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ABSTRACT
Carcinogenesis involves multi-level RNA dysregulations, including long non-

coding RNA, microRNA and mRNA. Therefore, only looking into one RNA level of 
cancer is not sufficient to uncover the intricate underlying mechanisms. In this study, 
an integrative strategy was conducted to systematically analyze the characterized 
molecular patterns of lung squamous cell carcinoma. Paired samples (cancer and 
adjacent normal tissues) in each RNA level were retrieved to identify differentially 
expressed RNAs. The regulatory triplets of lncRNA-microRNA-mRNA were identified 
after considering dysregulation pattern and evidence of publicly available databases. 
Thus, 32 significant mRNAs were retrieved by means of random walk algorithm. In 
four independent datasets, Kaplan–Meier survival and Cox regression analyses both 
confirmed that the expression of these genes was significantly associated with overall 
survival of LUSC patients. 

INTRODUCTION

Lung cancer holds the largest mobility and mortality 
rate among all types of cancer worldwide, and more than 
1.8 million new cases emerged every year (13% of the 
new cancer cases) [1]. The same ranking of lung cancer 
was also confirmed in China [2]. Lung squamous cell 
carcinoma (LUSC) accounts up to 30% of lung cancer [3]. 
Up to date, Cisplatin plus gemcitabine is still the first-line 
treatment of advanced LUSC [4], and therapeutic options 
for LUSC patients remain scarce because no molecular 
targets have ever been identified [5]. 

Carcinogenesis is an extremely complex process, of 
which the initiation and progression is closely associated 
with not only the protein coding mRNAs, but also non-
coding RNAs composing up to ~ 98% of the human 
genome [6]. Long non-coding RNAs (lncRNAs), of which 
the length is greater than 200 nucleotides (nt) but appearing 
to lack protein-coding potential, are produced through 
complex transcription interwoven between and within 
protein-coding genes [7]. Emerging evidence repetitively 
addressed that lncRNA might wield substantial weight 
upon cancer transformation [8–10], for instance, in post-
transcriptional regulation [11], tumorigenesis [12], and 
embryonic development [13]. microRNAs (miRNAs) are a 

class of small non-coding RNA (~ 22 nt) that regulate gene 
expression by binding to the 3’-untranslated region (3’-
UTR) of target genes, leading to the degradation or protein 
translation inhibition of target genes [14], and predicted 
to be the regulator of more than 60% of all protein-coding 
genes in mammal [15] and wield its regulatory power 
almost across every aspect of cellular process [16, 17]. 
The important role played by non-coding RNAs indicated 
that while looking into the dysregulation of mRNA 
expression in cancer, the aberrant patterns of multi-level 
events, including lncRNA and miRNA, should also be paid 
considerable attention. Therefore, the integrative analysis 
of LUSC multi-level RNA is urgently needed.

Among the hypotheses for generalized mechanisms 
of lncRNA function, the one receiving the most 
notable attention is the competitive endogenous RNA 
(ceRNA) hypothesis. The ceRNA hypothesis posits that 
specific lncRNAs can inhibit miRNA activity through 
sequestration, thereby up-regulating mRNA expression 
level [17]. For example, lncRNA HULC could reduce 
both miR-372 expression and activity leads to reducing 
translational repression of its target gene, PRKACB, which 
in turn induces phosphorylation of CREB in liver cancer 
[16]. In clear-cell renal cell carcinoma, lncRNA PTENP1 
functions as a ceRNA of PTEN for miR-21 to suppress 
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cancer progression, and the expression of PTENP1 and 
PTEN is positively correlated, and the expression of 
both is inversely correlated with miR-21 expression [18]. 
Therefore, the negative correlation between miRNA and 
lncRNA or mRNA could be used as a filtering rule to 
identify lncRNA-miRNA-mRNA regulatory triplet. 

RESULTS

The schematic of this study is illustrated in Figure 1.

