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ABSTRACT
Transforming growth factor β (TGF-β) is a multifunctional cytokine that is 

synthesized by many types of cells and regulates the cell cycle. Increasing evidence 
has led to TGF-β receiving increased and deserved attention in recent years because 
it may play a potentially novel and critical role in the development and progression 
of myocardial fibrosis and the subsequent progress of ventricular remodeling 
(VR). Numerous studies have highlighted a crucial role of TGF-β in VR and suggest 
potential therapeutic targets of the TGF-β signaling pathways for VR. Changes in 
TGF-β activity may elicit anti-VR activity and may serve as a novel therapeutic target 
for VR therapy. This review we discusses the smad-dependent signaling pathway, 
such as TGF-β/Smads, TGF-β/Sirtuins, TGF-β/BMP, TGF-β/miRNAs, TGF-β/MAPK, 
and Smad-independent signaling pathway of TGF-β, such as TGF-β/PI3K/Akt, TGF-β/
Rho/ROCK,TGF-β/Wnt/β-catenin in the cardiac fibrosis and subsequent progression 
of VR. Furthermore, agonists and antagonists of TGF-β as potential therapeutic targets 
in VR are also described.

INTRODUCTION

Ventricular remodeling (VR) is a complicated process 
involving cardiomyocyte hypertrophy, inflammation, 
fibrosis and occurs in response to changes in mechanical 
and neurohormonal stimulation [1]. VR is characterized by 
progressive ventricular dilatation, myocardial hypertrophy, 
fibrosis, and deterioration of cardiac performance, and 
arises from interactions between adaptive modifications 
of cardiomyocytes and negative aspects of adaptation 
such as cardiomyocyte death and fibrosis. VR is defined 
as structural changes in the left ventricle with three major 
patterns: concentric remodeling, eccentric hypertrophy, 
and myocardial infarction [2]. Transforming growth factor 

β (TGF-β) primarily signals through TGF-β type I receptor 
(TβRI), also named activin receptor-like kinase (ALK), 
TβRII and TβRIII. TβRI and TβRII have intrinsic serine/
threonine kinase activity and mediate the downstream 
effects of TGF-β. Recent studies have demonstrated that 
TGF-β plays a critical role in the regulation of cell growth, 
differentiation and immune function. In cardiac, TGF-β binds 
to a complex of type II-R and type I-R (=ALK5), and activin 
or myostatin, which bind to ALK4, 5, or 7 and active Smad 
2 and 3. BMP, which binds to BMPR-II, and ALK2, 3, or 
6 and activates Smad 1, 5, or 8 [3] (Figure 1). Sustained 
pressure overload induces cardiac myocyte hypertrophy 
and dysfunction along with interstitial changes such as 
fibrosis and reduced capillary density which are facilitated 
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by TGF-β. The final step in the process of heart failure after 
pressure overload and myocardial infarction (MI) is cardiac 
fibrosis which is regulated by TGF-β [1]. TGF-β have 
received increased and deserved attention in recent years 
because it may play a potentially novel and critical role in 
the development and progression of myocardial fibrosis and 
the subsequent progression of VR. The activation of TGF-β 
promotes myofibroblast differentiation and transformation, 
enhances the expression of extracellular matrix (ECM) which 
participates in a collagen-based scar formation; and inhibits 
the expression of matrix metalloproteinases (MMPs), which 
specifically restrains ECM and decrease VR. In this review, 
we focus on the most extensively investigated TGF-β in VR, 
and we discuss representative TGF-β signaling pathways and 
their respective effects on VR. This review we discusses the 
smad-dependent signaling pathway, such as TGF-β/Smads, 
TGF-β/Sirtuins, TGF-β/BMP, TGF-β/miRNAs, TGF-β/
MAPK, and Smad-independent signaling pathway of TGF-β, 
such as TGF-β/PI3K/Akt, TGF-β/Rho/ROCK,TGF-β/Wnt/β-
catenin in the cardiac fibrosis and subsequent progression of 
VR. (Figure 1).

