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ABSTRACT
Thymoquinone is an anticancer phytochemical commonly found in black cumin. 

In this review, we discuss the potential of thymoquinone as anticancer molecule, its 
mechanism of action and future usage in clinical applications. Thymoquinone exhibits 
anticancer activity via numerous mechanisms of action, specifically by showing 
selective antioxidant and oxidant activity, interfering with DNA structure, affecting 
carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity 
of thymoquinone has been further implicated in animal models of cancer; however, no 
clinical application has been proven yet. This is the optimum time to focus on clinical 
trials for developing thymoquinone as a future drug in cancer therapeutics.

INTRODUCTION

Every year, millions of people are diagnosed 
with cancer, which is the second leading cause of death 
worldwide after myocardial infarction. Fortunately, the 
number of cancer survivors is increasing, mainly due to 
advances in early detection and new treatment strategies. 
It has been reported that more than 15.5 million Americans 
with a history of cancer are alive by January 2016 [1]. 
However, in many regions in the world, including East 
Asian countries, cancer is still the major public health 
problem with increasing incidence and mortality rate [2]. 
As for now, chemotherapy is one of the most common 
treatment option in cancer therapy, which continues to 
increase the amount of anticancer drugs used for treatment; 
even so, most people use a combination of treatments, 
such as surgery with chemotherapy and radiation therapy. 

Unfortunately, chemotherapeutic agents create many 
adverse side effects. Currently, there is a trend in searching 
for anticancer chemicals in natural sources, as natural 
products are usually thought to be less toxic and produce 
minimal side effects. Drugs from natural sources have been 
used traditionally for thousands of years in various parts 
of the world. Scientists have targeted many traditional or 

folk medicines in parallel of modern medicine to identify 
and extract active ingredients for the drug development. 
Thymoquinone (2-methyl-5-isopropyl-1,4-benzoquinone) 
(Figure 1) is a phytochemical compound found in black 
cumin (Nigella sativa) with a long history of medicinal 
use [3, 4]. The black cumin seeds have a notable history in 
traditional medicine practices mainly in South and South-
eastern Asia, Arab, Africa and Mediterranean regions. 
In ancient Egypt, Greece and Turkey, black cumin seeds 
were often used to treat a number of diseases and ailments 
[3–6]. Both seeds and oil from Nigella sativa plants are 
used in medicinal purposes, and they are known for their 
anticancer, antidiabetic, antihypertensive, antimicrobial, 
analgesic, immunomodulatory, anti-inflammatory, 
spasmolytic, hepato-protective, renal-protective, gastro-
protective, bronchodilative and antioxidant activities 
[4–6]. Its versatile healing abilities have given the black 
cumin seed its name ‘Panacea’ (in Latin, meaning ‘cure 
all’), and ‘Habbah Sawda’ or ‘Habbat el Baraka’ (in 
Arabic, translated as ‘Seeds of blessing)’. It is also known 
as ‘Kalo jeera’ (in Bangladesh), ‘Kalonji’ (in India) and 
‘hēi zhǒng cǎo’ (in China). Black cumin seeds and oil 
are also known as ‘Prophetic medicine’, as the Islamic 
prophet has deemed its high potential as medicine [4–7]. 
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In recent years, many scientific studies have 
revealed the anticancer potential of thymoquinone, 
however, there is no clinical application yet. In this review, 
we discuss the potential of thymoquinone as anticancer 
molecule, and its mechanism of action and future usage in 
clinical applications. 

Thymoquinone in modern anticancer research: 
efficacy and mechanisms of action

Thymoquinone was identified and quantified in 
black cumin seed oils by Ghosheh et al., [8] with other 
compounds named dithymoquinone, thymohydroquinone 
and thymol. Over a decade ago, some scientists became 
interested in anticancer activities of thymoquinone. Since 
then, a number of studies have been carried out to evaluate 
the anticancer or chemopreventive role and mechanism of 
action of thymoquinone in different cancer cell lines and 
animal models of different cancer types (Table 1, Figure 2). 