Identification of differentiated lncRNAs, miRNAs 
and mRNAs according to paired TCGA data

Differentially expressed RNAs (DERs) in LUSC 
were composed of 1,223 up-regulated and 1,177 down-
regulated lncRNAs, 228 up-regulated and 81 down-
regulated miRNAs, and 4,157 up-regulated and 5,073 

down-regulated mRNAs (Figure 2A–2C). In addition, 
principle component analysis (PCA) of the TCGA paired 
data indicated that human lung carcinogenesis was 
characterized by substantial changes in transcriptomic 
features of three RNA levels (Figure 2D–2F). The cancer 
samples and normal samples could be clustered into two 
distinct groups, respectively. Therefore, we collected DERs 
for further analysis to reduce signal noise. GO analysis for 
differentially expressed mRNAs was conducted via the 
DAVID bioinformatics tool (http://david.abcc.ncifcrf.gov/). 
The result of GO enrichment analysis indicated that the 
down-regulated mRNAs were functionally concentrated 
on “immune response”, since the majority of the enriched 
GO terms were the offspring of this GO term (FDR<0.001, 
Figure 2G, Supplementary Table 2), while up-regulated 
mRNAs were functionally concentrated on “cell cycle” 
(FDR<0.001, Figure 2H, Supplementary Table 3), which 
was also confirmed by our previous research [19]. 

Figure 1: Schematic of methodology applied in this study. Step I: Using TCGA paired LUSC samples to identify differentially 
expressed RNA in three levels; Step II: Identification of lncRNA-miRNA-mRNA regulatory triplets according to several filtering rules; 
Step III: Identification of mRNAs significantly affected by the dysregulation of upstream lncRNAs and miRNAs, by applying random walk 
with restart algorithm in the merged network. Step IV: Survival analysis of identified significant RNAs to evaluate their prognostic value.
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Establish lncRNA-miRNA-mRNA triplet 
regulatory relation

For lncRNA-miRNA regulation, filtering rules 
consisted of reverse differentiation direction, intra-LUSC 
Spearman correlation and support from Starbase V2.0 
database, and finally 41 lncRNAs were found regulating 
42 miRNAs; as for miRNA-mRNA regulation, with the 
additional requirement of three miRNA-mRNA sequence 
algorithms, finally we found 134 miRNAs regulating 2411 
mRNAs.

Random walk in HPRD-KEGG merged 
biological network

We then projected these regulatory triplets onto 
HPRD-KEGG merged biological network, and used the 
biggest connected component (BCC, containing 540 

mRNAs regulated by 41 lncRNAs and 41 miRNAs, 
Figure 3) as the walking graph for random walk. mRNAs 
with triplet regulation in the BCC were all used as 
source nodes until the possibility vector reached steady-
state. Source nodes were weighted according to the 
aforementioned formula. The initial probability vector p0 
was obtained by normalizing the score vector (n = 540) 
so that the sum of the vector is equal to 1 (the input of 
random walk algorithm). When the steady-state was 
finally reached, all the genes in the BCC were scored with 
p∞ (n = 540, output of random walk algorithm), and thus 
the mRNAs with significantly high score were mostly 
affected by upstream lncRNA and miRNA dysregulations. 
Therefore, 32 significant mRNAs (p < 0.02) in respect 
to steady-stage probability were collected through 
10,000 permutations (Figure 4), and algorithmically 
these genes received the most influence imposed by 
upstream dysregulation of 34 lncRNAs and 27 miRNAs 

Figure 2: Identification of differentially expressed lncRNAs, miRNAs and mRNAs using TCGA paired samples. (A–C) 
Heat maps of differentially expressed lncRNAs, miRNAs and mRNAs in corresponding paired TCGA data, respectively. (D–F) PCA 
analyses with differentially expressed lncRNAs, miRNA, and mRNAs discriminating distinct molecular characteristics between cancer and 
adjacent normal tissues, respectively. (G) GO enrichment analysis of down-regulated mRNAs in LUSC. The length of the blue bars is equal 
to log2 transformed FDR value of GO analysis. (H) GO enrichment analysis of up-regulated mRNA in LUSC. 
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(Supplementary Table 4). The Circos plot of these triplet 
regulations were illustrated in Figure 5. The heatmaps of 
upstream 34 lncRNAs, 27 miRNAs and 32 significant 
mRNAs were shown in Figure 6A with 158 TCGA LUSC 
samples, and corresponding clinicopathological factors 
were also illustrated.