Smad-dependent signaling pathway of TGF-β

TGF-β/Smads

Nuclear accumulation of active Smad complexes is 
crucial for the transduction of TGF-β-superfamily signals 
from transmembrane receptors into the nucleus. There 
are nine different Smads that have  been identified in 
mammals, and these Smads can be classified into three 
subclasses, receptor-activated Smads (R-Smads) (Smad1, 
2, 3, 5, 8 and 9), inhibitory Smads (I-Smads) (Smad6 
and Smad7), and common-partner Smads (Co-Smads) 
(Smad4) [4]. Stimulating receptors can phosphorylate 
R-Smads, which forms oligomeric complexes with Co-
Smads. I-Smads can suppress the signals from the serine/
threonine kinase receptors [5]. Accumulating evidence has 
shown that cardiac remodeling is regulated by the TGF-β/
Smad signaling pathway.

R-Smads

The effect of Smad2 and Smad3 on R-Smads has 
been most widely studied in the process of myocardial 
fibrosis in recent years. A study reported that high glucose 
levels enhanced p300 activity, which increased TGF-β 
activity via Smad2 acetylation, thus promoting cardiac 
fibrosis, cardiac hypertrophy and  diastolic function 
impairment [6]. Another study showed shown that 
angiotensin II (AngII) induced left ventricular fibrosis and 
remodeling, which were dependent on both Smad2 and 
extracellular regulated protein kinase (ERK) activation, 
and could be inhibited by the AT1 receptor [7]. Smad3 
exerts a similar effect to Smad 2 in regulating cardiac 
fibrosis. One study suggested that activation of Smad3 was 
important in fibrotic response and cardiac fibroblast (CF) 
activation post-MI [8]. These results are consistent with a 
study that Smad3 deficiency attenuated bleomycin-induced 
pulmonary fibrosis in mice [9]. It is noteworthy that, many 
studies have found the inhibitor of Smad2 or Smad3 to 
found an important role in the progression of ventricular 
fibrosis and VR. Chen et al. showed that beraprost, which 
is a prostacyclin analog that can significantly block TGF-β 
expression and Smad2 phosphorylation, suppressed the 
proliferation of CFs [10]. Another study suggested that 
glycogen synthase kinase 3β (GSK-3β), a small-molecule 
inhibitor of Smad3, largely suppressed fibrosis and limited 
left VR [11]. Another study also showed that through 
abrogating the phosphorylation of Smad2 and Smad2/3 
nuclear translocation, taxifolin remarkably inhibited left 
ventricular fibrosis and collagen synthesis [12]. Moreover, 
many other inhibitors of Smad2 or Smad3, such as AVE 
3085 [13] and growth/differentiation factor 1 [14], have 
the ability to suppress VR.
I-Smads

Smad7, one of the I-Smads, has been shown 
to inhibit fibrosis and inflammation in many kidney 
diseases, however, study has shown that decreased 
Smad7 expression contributed to cardiac fibrosis in the 

Figure 1: Important ligands of TGF-β signaling pathways in cardiac.
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pathogenesis of cardiac fibrosis in the post-MI heart [15]. 
Recently, TGF-β/Smad7 has been demonstrated to be 
important not only in kidney diseases, but also in cardiac 
diseases. In an analysis of AngII-induced VR, Wei et al. 
found that Smad7 attenuated cardiac inflammation and 
fibrosis, such as by down-regulating IL-1β and TNF-α, 
inhibited collagen I and α-SMA and suppressed Ang II-
mediated VR [16]. A recent study examined the role of 
Smad7 in spontaneously hypertensive rats (SHRs).It was 
found that fluvastatin decreased cardiac fibrosis through 
regulation of TGF-β1/Smad7 [17]. A study of high-
mobility group box 1 (HMGB1) which has been reported 
to decrease VR in the post-MI failing myocardium 
also supported this result. In rats that the underwent 
coronary artery ligation, after four weeks of treatment 
with HMGB1, TGF-β1 and phosphor-Smad2 (p-Smad2) 
were inhibited, but, Smad7 was increased. In addition, 
in CFs, HMGB1 enhanced the expression of Smad7 and 
attenuated the level of collagen I [18]. A study of Smad6, 
another I-Smad, showed that activation of Smurf1-
dependent Smad6 suppressed TGF-β1-induced expression 
of Smad3 and PKC-δ and collagen deposition [19].

