2 in at least 10% of all samples 
were retained for subsequent analysis. Clustering results 
derived from other proximal cutoff values were consistent 
(Supplementary Figure 1).

Then we applied consensus clustering algorithm 
[30] to characterize transcriptional response profiles in 
paired tissue-normal analysis. We performed consensus 
clustering on the 633 cancer samples with clustering 
number (i.e. k) varying from 2 to 20 to determine the 
optimal k (see Methods). Considering the result of the 
Δ(k) vs k plot (Supplementary Figure 2A) and the heatmap 
(Supplementary Figure 2B), k = 10 was determined as the 
final cluster number.

Consensus clustering result at k = 10 was illustrated 
by the dendrogram and the heatmap of transcriptional 
response profiles (Figure 1, Table 1). The first cluster 
C1, mainly involved four cancer types: BLCA (19/19), 
BRCA (17/111), HNSC (18/41) and UCEC (23/23). 
Seven clusters were dominated by single cancer types: 
C2 BRCA, C3 COAD, C4 HNSC, C5 KICH, C7 LIHC, 
C9 PRAD and C10 THCA. The last two clusters C6 and 
C8 both contained two cancer types originating from the 
same organ. C6 was composed of KIRC samples (70/72) 
and KIRP samples (31/32). C8 was composed of LUAD 
samples (57/57) and LUSC samples (50/51). Samples 
of BRCA and HNSC were both split into two clusters. 
Interestingly, the BRCA samples classified into C1 were 
all basal-like breast cancers (17/17), whereas the rest 
BRCA samples clustered in C2 were luminal and HER2-
positive subtypes. On the other hand, KICH, a cancer type 
derived from renal tissue, did not cluster with C6, which 
was composed of KIRC and KIRP.

We also performed consensus clustering 
algorithm on expression profiles from tumor samples 
(Supplementary Figure 3A). The result was consistent 
with that in previous pan-cancer reports derived from 
tumor-only samples [11, 13]. There were three significant 
differences in the clustering pattern comparing with that 
derived from paired samples. First, HNSC resembled 
BLCA and LUSC and they formed a cluster in tumor-
only clustering. Second, one cluster consisted of BLCA 
(18/19), HNSC (41/41) and LUSC (41/51) in tumor-only 
clustering. Third, LUAD and LUSC were separated in 
tumor-only clustering. The clustering differences between 
tumor-only and paired pan-cancer analysis suggest that 
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individual differences and tissue specificity have some 
effects on pan-cancer analysis results, which should be 
investigated further.

Differentially regulated genes and pathway 
analysis across 10 clusters

To investigate the transcriptional response 
differences among the 10 clusters, we compared the 
transcriptional response profiles of each cluster with the 
other clusters. Genes with p value < 0.01 and log2(fold-
change) ≥ 2 were selected as upregulated genes while 
genes with p value < 0.01 and log2(fold-change) ≤ -2 
were selected as highly downregulated genes (Figure 2A). 
The numbers of upregulated genes of each cluster ranged 
from 135 (C1) to 767 (C6). Meanwhile, the numbers 
of downregulated genes of each cluster ranged from 98 

(C1) to 1343 (C5). Next, we analyzed the overlapping 
genes between each two clusters for upregulated and 
downregulated genes (Figure 2B). C5 and C6 exhibited 
the largest number of overlapping downregulated genes 
(312) and both of them originated from kidney tissue. 
However, the other clusters showed only small numbers 
of overlapping upregulated or downregulated genes.