Validation of significant genes’ prognostic value 
via survival analysis

We search GEO database and used TCGA LUSC, 
GSE73403 (our samples), GSE30219 and GSE11969 
to evaluate the prognostic value of these 32 significant 
mRNAs. Kaplan–Meier survival analysis indicated 
that these 32 significant mRNAs performed well in all 

four independent cohorts (TCGA, n = 483, p = 0.043; 
GSE73403, n = 69, p = 0.024; GSE11969, n = 35, 
p = 0.008, GSE30219, n = 61, p = 0.021, Figure 6B). The 
prognostic values of upstream lncRNAs and miRNAs 
were also evaluated using TCGA datasets, indicating 
the expression of upstream lncRNAs was significantly 
associated with OS (n = 212, p = 0.009, Figure 7A–7B), 
rather than that of upstream miRNAs (n = 458, p = 0.350, 
Figure 7C–7D).

Confirmation of the prognostic value of the 
three-level RNAs

The Cox proportional hazards regression model 
was used to evaluate the independence of the prognostic 

Figure 3: Biggest connected component (BCC) for random walk. BCC includes 540 mRNAs, 41 lncRNAs and 41 miRNAs. 
Round dots represented mRNAs, hexon represented miRNAs, and square represented lncRNAs. Up-regulated RNAs were colored red, and 
down-regulated ones were dark green. 
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factors in a stepwise manner (Table 1). In each 
independent cohort, samples with OS, age, sex, American 
Joint Committee on Cancer (AJCC) stage information and 
smoking index were used to perform the analysis. The 
expressions of these 32 mRNAs, 34 upstream lncRNAs 
[hazard ratio (HR): 1.596; 95% confidence interval (CI): 
1.051~2.424; p = 0.028], rather than 27 miRNAs, were 
also confirmed as an independent prognostic factor in 
predicting patients’ OS, respectively. (Table 1)

DISCUSSION

The booming amount of high-throughput and multi-
dimensional genomic data usher us into a new era, when 
the tremendously complicated molecular mechanism of 
carcinogenesis could be possibly perceived and dissected 

in a more integrative perspective. Alterations in the 
primary or secondary structure, and expression levels of 
lncRNAs as well as their cognate RNA-binding proteins 
are often associated with human diseases [20]. In the last 
decade, the hypothesis of ceRNA was putatively accepted 
as a novel layer of gene regulation. Emerging evidences 
have indicated that lncRNA functioned as miRNA sponges 
by decoying miRNAs from other target transcripts, and 
therefore wielded great weight upon the process of 
carcinogenesis. For instance, lncRNA loc285194 was 
proven as a p53-regulated tumor suppressor through 
reciprocal through repression the expression level of 
miR-211 [21]. Increased lncRNA CYP4Z2P and CYP4Z1-
3ʹUTR expression promotes tumor angiogenesis in 
breast cancer partly via miRNA-dependent activation 
of PI3K/Akt and ERK1/2 by inhibiting several miRNAs 

Figure 4: Subnetwork composed of 32 significant mRNAs, 34 upstream lncRNAs and 27 miRNAs. The layout was set 
as circular format. Purple round dots represented mRNAs, light blue hexons represented miRNAs, and light green squares represented 
lncRNAs. 
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[22]. However, our knowledge about the underlying 
mechanism of lncRNA acting as ceRNAs in LUSC is still 
limited. In this study, we systematically analyzed LUSC’s 
RNA sequencing data, including lncRNA, miRNA and 
mRNA expression level, to discover novel and important 
molecular dysregulations in a more comprehensive 
manner, shedding significant light upon the novel layer of 
post-transcriptional regulation in human cancers. 