Although the TGF-β/Smads signaling pathway has 
been demonstrated to inhibit VR, some evidence has shown 
that it also promotes VR. (Table 1)  More research is needed 
to further elucidate the functional mechanisms of TGF-β/
Smads in VR and explore the biology of TGF-β/Smads for 
their potential use in the clinical treatment of VR.
TGF-β/Sirtuins

Sirtuins are a group of histone deacetylases 
(HDACs) consisting of Sirt1-Sirt7. Sirtuins regulated 
the activity of proteins and enzymes, and maintains the 
stability the enzymes and proteins by the acetylation of 
lysine residues. Some Sirtuins, such as Sirt1 [20], Sirt3 
[21], Sirt7 [22], also play an important role in VR.
Sirt1

Sirt1is categorized as a class III HDAC which 
negatively regulates the expression of Smad7 and 
thereby promotes TGF-β/Smad-dependent transcription. 
Moreover, Sirt1 attenuates the expression of peroxisome 
proliferator-activated receptor, which is an important 
inhibitor of TGF-β signaling. One study examined the role 
of Sirt1 in regulating TGF-β/Smad signaling in systemic 
sclerosis. The results showed that knockdown of Sirt1 
could effectively suppress TGF-β signaling and exert 
anti-fibrosis effects [23]. VEGF has been demonstrated 
to attenuate hypertensive left VR, which was induced by 
high salt intake [24]. Another study showed that TGF-β-
stimulated VEGF was attenuated by resveratrol, at least in 
part, by Sirt1 activation [25]. 
Sirt3

Sirt3 has been shown to be related to longevity in 
humans [26]. However the molecular mechanistim of 
this longevity is still in disputed, although the protective 

effect of Sirt3 on cardiomyocytes has been demonstrated. 
A recent study shoed that over-expression of Sirt3 
protected cardiomyocytes against genotoxic and oxidative 
stress [27]. Another study showed that Sirt3, induced by 
resveratrol, suppressed the transformation of fibroblasts-
to-myoblasts through the TGF-β/Smad3 pathway in 
response to AngII in isolated CFs [21]. 
Sirt7

Sirt7 is primarily localized in the nucleoli and 
regulates RNA polymerase I transcription. It is well 
known to play a critical role in human carcinoma and 
lipid metabolism. Apart from these roles, it has also 
been reported that Sirt7 contributes to myocardial tissue 
repair. Araki et al. showed that the autophagy inhibitor 
attenuated TβRI down-regulation, which was induced 
by the absence of Sirt7 [22]. Moreover, the loss of 
Sirt7 activated autophagy in cardiac fibroblasts. The 
data showed that Sirt7 maintains TβRI by modulating 
autophagy and plays an important role in suppressing 
rat CFs and increasing myocardial tissue repair [22]. 
Sirt7 seems a promising therapeutic target for VR. These 
studies suggest that Sirtuins have an important role in 
the procession of VR through the TGF-β pathway and 
this role may be utilized in the development of a series 
combination therapies that target Sirtuins in patients with 
VR (Table 2)
TGF-β/ BMPs 

BMPs play a critical roles in cardiac progenitor 
specification, proliferation and differentiation [28]. 
Additionally, BMPs can attenuate adverse fibrosis 
progression [29]. It has been reported that in renal 
interstitial fibroblast cells, over-expression of BMP-2 
suppressed fibrosis, induced by TGF-β1 by increasing 
the catabolism of TGF-βRI [19]. One study showed that 
in vitro cultured cardiomyocytes and BMP-2 suppressed 
TGF-β1 through the activation of Smurf1/Smad6 complex. 
Moreover, in the mouse heart, after 14 days of treatment 
with rhBMP-2, overload-induced collagen deposition by 
pressure was decreased, and TGF-β1-dependent activation 
of Smad3 and PKC-δ was attenuated (Table 3) [19].  

TGF-β/ miRNAs

It has been reported that, in the heart, some 
microRNAs (miRNAs), such as miR-29, miR-133, and 
miR-30 regulate the expression of ECM proteins and 
collagens [30, 31]. In recent studies, other miRNAs have 
been demonstrated to regulate cardiac fibrosis through the 
TGF-β signaling pathway. Nagalingam et al. suggested 
that miR-378 deficiency to the development of cardiac 
fibrosis through a TGF-β-dependent mechanism, in 
cardiomyocytes [32]. Villar et al also found miR-21 to 
be a biomarker for myocardial fibrosis in aortic stenosis 
patients [33]. Rana et al.  found a similar result, in the 
MI heart, miR-21 and miR-29b contributed to cardiac 
fibrosis via a mechanism involving the TGF-β1 signaling 
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Table 1: Smad signaling pathway of TGF-β
Regulatory 

factor Smad Effect for 
target

Effect for 
TGF-β

Effect for ventricular 
remodeling Reference

AngII Smad2, ERK active active induced LV fibrosis and 
remodeling [7]

p300 Smad2 active active promoted cardiac fibrosis [6]