We next identified pathways specifically enriched in 
each cluster using gene set enrichment analysis (GSEA) 
method [31] (Figure 2C). C4 contained the largest number 
of upregulated pathways, while C5 contained the largest 
number of downregulated pathways. Particularly, we 
observed an obvious enrichment of upregulated pathways 
related to cell adhesion and motion in C4-HNSC. Cell 
adhesion and traction can promote cell migration process 
which allows tumor metastasis through the circulatory 
system. Survival analysis revealed that C4 had the worst 

Figure 1: Consensus clustering result of 633 paired tumor-normal samples. Heatmap shows the pattern of transcriptional 
response profiles derived from consensus clustering algorithm. Rows indicate genes and columns indicate 633 samples from 13 cancer 
types. Red color indicates positive transcriptional responses while green color indicates negative transcriptional responses. The 10 clusters 
identified are shown by different colors in the top bar with 1 to 10 marked on it. Cancer types are shown by different colors in the second bar.
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prognosis in 10 clusters (Supplementary Figure 4). We 
also found that ‘immune system’-related pathways were 
upregulated in C6-KIRC/KIRP, which suggests that 
immune system is activated in this cluster (Figure 2C). It 
is possible that patients in C6-KIRC/KIRP may respond 
to immunotherapeutics such as anti-PD1/PDL1 and anti-
CTLA4 which are promising strategies in treatment of 
advanced melanoma and other tumor types [32–35]. 
While in another renal carcinoma-related cluster, C5-
KICH, amino acid metabolism-related pathways were 
downregulated, which may prevent tumor cell from rapid 
cellular proliferation [36].

We further evaluated the levels of immune cells in 
both tumor and normal samples using ESTIMATE method 
[37] (Figure 2D). Among tumor samples, immune scores 
were significantly higher in both C6-KIRC/KIRP and C8-
LUAD/LUSC than those in the other clusters (C6 posthoc 
Maximum p value = 3.3E-06, C8 posthoc Maximum p 
value = 2.1E-05). However, among normal samples, C6 
exhibited a low immune score while C8 had the highest 
immune score. Since lung is an organ exchanging gas with 
the outside world, it is more vulnerable to foreign particles 
and microbes. This may result in the high immune scores of 
both tumor and normal tissues in C8.

Subtyping of head and neck squamous cell 
carcinoma

In the clustering result, HNSC samples were split 
into two clusters (Figure 2A), which was not observed 

in tumor-only analysis (Supplementary Figure 3A). One 
isolated HNSC sample far from the other HNSCs in C1 
was excluded from further analysis (Supplementary Figure 
5). We compared the transcriptional response profiles 
from the two subtypes, which referred to HNSC Subtype 
1 (17 samples in C1) and HNSC Subtype 2 (23 samples 
in C4). We identified 91 and 559 upregulated genes in the 
two HNSC subtypes, respectively (Figure 3A). We then 
investigated the relevance of these subtypes with clinical 
prognosis. The survival curves clearly separated them 
from the beginning to 8 years. The median survival time 
of Subtype 1 and Subtype 2 were 72.2 months and 15.98 
months, respectively, although p value is not significant 
(p value = 0.0944, Figure 3B). We hypothesized that the 
non-significant survival difference might be ascribed to 
the small number of HNSC samples.

To uncover the underlying mechanisms, we used 
DAVID Gene Functional Annotation Tool [38, 39] on the 
upregulated genes and found different enriched pathways 
between the two subtypes (Figure 3C). HNSC Subtype 
1 was highly enriched in cell cycle-related pathways 
that control tumor proliferation, while HNSC Subtype 
2 was highly enriched in cell adhesion- and motility-
related pathways, which may lead to metastasis and 
invasion. Since tumors that overexpress cell cycle genes 
are sensitive to chemotherapy, HNSC subtype 1 may be 
suitable for chemotherapy.

Next, gene mutations in HNSC Subtype 1 and 
Subtype 2 were examined. We found that apoptosis and 
cell cycle regulator TP53 harbored a high number of 

Table 1: The 13 cancer types and their relationship to 10 clusters derived from transcriptional response-based  
method