In order to identify lncRNA-miRNA-mRNA 
regulatory triplet of great importance with as much 
accuracy as possible, we first identify differentially 
expressed RNAs in three levels based on TCGA paired 
data. According to the ceRNA hypothesis, under the most 
circumstances, lncRNA and mRNA should be negatively 
correlated with miRNA expression level, since lncRNAs 
may function as miRNA sponges, to downregulate the 

Figure 5: Circos plot illustration of lncRNA-miRNA-mRNA triplet regulation. An ideogram of a normal karyotype is shown 
in the outermost ring. Black labels represented 32 significant mRNAs. Blue labels represented 34 lncRNAs. Red labels represented 27 
miRNAs. Black links represented mRNA-mRNA interactions. Red links represented lncRNA-miRNA regulation. Green links represented 
miRNA-mRNA regulation.
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expression and activities of miRNAs, thereby modulating 
the de-repression of miRNA targets and imposing 
an additional level of post-transcriptional regulation 
[23]. Therefore, we searched for the regulatory pairs, of 
which source nodes had the reverse differentiation direction 
in comparison to target nodes, and were negatively 
correlated with target nodes. Starbase database contained 
invaluable information for deciphering lncRNA-miRNA 
interactions, miRNA-mRNA interactions and ceRNA 
networks based on 108 CLIP-Seq datasets, whereby 
the involvement of Starbase evidence, could greatly 
consolidate the credibility of the regulatory relation.

GO analysis indicated that differentially expressed 
mRNAs were involved in immune response and cell 

cycle processes. Tumor-associated cell cycle defects 
may induce aberrant proliferation as well as genomic 
and chromosomal instability, which are often mediated 
by alterations in cyclin-dependent kinase (CDK) activity 
[24]. Infection and chronic inflammation contribute 
to an estimated 25% of all cancers worldwide [25]. In 
developmental biology, the fetus, which in many ways 
behaves like an allogenic transplant, also evades maternal 
immune-surveillance through mechanisms similar to those 
observed in tumors [26]. Indeed, excessive proliferation 
(activation of cell cycle genes) and immune-surveillance 
evasion (suppression of immune genes) allow tumors 
to obtain territorial expansion advantages compared to 
normal cells. 

Figure 6: Heatmaps of three RNA levels and survival analysis of significant mRNAs in four independent datasets.  
(A) Heatmaps of 34 lncRNAs, 27 miRNAs and 32 significant mRNAs using 158 TCGA LUSC samples. Row represented 158 TCGA 
samples, ordered by smoking index. (B) Kaplan–Meier survival analysis of 32 significant mRNAs in four independent data sets. Survival 
analysis was performed to discriminate OS between k-means assigned groups. 
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In this study, we adopted a simple and effective 
computational strategy to randomly walk through mRNAs 
with significantly dysregulated lncRNAs and miRNAs 
in HPRD and KEGG merged biological network. We 
hypothesized downstream target mRNAs may be conferred 
with copious prognostic information, and the same 
strategy was also adopted by previous researches [27, 28]. 
Therefore, mRNAs with upstream lncRNA-miRNA 

regulation were collected, and the biggest connected 
component composed of these mRNAs were used as 
walking graph for random walk. Random walk with restart 
was adopted to decipher gene to disease association in 
prior-knowledge based network, whose performance was 
proven to be much more superior to other methods, such 
as neighborhood approaches [29–31]. The advantage of 
this strategy is that it subtly combines observed triplet 

Table 1: Univariate and multivariate analyses of overall survival (Cox proportional hazards 
regression model)
Factors Univariate Cox regression Multivariate Cox regression