Androgens Smad2 active active Promoted myocardial 
remodeling [65, 66]

MSC Smad2 active active promoted myofibroblasts 
congregating [67]

eNOS/NOS Smad2 negative negative improved ventricular remodeling 
after myocardial infarction [68]

beraprost Smad2 negative negative suppressed proliferation of 
cardiac fibroblast [10]

SM16 Smad2 negative negative Attenuated myocardial 
remodeling [69]

Caveolin-1 Smad2 negative negative Attenuated cardiac remodeling [70]

bgn Smad2 negative negative Attenuated extracellular matrix 
remodeling [71]

MG132 Smad2 negative negative attenuated cardiac remodeling [72]

leptin Smad2 negative negative
prevented cardiac fibroblast 

activation and collagen 
production

[73]

atorvastatin Smad2 negative negative improved cardiac remodeling [74]

GW788388 Smad2 negative negative attenuated left ventricular 
remodeling [75]

BNP Smad2 negative negative prevented ventricular remodeling [76]

GSK-3β Smad3 negative negative
suppressed cardiac fibrosis 
and limited left ventricular 

remodeling
[11]

TAX Smad2,3 negative negative inhibited left ventricular fibrosis 
and collagen synthesis [12]

Paeoniflorin Smad2,3 negative negative inhibited cardiac remodeling [77]

Tranilast Smad2,3 negative negative reduced pathological fibrosis 
following myocardial infarction [78]

AVE3085 Smad2,3 negative negative Attenuated  cardiac remodeling [13]

PNFE Smad2,3 negative negative Improved left ventricular 
remodeling [79]

SBTI Smad2,3 negative negative Improved left ventricular 
remodeling [79]

HCTZ Smad2,3 negative negative improved cardiac remodeling [80]

GDF1 Smad2,3, 
ERK1/2 negative negative attenuated cardiac remodeling [14]

H2S Smad2,3 negative negative prevented myocardial 
remodeling [81]
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pathway [34]. Zhao et al. identified that in CFs, miR-
101a suppressed cardiac fibrosis, which was induced by 
hypoxia through the TGF-β signaling pathway [35]. In the 
study of cardiac hypertrophy and fibrosis by Tijsen et al. 
The miR-15 family was found to suppress hypertrophy 
and fibrosis by inhibiting the TGF-β pathway [36]. 
Many other miRNAs have been demonstrated to play 
an important role in the TGF-β pathway associated with 
myocardial fibrosis, such as miR-24 [37], miR-26 [38] 
miR-31 [39], miR-34a [40], miR-122 [41], and miR-
208a [42]. There is some evidence to indicating that the 
activation or inhibition of specific TGF-β/miRNAs may 
be beneficial for VR patients and raising the possibility 
that TGF-β/miRNAs could be a therapeutic target for 
drug discovery.
TGF-β/MAPK 

The mitogen-activated protein kinase (MAPK) 
signaling pathway has three kinases: MAP kinase kinase 
kinase (MKKK), MAP kinase kinase (MKK) and MAPK. 
MAPK has four subtypes, ERK1/2, c-Jun NH 2-terminal 
kinase (JNK), p38MAPK and ERK5.
ERK1/2

A study suggested that, in lung fibrosis, ERK1/2 
signaling played an important role in protease-
activated receptor 1 (PAR1)-mediated pro-fibrotic 
activity [43]. Furthermore, TGF/ERK1/2 also exerted 
an important role in cardiac tissue. One  study showed 
that, SCH79797, which is an inhibitor of PAR1, blunted 
ERK1/2 phosphorylation, TGF-β and type I pro-collagen 
production and myofibroblasts transformation in isolated 

CFs [44] . Li L et al. found that, in cultured adult rat CFs, 
ERK1/2 took part in periostin, which is a key regulator 
of cardiac fibrosis, expression through  TGF-β1 pathway 
regulation [45]. In an analysis of farnesyltransferase 
inhibition, Li et al. found that farnesyltransferase 
inhibition attenuated myocardial fibrosis and improved 
VR in SHRs partly through suppression of the ERK1/2 
phosphorylation pathway [46]. 
JNK and p38 MAPK