Handle C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

BLCA 19 0 0 0 0 0 0 0 0 0 19

BRCA 17 94 0 0 0 0 0 0 0 0 111

COAD 0 0 41 0 0 0 0 0 0 0 41

HNSC 18 0 0 23 0 0 0 0 0 0 41

KICH 1 0 0 0 23 1 0 0 0 0 25

KIRC 1 0 0 0 1 70 0 0 0 0 72

KIRP 0 0 0 0 1 31 0 0 0 0 32

LIHC 0 0 0 0 0 0 50 0 0 0 50

LUAD 0 0 0 0 0 0 0 57 0 0 57

LUSC 1 0 0 0 0 0 0 50 0 0 51

PRAD 3 0 0 0 0 0 0 0 49 0 52

THCA 5 0 0 0 0 0 0 0 0 54 59

UCEC 23 0 0 0 0 0 0 0 0 0 23

Total 88 94 41 23 25 102 50 107 49 54 633
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mutations in both two subtypes (Supplementary Figure 
6A). However, no gene mutation presented a significant 
level of enrichment in either subtypes (Supplementary 

Figure 6B). This phenomenon indicates that differences 
between HNSC Subtype 1 and Subtype 2 may not result 
from gene mutations.

Figure 2: Differentially expressed genes and pathway analysis across 10 clusters. (A) Heatmaps show upregulated and 
downregulated genes of each cluster on the top and bottom, respectively. Rows indicate genes differentially expressed in corresponding 
clusters and columns indicate samples sorted by clusters. (B) Overlapping genes between each two clusters. Red color means overlaps 
derived from upregulated genes while blue color means overlaps derived from downregulated genes. (C) GSEA heatmap shows pathways 
with nominal p value < 0.01. Red color indicates upregulated pathways and blue color indicates downregulated pathways. Representative 
pathways were pointed out below. (D) Immune scores across 10 clusters in both tumor and normal samples.
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Upregulated genes across multiple cancer types

In our consensus clustering result, a small number 
of genes were consistently upregulated in tumor 
tissues (Figure 1). We scanned all genes by calculating 
proportions of samples with gene log2(fold-change) ≥ 2 
in all 633 samples and 92 genes ranking in the top 1% 
were retained (Figure 4). The differential expression 
significance was also calculated by Student’s t statistics. 
All 92 genes were upregulated with log2(fold-change) ≥ 
2 in more than half tumor samples across multiple cancer 
types. The top one gene, MELK was upregulated in 
73.1% samples and across 12 cancer types. Interestingly, 
MELK has been reported as a novel oncogenic kinase 
and a promising selective therapeutic target for basal-
like breast cancer recently [40]. Our result suggests that 
MELK may be a pan-cancer oncogenic kinase and a 
promising selective therapeutic target for multiple cancer 

types including uterine corpus endometrial carcinoma, 
bladder urothelial carcinoma, lung cancer, liver cancer, 
and kidney cancers. Using Gene Ontology Consortium 
[41], we found that more than two thirds genes (68/92) 
were included in cell cycle-related biological processes. 
The remaining 24 genes were involved in other biological 
processes (Figure 4).

Among the 92 genes, 10 genes including BUB1B, 
CCNB2, CDC25C, CDKN2A, COL11A1, FAM111B, 
MKI67, NDC80, NEK2 and TTK have previously been 
identified to be cancer driver genes via NCG 5.0 [42] 
(Supplementary Table 2). Thirty-three genes have been 
reported to promote proliferation or invasion in cancer, 
48 genes are potential prognostic biomarkers, and 4 genes 
are related to drug resistance (Supplementary Table 2). 
The rest 25 genes including CENPI, COMP and TROAP 
may be novel cancer-associated genes that are worthy of 
validation in further studies.

Figure 3: Comparison of two HNSC subtypes. (A) The heatmap shows transcriptional response profiles of differentially expressed 
genes between two HNSC subtypes. Rows indicate genes and columns indicate HNSC samples. The numbers of differentially expressed 
genes are labeled on the left bar. (B) Kaplan-Meier analysis for overall survival between two HNSC subtypes. (C) DAVID gene functional 
annotation of differentially expressed genes in each HNSC subtypes. GO BP terms are ranked according to their negative log10-transformed 
p values. Top 10 GO biological process terms are shown in bar plots.
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Figure 4: Pan-cancer genes in 13 cancer types. Expression levels of pan-cancer genes were compared between tumors and paired 
normal samples. The sizes of points represent log2(fold-change) and the colors of points represent negative log10-transformed p value. 
Only points with p value < 0.01 and log2(fold-change) ≥ 1.5 are drawn. The red color on the left shows cell cycle-related genes while the 
blue color shows other genes. The right bar shows the proportions of samples with log2(fold-change) ≥ 2 in all 633 samples for each gene. 
The 92 genes are ordered according to the proportions.
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In-silico analysis and experimental validation of 
two pan-cancer genes