HR (95% CI) P HR (95% CI) P
GSE73403 (mRNA, n = 69)
Age 0.999 (0.959~1.040) 0.950 - -
Sex (Male/Female) 1.125 (0.264~4.789) 0.873 - -
Stage (III/I+II) 2.283 (1.049~4.969) 0.037 2.746 (1.231~6.126) 0.014
Smoking (pack-year) 1.008 (0.995~1.021) 0.210 - -
K-meansa 2.215 (1.034~4.746) 0.041 2.658 (1.209~5.844) 0.015
GSE30219 (mRNA, n = 61)
Age 1.038 (1.004~1.073) 0.028 1.058 (1.020~1.097) 0.003
Sex (Male/Female) 0.438 (0.153~1.256) 0.125 - -
Stage (II+III/I) 2.202 (1.074~4.512) 0.031 3.698 (1.657~8.251) 0.001
K-meansa 2.011 (1.103~3.665) 0.023 2.210 (1.201~4.067) 0.011
GSE11969 (mRNA, n = 35)
Age 1.030 (0.975~1.088) 0.295 - -
Sex (Male/Female) 1.282 (0.171~9.592) 0.809 - -
Stage (III+IV/I+II) 3.407 (1.395~8.323) 0.007 2.864 (1.157~7.090) 0.023
K-meansa 3.356 (1.300~8.663) 0.012 2.835 (1.077~7.465) 0.035
TCGA (mRNA, n = 480)
  Age 1.017 (0.999~1.035) 0.057 - -
Sex (Male/Female) 1.109 (0.797~1.542) 0.539 - -
  Stage (II + III + IV/I) 1.391 (1.046~1.849) 0.023 1.391 (1.046~1.849) 0.023
  Smoking (pack-year) 1.000 (0.996~1.005) 0.905 - -
K-meansa 1.357 (1.020~1.806) 0.036 1.358 (1.021~1.807) 0.036
TCGA (lncRNA, n = 212)
  Age 1.036 (1.010~1.063) 0.006 1.039 (1.012~1.067) 0.004
Sex (Male/Female) 1.416 (0.886~2.264) 0.146 - -
  Stage (II + III + IV/I) 1.602 (1.070~2.397) 0.013 1.621 (1.079~2.436) 0.020
  Smoking (pack-year) 1.000 (0.994~1.007) 0.924 - -
K-meansa 1.357 (1.020~1.806) 0.022 1.596 (1.051~2.424) 0.028
TCGA (miRNA, n = 456)
  Age 1.015 (0.997~1.034) 0.105 - -
Sex (Male/Female) 1.033 (0.735~1.450) 0.853 - -
  Stage (II + III + IV/I) 1.456 (1.081~1.962) 0.013 - -
  Smoking (pack-year) 1.000 (0.995~1.005) 0.995 - -
K-meansa 1.077 (0.799~1.452) 0.628 - -

aBased on the k-means algorithm to divide samples into two groups. Significant p values were in bold (p < 0.05). Abbreviations: 
HR, hazard ratio; CI, confidence interval.
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regulation with knowledge-based regulatory network, 
tracing the information flow which would be greatly 
accumulated in significant genes. Nodes in the network 
were weighted with the mean of regulatory consistency, 
quantifying the authenticity the regulatory pair held. In 
this way, significant mRNAs identified by random walk 
through biological network contained specific genes that 
underwent the considerable dysregulation of upstream 
lncRNA-miRNA during carcinogenesis. 

Many of these significant mRNAs obtained through 
random walk algorithm were closely related to the initiation 
and progression of LUSC. For example, JAK1 is responsible 
for STAT3 activation in non-small-cell lung cancer and 
inactivation of JAK1-STAT3 can inhibit lung cancer growth 
[32]. SRPK1 could promote a stem cell-like phenotype in 
non-small-cell lung cancer via Wnt/β-catenin signaling 
[33]. Overexpression of CRKL promoted cell invasion 
through upregulation of MMP9 expression and activation 
of ERK pathway in lung cancer [34]. The abundance of 

supporting researches further endorsed our study that the 
differentially expressed genes significantly influenced by the 
dysregulation of upstream lncRNAs and miRNAs might be 
extremely crucial during the process of lung carcinogenesis. 