One study revealed that tissue kallikrein attenuated left 
VR, improved cardiac function and prevented inflammation 
after myocardial ischemia/reperfusion (I/R) through kinin 
B2 receptor activation and NO formation partly through the 
suppression of the JNK/p38 MAPK signaling pathway [47]. 
However, another study showed that in SHRs, oxymatrine 
(OMT) attenuated VR by inhibiting the over-expression 
of angiotensin converting enzyme (ACE) and TGF-β1, 
thereby attenuating ERK 1/2, JNK and p38 MAPK signaling 
pathway activation [48]. Similar results were also found in 
a study of streptozotocin (STZ) induced diabetes in mice. 
Diabetic mice were treated with alpha-lipoic acid (ALA), 
resulting in the mitigation of JNK and p38 MAPK activation 
and attenuation of interstitial fibrosis [49]. Matsumoto-Ida 
et al. also suggested that, in rats, the TGF-β1-TAK1-p38 
MAPK signaling pathway played a vital role in left VR after 
MI [50]. A further study made by Sriramula et al. showed that 
TNF-α contributed to angiotensin II induced hypertension 
and adverse VR the through MAPK(JNK and p38 MAPK) /
TGF-β/NF-κB pathway [51]. (Table 4) In conclusion, TGF-β/ 
MAPK modulation could potentially be a novel therapeutic 
approach for the prevention and treatment of VR.

BMP2 Smad6 active negative Improved cardiac fibrotic [19]

fluvastatin Smad7 active negative decreased cardiac fibrosis [17]

HMGB1 Smad7 active negative decreased ventricular remodeling [19]

SBTI Smad7 active negative Improved left ventricular 
remodeling [79]

PNFE Smad7 active negative Improved left ventricular 
remodeling [79]

intermedin 1-53 smad3 negative negative decreased cardiac fibrosis [82]

Osthole Smad2,3 negative negative decreased cardiac fibrosis [83]

Osthole Smad7 active negative decreased cardiac fibrosis [83]

SP Smad2,3 negative negative decreased cardiac fibrosis [84, 85]

CB2 receptor Smad3 negative negative decreased cardiac fibrosis [86]

AngII = angiotensin II; MSC = mesenchymal stem cells; eNOS = endothelial nitric-oxide synthase; NOS = nitric oxide 
system; SM16 = small molecule inhibitor 16; bgn = biglycan; BNP = B-type natriuretic peptide; GSK-3β = glycogen 
synthase kinase-3; TAX = taxifolin; PNFE = panax notoginseng flower extract; SBTI = soybean trypsin inhibitor; HCTZ = 
hydrochlorothiazide; GDF1 = growth/differentiation factor 1; H2S = hydrogen sulfide; BMP = bone morphogenetic protein; 
HMGB = high-mobility group box; SP = substance P.
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Other smad-dependent signaling pathway

It was worth noting that, some other new smad-
dependent signaling pathways were discovered in recent 
years. Such as endoglin [52, 53], fibulin-2 [54],serpine1 
[55], serpineE2 [56]. Tseliou et al. found that , in rodent 
models of acute myocardial infarction, cardiospheres 
(CSps) secreted soluble endoglin and attenuate remodeling 
by inhibiting TGF-β1/smad signaling [52]. Kapur et al. 
also found that soluble endoglin limited TGF-β1 signaling 
in cardiac fibroblasts and attenuated cardiac fibrosis in 
an in vivo model of heart failure [53]. Khan et al. found 
Ang II cannot induce TGF-β activation without fibulin-2 
and that fibulin-2 has an essential role in Ang II-induced 
TGF-βsignaling and subsequent myocardial fibrosis [54]. 
Study showed that angiotensin II (Ang II) played a critical 
role in the cardiac remodeling ,however, this effect could 
be improved by  serpine1 in a mouse model [55]. Study 
showed that serpinE2 significantly were increased with 
collagen accumulations induced by TGF-β stimulation in 
vitro. And the ERK1/2 signaling promoted the activation 
of serpinE2, consequently led accumulation of collagen 
protein, and contributed to cardiac fibrosis [56].