Since most pan-cancer genes have no explicit 
functions in tumor development, we validated the 
functions of two pan-cancer genes, FAM64A and TROAP, 
in tumor progression. FAM64A and TROAP were selected 
based on the following five criteria: (1) they were rarely 
reported in previous researches; (2) they have been 
detected in tumor tissues; (3) their functions in cancer 
progression are still unclear; (4) they belong to cell cycle 
related genes and other genes, respectively; (5) their 
proportions of samples with log2(fold-change) ≥ 2 in all 
633 samples ranked at the top in all the genes satisfying 
criteria (1-4). Among cell cycle related genes, FAM64A 
was reported only in five papers and one paper reported its 
association with poor prognosis of triple-negative breast 
cancer [43]. Among other genes, TROAP was reported 
only in four papers and one paper reported its detection 
in serous ovarian adenocarcinoma [44]. FAM64A and 
TROAP met the criteria (1-5) and therefore were selected 
for further experiments.

We first analyzed gene expression levels between 
tumor and normal tissues of these two genes in TCGA 
breast cancer and METABRIC dataset [45]. The results 
showed that FAM64A and TROAP were significantly 
upregulated in tumor tissues (p value < 0.0001, Figure 5A). 
We then performed survival analysis and found that high 
expression of FAM64A and TROAP were significantly 
correlated with poor survival (FAM64A in TCGA p value 
= 0.005 and in METABRIC p value < 0.001, TROAP 
in TCGA p value = 0.013 and in METABRIC p value 
< 0.001, Figure 5B). We also found that FAM64A and 
TROAP could predict overall survival in multiple other 
cancer types (Supplementary Figure 7A, 7B). We further 
performed one-way ANOVA to test the significance of 
group differences among the PAM50 subtypes of breast 
cancer. We found that both FAM64A and TROAP were 
differentially expressed among five subtypes. Moreover, 
FAM64A and TROAP were most highly expressed in 
basal-like subtype (Figure 5C). The in-silico analysis 
results suggest that FAM64A and TROAP may promote 
the development of breast cancer, especially the basal-like 
subtype.

We conducted RNAi experiments to validate 
the effect of FAM64A and TROAP in breast cancer 
cell proliferation. Short hairpin RNAs (shRNA) were 
designed to knock down the expression levels of 
FAM64A and TROAP in MDA-MB-231 cells. RT-PCR 
experiments indicated that shRNA interference reduced 
FAM64A and TROAP expression levels by 80.7% and 
59.4% (Supplementary Figure 8). Then we measured 
cell growth of the knockdown groups and the control 
group for five days. Compared with the control group, 
the groups with knockdown of FAM64A and TROAP 
exhibited significantly slower proliferation (1.76- and 

1.41-fold, respectively) (Figure 6). These results suggest 
that inhibiting either FAM64A or TROAP can suppress the 
growth of breast cancer cells.

DISCUSSION

In this study, we performed a pan-cancer analysis 
based on transcriptional response profiles of 633 
paired tumor-normal samples from 13 cancer types. 
Two interesting results were obtained. On one hand, 
we identified 10 clusters with different transcriptional 
response patterns and pathways. HNSC and BRCA were 
both separated into two distinct subtypes. All the BLCA, 
UCEC, basal-like breast cancer, and one HNSC subtype 
were grouped together and formed a mixed cluster. On 
the other hand, we also identified 92 pan-cancer genes 
that were upregulated across multiple cancer types. 
Knockdown of two of these pan-cancer genes inhibited the 
growth of breast cancer cells. Our transcriptional response-
based pan-cancer analysis provides novel perspectives of 
cancer molecular mechanisms.