Since candidate genes were collected based 
on aberrant patterns in multi-level of TCGA RNA 
sequencing data, we used microarray data sets with OS 
information from GEO database in conjunction with 
TCGA to test the prognostic value of these significant 
genes and corresponding upstream regulators. The reason 
why only mRNAs and lncRNAs, rather than miRNAs 
in regulatory triplet, were evaluated as valuable in OS 
prediction is still unclear. Probably miRNAs might be 
functioned as a cushion mediating the proper expression 
level for both lncRNA and mRNA, and therefore the 
two-side tradeoff compromises the prognostic value of 
sandwiched miRNAs. The underlying mechanism needs 
further exploration. Moreover, smoking is no doubt the 
leading hazardous factor, especially for LUSC, confirmed 

Figure 7: Survival analysis of the upstream lncRNAs and miRNAs in TCGA dataset. (A) Kaplan–Meier survival analysis of 
34 upstream lncRNAs in the TCGA data, in which patients are divided into two k-means assigned groups. (B) The heatmap of 34 lncRNAs 
in the TCGA data. Rows represent lncRNAs, which were clustered using an unsupervised clustering algorithm, while columns represent 
samples, which are divided into two groups according to k-means algorithm. (C–D) the survival analysis and heatmap of 27 upstream 
miRNAs in TCGA dataset.
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by numerous researches [35]. However, at least in TCGA 
database and our microarray data, smoking index was not 
significantly correlated with LUSC patient’s OS (Table 1). 
In Figure 6A, 158 TCGA LUSC samples were ordered 
by smoking index, and all the listed clinicopathological 
factors and the expression pattern of three RNA levels 
seemed randomly scattered, suggesting smoking works as 
the ignitor for LUSC formation, but probably not as the 
indicator for LUSC’s prognosis and progression.

MATERIALS AND METHODS

Data retrieval

The multi-dimensional data of LUSC associated 
datasets were retrieved from The Cancer Genome 
Atlas (TCGA) database (https://tcga-data.nci.nih.gov/
tcga/). Two levels of RNA sequencing data [RNASeq 
by Expectation Maximization (RSEM) normalized read 
counts] were downloaded, including 51 pairs of mRNA 
sequencing level 3 data (including 20,531 mRNAs) and 
45 pairs of miRNA sequencing level 3 data (including 
546 mature miRNAs processed by TCGA). LncRNA 
sequencing data of LUSC was downloaded from The 
Atlas of ncRNA in Cancer database (TANRIC, http://
ibl.mdanderson.org/tanric/_design/basic/index.html), 
including 16 pairs of LUSC samples and 12,727 
lncRNAs. The RNAs with 0 read count in more than 
half of corresponding samples were excluded. The 
expression value was log2 transformed to approximate 
normal distribution. TCGA LUSC samples with overall 
survival (OS) information (n = 483) were used for 
prognostic evaluation. Datasets with OS information 
(GSE30219 and GSE11969, only LUSC samples were 
included) were downloaded from GEO database. All 
clinical information was extracted from the original 
publications.

Microarray expression profiling of LUSC 
samples

The global mRNA expression profile of 69 
LUSC samples with OS information were conducted 
in our previous research [19] (Supplementary Table 1). 
After histopathological evaluation and RNA integrity 
analysis, all these samples were purified and analyzed 
using Agilent microarrays. Total RNA samples were 
labeled and hybridized to Agilent 4*44K Whole Human 
Genome Oligo Microarrays (G4112F). Normalized 
expression data were extracted with R package “limma” 
using cyclic loess method, and the ComBat algorithm 
was utilized to eliminate potential batch effects. The 
expression levels of 18,453 genes were obtained as 
the median value of all probes mapping to a particular 
gene. The raw and processed data have been deposited 

in GEO database with the series accession numbers 
GSE73403. 

Establishment of lncRNA-miRNA-mRNA triplet 
regulatory relation

First, significantly differentiated lncRNAs, miRNAs 
and mRNAs were identified based on paired t test using LUSC 
RNA sequencing data, and the p value was also adjusted with 
false discovery rate (FDR) algorithm (FDR<0.05). 