Smad-independent signaling pathway of TGF-β

TGF-β/ PI3K/Akt 

It has been reported that TGF-β1 up-regulated 
phosphatidylinositol-3 kinase/protein kinase B (PI3K/
Akt) signaling molecules in human lung fibroblasts, mouse 
mesangial cells and embryonic fibroblasts [57]. Similar to 
these studies, Voloshenyuk TG et al. found that, in CFs, 
TGF-β1 augmented collagen expression and required 
activation of the PI3K/Akt signaling pathway, suggesting 
that the PI3K/Akt pathway may be involved in TGF-β1 
signaling [58]. Shyu et al. also discovered, in CFs, that 

PI3K/Akt phosphorylation was up-regulated and that the 
expression of collagen I was also increased in response to 
TGF-β1 (Table 4) [59]. 
TGF-β/ Rho/ROCK

Rho-associated protein kinase (ROCK) is a serine/
threonine kinase that has been demonstrated to exert a vital 
role in several cardiovascular diseases, such as coronary 
vasospasm, hypertension, vascular inflammation and 
I/R injury [1]. In CFs, study has demonstrated that Rho/
ROCK plays a crucial role in mediating several profibrotic 
responses [60]. Furthermore, it has been demonstrated that 
TGF-β can signal through Rho/ ROCK pathways [61], 
and that Rho signaling is vital to the transdifferentiation 
of myofibroblasts [62]. Li et al. showed that, facial, which 
is an inhibitor of ROCK, prevented cardiac fibrosis in 
response to transverse aorta (TAC) and MI. Moreover, 
this effect of Rho was associated with the up-regulation 
of profibrotic gene expression and the TGF-β1-TAK1 
signaling pathway [1]. Another study revealed that TGF-
β1-induced ROCK up-regulation suppressed the expression 
of BMP-2, which enhanced cardiac fibrosis [19]. 
TGF-β/ Wnt/β-catenin

The Wnt/β-catenin signaling pathway has been 
reported to be related to pre-natal development, cell 
division, cell regeneration, stem cell generation and other 
cellular processes. Cross-talk between the Wnt/β-catenin 
and TGF-β pathways has been studied. Akhmetshina  
et al. showed that canonical Wnt signaling was necessary 
for TGF-β-induced fibrosis [63]. Another study showed 
that miR-29 mediated TGF-β1-induced ECM synthesis 
by increasing the pathway of Wnt/β-catenin in human 
orbital fibroblasts [64] We could predict that in the process 
of CFs, TGF-could predict the Wnt/catenin signaling 
pathway and played an important role in the regulation of 
fibrosis and VR. 

Table 2: Sirtuins signaling pathways of TGF-β

Regulatory factor Effect for Sirt Effect for Smad Effect for TGF-β Effect on ventricular 
remodeling Reference

Sirt1 ↓Smad7 active promoted ventricular 
remodeling [23–25]

resveratrol ↑Sirt3 ↓Smad3 negative prevented cardiac fibrosis [21]

Sirt7 negative prevented cardiac fibrosis [22]

TGF-β = transforming growth factor β.

Table 3: BMPs signaling pathways of TGF-β
Regulatory 

factor
Effect for 

BMP
Effect for 

Smad
Effect for TGF-β Effect on ventricular 

remodeling
Reference

BMP2 ↑Smad6 negative improved cardiac fibrotic [19]

TGF-β=transforming growth factor β; BMP=bone morphogenetic protein.
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CONCLUSIONS 

TGF-β has been demonstrated to exert biological 
effects through dependent or Smad-independent signaling 
pathways. Figure 2 In Smad-dependent signaling 
pathways, increasing the activation of TGF-β/smad1/5 
or TGF-β/smad2/3 resulted in augmenting the expression 
of CFs. However, activating Smad6/7 could inhibit 
CFs. Not only did TGF-β/Smads play a dual role in the 
regulation of TGF-β, but sirtuins also played an important 
role in regulating TGF-β. Of the sirtuins, Sirt1 had the 
ability to negatively regulate the expression of Smad7 
and decrease the inhibition of TGF-β/Smad7, thereby 
decreasing fibrosis. However, Sirt3 has been reported to 
inhibit cardiac fibrosis mainly by inhibiting Smad2/3 and 
Sirt7 through direct suppression of CFs. As a member of 
the TGF-β superfamily, BMPs have been reported to play 