Tumor is a complex genomic disease that develops 
due to accumulating mutations. Adjacent normal tissues are 
good controls since they contain genomic, transcriptomic 
and other omics information of the same individual. 
Transcriptional responses represent the changes of gene 
expression levels between tumor and adjacent normal 
tissues, which can reduce both individual differences and the 
impact of tissue-specific genes. A recent study of association 
between paired normal samples and patient survival revealed 
that paired normal tissues offered additional information 
on patient prognosis [46]. Our transcriptional response-
based pan-cancer analysis obtained several novel and 
interesting results, which may deepen the understanding of 
tumorigenesis and cancer progression.

In our analysis, HNSC was classified into two 
distinct subtypes. HNSC Subtype 1 was enriched in cell 
cycle-related pathways, which had a good prognosis; 
HNSC Subtype 2 was enriched in cell adhesion-related 
pathways, and had a poor prognosis. However, all HNSC 
samples clustered together in tumor-only pan-cancer 
analysis. This result suggests that the transcriptional 
responses between tumor and adjacent normal tissues 
can highlight the differences of gene expression and 
pathway activity in each subtype, whereas tumor-only 
expression misses the information. A study concentrated 
on oral carcinoma by Suzanne et al. also found that 
overexpression of a 4-gene signature (MMP1, COL4A1, 
P4HA2, and THBS2) in histologically normal surgical 
margins could identify patients at high risk of recurrence 
[20]. Notably, HNSC subtype 1 might be suitable for 
chemotherapy, since tumors that overexpress cell cycle 
genes are sensitive to chemotherapy. Our analysis suggests 
that HNSC subtypes could be characterized with paired 
tumor-normal tissue samples and may be associated with 
therapeutic regimens.
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Figure 5: Analysis of pan-cancer genes FAM64A and TROAP. (A) The expression levels of FAM64A and TROAP were 
compared between tumor and normal tissues in TCGA breast cancer and METABRIC datasets, respectively. The Student’s t statistic 
was used to evaluate statistical difference. (B) Kaplan-Meier curves of FAM64A and TROAP in TCGA breast cancer and METABRIC 
datasets. Samples were stratified according to gene expression levels. The cutoff values were derived from the Cutoff Finder. (C) The 
expression levels of FAM64A and TROAP in PAM50 subtypes in TCGA breast cancer cohort and METABRIC dataset. One-way ANOVA 
was performed to evaluate the statistical difference among the five PAM50 subtypes.
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During the pan-cancer analysis, we also identified 
92 pan-cancer genes which were upregulated across 
multiple cancer types. Some of these pan-cancer genes 
have previously been demonstrated to be driver genes, 
oncogenes, or even candidate therapeutic targets, such as 
MELK [40]. Most of these genes are only reported to be 
potential biomarkers, whose functions in cancers are still 
elusive. To validate their functions, we knocked down the 
expression levels of FAM64A and TROAP in basal-like 
breast cancer cells and found that the growth of cancer 
cells was significantly inhibited. Our results indicate that 

the pan-cancer genes without known functions in cancer 
may promote tumor development and are worthy of 
further validations.

The main limitation of our analysis is the small size 
of paired tumor-normal samples for each cancer types. 
Therefore, the pan-cancer clusters obtained in this study 
should be validated in a larger sample size with paired 
tumor and adjacent normal tissues. Nonetheless, our 
analysis highlights the importance of normal samples in 
pan-cancer research and provides novel perspectives for 
cancer research.