Several rules must be obeyed in order to establish 
lncRNA-miRNA-mRNA regulatory relation (Figure 1), 
several rules: (i) source nodes must have the reverse 
differentiation direction comparing with target nodes 
(i.e., up-regulated lncRNAs regulate down-regulated 
miRNAs, which regulate up-regulated mRNAs; or down-
regulated lncRNAs regulate up-regulated miRNAs, which 
regulate down-regulated mRNAs; (ii) source nodes must 
be negatively correlation with target nodes according to 
Spearman correlation algorithm within cancer samples 
(p < 0.05); (iii) lncRNA-miRNA and miRNA-mRNA 
regulation both required support from CLIP-Seq data 
in Starbase V2.0 database [36]; (iv) miRNA-mRNA 
regulatory pair was regarded as solid only if they satisfied 
at least two of three sequence algorithms (miRanda [37], 
TargetScan [38], PicTar [39]) as well. 

Establish merged biological network

The protein–protein interaction network was 
downloaded from the Human Protein Reference Database 
(HPRD), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) network. Therefore, gene regulatory network 
was established by merging the two networks, including 
10,340 nodes and 60,642 edges after eliminating self-
loops and duplicated edges. Therefore, the regulatory 
network was composed by mRNAs with lncRNA-miRNA 
regulation and corresponding regulators. 

Random walk in merged biological network

Taking advantage of knowledge-based network 
topology, random walk algorithm was utilized to identify 
genes algorithmically most affected by corresponding 
lncRNAs and miRNAs [40]. In the network, genes of 
interest were designated as information source (i.e., source 
nodes) and the remaining genes in the network as the 
information target (i.e., target nodes). Biggest connected 
component (BCC) of interest is used as the walking graph 
for random walk. mRNAs with triplet regulation in the 
BCC were all used as source nodes until the possibility 
vector reached steady-state. Source nodes were weighted 
according to following formula: 

| | | |
2

l mi mi mCor CorW − −+
=  (1)
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Corl-mi represented the Spearman correlation 
coefficient between lncRNA and its regulated miRNA, 
whereas Cormi-m represented that between miRNA and 
regulated mRNA. Therefore, W denoted the regulatory 
consistency, i.e., the bigger W is, the more likely this triplet 
regulatory relation exists. The information flow originates 
from source nodes iteratively and randomly transmits to 
their neighbors with a probability proportional to their 
topological features. At each step, the information can flow 
back to the source nodes with the same probability. The final 
steady-state probability assigned to each gene in the network 
reflects the integrated influence imposed by source nodes 
combining network topology. Formally, the random walk 
with restart is defined as:

1 0(1 )t tp r Wp rp+ = − +  (2)

where W is the column-normalized adjacency 
matrix of network, and pt is a vector in which the 
genes in the network holds probability in the iterative 
process up to step t. Source nodes were weighted with 
initial probability vector p0 (the sum of its elements was 
equal to 1), and r represents restart probability (r = 0.7 
in this study). All the genes in the network were ranked 
according to the values in the steady-state probability 
vector p∞. This was obtained at query time by performing 
the iteration until the difference between pt and pt+1 
(measured by the L1 norm) was lower than 10–10. In 
order to obtain genes with significantly high steady-state 
probability, 10,000 permutations of node labels (with 
network topology remained the same) were conducted 
to calculate the null distribution of final probability 
for each gene. The p value was termed as the ratio of 
random values that were greater than the observed final 
probability. Genes with p < 0.02 were regarded as the 
genes significantly afflicted by upstream lncRNA and 
miRNA dysregulations.

Survival analysis

We clustered LUSC patients based on the 
expression profile of cancer patients used k-means 
algorithm. Kaplan–Meier survival analysis and the log-
rank test were used to evaluate prognostic differences 
between the two k-means assigned groups [41–43]. The 
Cox proportional hazards regression model was used to 
evaluate the independence of the prognostic factors in a 
stepwise manner. Samples in each dataset with complete 
patient age, sex, stage, smoking index and OS information 
were used for Cox analysis, and a value of p < 0.05 was 
regarded as significant.

Statistical analysis

All the data analyses were conducted using R 
programming (Version 3.3.1) and Matlab (Version 2015b) 
language.
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