an important role in VR. BMPs can attenuate adverse 
fibrosis progression. BMP2 was be suppressed by Wnt/β-
catenin and promoted Smad6 to suppress cardiac fibrosis 
by attenuating Smad2/3 with the assistance of Smurf1. In 
Smad-independent signaling pathways, TGF-β interacted 
with other signaling pathways to regulate myocardial 
fibrosis and VR. In the TGF-β/MAPK signaling pathway, 
TGF interacted with ERK1/2, JNK, and p38 MAPK, 
playing an active role in myocardial fibrosis.FTI276 could 
suppress ERK1/2 phosphorylation, and kallikrein, OMT, 
and STZ could inhibit ERK1/2 and JNK/p38 MAPK 
phosphorylation to decrease VR. In other Smad-dependent 
signaling pathways, TGF-β1 mediated the augmention 
of collagen expression by activation of PI3K/Akt [58]. 
Fasuil inhibited the activation of Rho/ROCK to prevent 
cardiac fibrosis in response to TAC and MI. Moreover, 
Rho is associated with up-regulation of the TGF-β1-

Table 4: MAPK and PI3K/Akt signaling pathways of TGF-β
Regulatory 

factor
Expression levels in 

ventricular aneurysm Antagonist Agonist Effect on ventricular 
remodeling

ERK1/2 up-regulated SCH79797 [44]
oxymatrine(OMT) [48] active

JNK/p38 MAPK up-regulated Kallikrein [47] TNF-α 
[51] active

PI3K/Akt up-regulated Atorvastatin [54]

TGF-β = transforming growth factor β; ERK = extracellular regulated protein kinases; JNK =  c-Jun NH 2-terminal kinase; 
MAPK = mitogen activated protein kinase; PI3K/Akt = phosphatidylinositol-3 kinase/protein kinase B; GDF1 = growth/
differentiation factor 1; cAMP =  cyclic adenosine monophosphate; OMT =  oxymatrine.

Figure 2: TGF-β signaling pathways and the role of TGF-β in VR. TGF-β transduces its signal through Smad-dependent and 
Smad independent pathways.
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TAK1 signaling pathway [1]. miRNAs are currently  a 
relatively popular research topic. However, some miRNA, 
such as miR-101a, miR-15, and miR-29, inhibit cardiac 
fibrosis. Other miRNAs could be used as biomarkers for 
myocardial fibrosis in aortic stenosis patients. Therefore, 
TGF-β may be a potential therapeutic target for the 
detection and therapy for VR. Because the biological 
and molecular mechanisms of TGF-β in ventricular 
aneurysm are still entirely unknown, it is necessary for 
further research to help elucidate the signaling pathways 
involved. 

EXPERT OPINION

In this report, we have discussed the role of TGF-β 
in VR and the potential use of TGF-β signaling pathways 
as sources of therapeutic targets for VR based on recent 
studies. To date, several studies on the mechanisms of 
action of TGF-β have been conducted, and an increasing 
number of experts have highlighted the important role of 
TGF-β signaling pathways in the progression of myocardial 
fibrosis and subsequent progression of VR. (Figure 1). By 
investigating one of the most widely studied signaling 
pathways, namely, TGF-β, we made several interesting 
observations. The first observation is that Smads dually 
regulates VR. Some activators, such as Ang II, p300, and 
arogens, induce VR through activation of Smad 2;however, 
Some activators, such as BMP2, fluvastatin, and HMGB1, 
improved VR through activation of Smad7 [6, 7, 19, 65]. 
The second observation is that VR caused by a variety 
of diseases (hyperglycemia [6], post-MI heart [15], and 
spontaneously hypertension [17]) can be regulated by 
TGF-β/Smad signaling pathways and improve VR. The 
discovery of TGF-β has led to the identification of new 
approaches to treat VR. To date, much significant research 
on the mechanisms of action of TGF-β has been conducted, 
and an increasing number of experts have highlighted the 
potential association between TGF-β and VR. Furthermore, 
TGF-β may offer novel potential as a therapeutic target for 
VR. However, the biological and pathological effects and 
molecular mechanisms of the TGF-β signaling pathways in 
VR remain unresolved, and many more studies of TGF-β 
are needed to determine the potential modulation of TGF-β 
signaling pathways for the treatment of VR and other 
human diseases.
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