Figure 6: Validation of proliferation function of FAM64A and TROAP in MDA-MB-231 cell line. (A) FAM64A and TROAP 
were knocked down by transfecting lentivirus expressing both shRNA and green fluorescent protein. Cell cytometry was performed every 
day for five days using the Celigo system. (B) The proliferation curves showed the average and standard deviation of cell numbers in three 
wells for FAM64A knockdown group, TROAP knockdown group and control group for five days. (C) The cell number fold was calculated 
by dividing cell number of a given day by the previous day. The cell number fold of the first day was set to 1. The p values of paired one-tail 
t-test are 0.03798 and 0.04098 for FAM64A and TROAP, respectively.
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MATERIALS AND METHODS

Data preparation

All samples in this study were obtained from the 
Cancer Genome Atlas (TCGA) project. Transcriptomic 
data from different cancer types were downloaded from 
the Broad Institute GDAC FireBrowse (TCGA data 
version 20141017, http://firebrowse.org/). All gene 
expression data were generated from Illumina HiSeq 
platform and quantified using RNA-Seq by Expectation 
Maximization (RSEM) [47]. Samples with both tumor 
and paired normal tissues were selected, and cancers with 
less than 15 tumor-normal paired samples were discarded. 
Finally, 633 samples from 13 cancer types (BLCA, 
BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, 
LUAD, LUSC, PRAD, THCA, and UCEC) were included 
in this study. Clinical information data were downloaded 
from the Broad Institute GDAC FireBrowse (http://
firebrowse.org/). METABRIC data were downloaded from 
European Genome-phenome Archive (Study Accession: 
EGAS00000000083 https://www.ebi.ac.uk/ega/).

Gene expression profile processing for tumor-
normal paired analysis

Gene expression profiles of RSEM data from 
both tumor and normal tissues were normalized 
within-sample to a fixed upper quartile. Next, upper 
quartile-normalized data were log2-transformed. This 
processing procedure made the integrated analysis of 
gene expression profiles feasible and has been widely 
taken in the previous pan-cancer analysis [11, 13]. 
Then we plotted the empirical cumulative distribution 
of log2-transformed gene expression values in tumor 
and normal tissues, respectively (Supplementary Figure 
9). We found that < 5% of the gene expression values 
were < 0 and < 5% of the gene expression values were 
> 12 in both tumor and normal tissues. Therefore we 
truncated the log2-transformed gene expression values 
< 0 to 0 and > 12 to 12 in order to avoid extremely 
small or large transcriptional responses which will affect 
subsequent analysis. Finally, transcriptional responses 
for the tumor-normal paired analysis were represented 
by the log2(fold-changes) between tumor and matched 
normal data.

Consensus clustering

To generate a persistent clustering result, 
ConsensusClusterPlus R-package [48] was used to 
identify clusters using 1,000 iterations (reps), 80% 
sample resampling (pItem) from 2 to 20 clusters (k) 
using hierarchical clustering algorithm (clusterAlg). The 
distance matrix was set to Pearson correlation (distance) 
and linkage function was set as wald. D (innerLinkage) 
and average (finalLinkag). In order to select optimal 

cluster number k, we calculated the empirical cumulative 
distribution (CDF) and the proportional area change under 
CDF (Δ(k)). According to the Δ(k) vs k plot, the k where 
Δ(k) started to approach zero was optimal. We also plotted 
the heatmap of consensus matrix at k to observe whether 
boundaries of each cluster were sharp. Considering 
the results of the Δ(k) vs k plot and the heatmap, we 
determined the optimal cluster numbers.

Clustering procedure for tumor-only analysis

In the tumor-only analysis, only 633 tumor samples 
were used. Gene expression data were derived from the 
upper quartile-normalized RSEM data of tumor tissues. 
The top 4,000 most variable genes were selected according 
to median absolute deviation.

The number 4,000 was determined according 
to previous pan-cancer works and our experience. In 
previous pan-cancer works, top 1,500 [11] and top 6,000 
[13] most variable genes were selected for clustering, 
which both resulted in valuable findings. We performed 
consensus clustering on tumor-only samples with gene 
numbers varying from 1,500 to 6,000, with 500 as a 
step. We investigated the consistency of the clustering 
results pair wisely between different gene numbers. All 
the Rand indexes were very high, ranging from 0.994 to 
1.000 (Supplementary Figure 3B). This result suggests 
that different gene numbers have little impact on the 
tumor-only clustering result. We therefore chose to use 
the median gene number, 4,000 in the tumor-only analysis.

Gene set enrichment analysis

Gene set enrichment analysis was performed using 
GSEA tool. Canonical pathways were downloaded from 
Molecular Signatures Database (MsigDB version 5.1) 
[31]. Transcriptional response profiles of 633 samples 
were input into GSEA and gene sets enriched in each 
cluster were identified by comparing one to all the rest 
clusters. Finally, gene sets with nominal p value < 0.01 
were selected and shown in Figure 3C. Differentially 
expressed genes between two HNSC subtypes were 
identified via limma R-package [49]. Genes in either 
subtypes with p value < 0.01 and log2(fold-change) ≥ 1.5 
were retained. DAVID functional annotation tool was used 
to annotate the genes. GO terms with Bonferroni-corrected 
p value < 0.01 were considered as the dominant pathways.

Cell culture and transfection

Human breast cancer cell line MDA-MB-231 
(ATCC, Manassas, VA) was cultured in 6-cm culture 
dishes in DMEM medium (Corning; NY, USA) (4ml per 
dish) with fetal bovine serum (FBS; Ausbian, Australia). 
Cells were incubated at 37°C in a humidified 5% CO2 
atmosphere. All cells were used during the exponential 
phase of growth.
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Confluent MDA-MB-231 cells were seeded at a 
density of 1,500-2,500 cells/well in a 96-well plate. When 
20-30% confluence was reached, cells were transfected 
with shRNA lentivirus (GeneChem, Shanghai, China) 
containing green fluorescent protein (GFP) at 10 moi. 
In order to guarantee the efficiency of gene knockdown, 
we designed three shRNA sequences per gene targeting 
different sites and mixed them together at similar ratios. 
The target sequences of the shRNA knockdown constructs 
for FAM64A were 5’-GTCCCAAGAGCTAGATGAA-3’, 
5’-CACCCATTACGGCGATCAA-3’, and 5’-TGCCAA 
AGTGGCACCAAGT-3’. The target sequences of 
the shRNA knockdown constructs for TROAP were 
5’-AACCAAGATCCAAGGAGAT-3’, 5’-CGCCG 
TGGACCAGGAGAACCA-3’, and 5’-AAGGAGATG 
GGTGCAGAAACC-3’. The sequence of the control 
vector was 5’-TTCTCCGAACGTGTCACGT-3’. Cells 
were incubated for 24 hours, and the media was changed 
to remove remaining transfection reagent. About 2-3 days 
later, after fluorescence intensity had increased to 70-90%, 
cells were cultured further to reach 70-90% confluency 
and collected for cell cytometry analysis. The estimated 
transfection efficiency was 70-90%.

Cell cytometry and image analysis

Stained MDA-MB-231 cells were plated in 96-
well plate at a density of 1,000 cells/well. To ensure 
reproducibility, shFAM64A and shTROAP transfected 
cells and control cells were plated in 3 wells, respectively. 
Then the plates were incubated for 24 h under 5% CO2 
at 37 °C. After that, the plates were fixed and imaged 
with the adherent cell cytometry system Celigo acquiring 
four images per well for 5 days. Images were acquired 
for each fluorescence channel, using suitable filters and 
20 × objective. Through optimizing the analysis setting 
parameters, the accurate number of cells in each field 
was counted accurately. Cell numbers of each well were 
represented by the accumulation of four fields. The 
average and standard deviation of cell numbers of the 
three wells for FAM64A and TROAP knockdown groups 
and control group were calculated during five days.

Statistical analysis

All statistical analyses were performed using 
R programming platform. The R package limma was 
employed for differential expression analysis. The R 
package survival was used for survival analysis. Kaplan-
Meier curves and log-rank test were used to assess 
differences between survival distributions. We classified 
patients into two groups based on gene expression 
according to the Cutoff Finder application [50]. The 
Student’s t test was used to evaluate the statistical 
significance of differences between tumor and normal 

expression data in TCGA breast cancer and METABRIC 
cohort. One-way ANOVA was used to compare the 
differences among PAM50 subtypes. Kaplan-Meier curves 
were plotted with GraphPad Prism 6. Other plots were 
generated using R packages ggplot2 and pheatmap.
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