Antioxidant activity of thymoquinone

Initial experimental studies suggested that the 
antioxidant activity of thymoquinone is responsible for its 
chemopreventive activities; however, some other studies 
reported thymoquinone induce apoptosis in cancer cells 
by exerting oxidative damage [9–13]. An interesting study 
reported that thymoquinone is actually a potent apoptosis 
inducer in cancer cells, but it exerts antiapoptotic effect 
through attenuating oxidative stress in other types of cell 
injury [14]. Another hypothesis states that thymoquinone 
acts as an antioxidant at lower concentrations and a 
prooxidant at higher concentrations [15]. The antioxidant, 
antiproliferative and proapoptotic activity of thymoquinone 
was further explained by Cecarini et al. [16], demonstrating 
that thymoquinone induces selective proteasome inhibition, 

which could be implicated in the induction of apoptosis 
in cancer cells. Further study by Torres et al. [17] revealed 
that thymoquinone down-regulates glycoprotein mucin 4 
(MUC4) expression through the proteasomal pathway and 
induces apoptosis in pancreatic cancer cells by activating 
c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-
activated protein kinase (MAPK) pathways. Usually, 
MUC4 is aberrantly expressed in pancreatic cancer, and 
contributes to the regulation of cellular differentiation, 
proliferation, metastasis and chemoresistance.

Thymoquinone interferes with DNA structure 
and synthesis

Thymoquinone also acts via interference with 
DNA structure. It targets cellular copper, which is present 
in the chromatin and is closely associated with DNA 
base guanine, and causes oxidative breakage to DNA 
and consequent cancer cell death [15]. Thymoquinone 
can possibly act as a G-quadruplex DNA stabilizer and 
subsequently contribute to the inhibition of telomerase 
enzyme and cancer’s proliferation [18]. It can induce DNA 
damage and telomere attrition by inhibiting telomerase 
and cell death in glioblastoma cells with minimal effects 
to normal cells [19]. It can also affect DNA synthesis in 
cancer cells. In an earlier study, thymoquinone was found 
to inhibit DNA synthesis, proliferation, and viability of 
cancerous cells, such as LNCaP, C4-B, DU145, and PC-3, 
but not noncancerous BPH-1 prostate epithelial cells [20]. 

Thymoquinone targets carcinogenic signaling 
pathways

A number of carcinogenic signaling pathways or 
signaling molecules have been reported as thymoquinone’s 
target. Down-regulation of androgen receptor (AR) and 

Figure 1: The molecular structure of thymoquinone (Chemical name: 2-Isopropyl-5-methylbenzo-1,4-quinone).
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Table 1: Thymoquinone’s action against different cancers
Cancer types Cell lines Animal model Mechanism of action of thymoquinone Ref.
Acute 
lymphoblastic 
leukemia

CEM-ss Generates ROS and HSP70, down-regulates Bcl-2, 
up-regulates Bax, activates caspase 3, 8 for inducing 
apoptosis

[30]

Bladder cancer T24 Attenuates mTOR activity, and inhibits PI3K/Akt 
signaling

[52, 53]

Breast cancer MDA-
MB-468, 
T47D

Interferes with PI3K/Akt signaling and promotes G(1) 
arrest

[27]

MCF-7 Up-regulates p53 [31]
BT549 Down-regulates TWIST1 and EMT [51]

Mouse Inhibits NF-κB; Down-regulates p38 MAPK via the 
generation of ROS; inhibits TWIST1 expression and 
controls cancer cell metastasis by regulating EMT

[51, 58, 65]

Cervical cancer HeLa Inhibits serine/threonine kinase Plk1 [21]
Colon cancer HCT116 Induces apoptosis by up-regulating Bax and inhibiting 

Bcl-2, as well as activation of caspases -9, -7 and 
-3 and induction of PARP cleavage; blocks STAT3 
signaling via inhibition of JAK2- and Src-mediated 
phosphorylation of EGFR tyrosine kinase.

[25]

CPT-11-R 
LoVo

Induces caspase-independent autophagy [43]

Rat Exert oxidative stress [55]
Mouse Delays the growth of tumor, reduces tumor cell 

invasion and also increases apoptosis
[56]

Colorectal cancer HCT116w, 
DLD-1, 
HT29

Binds to oncogene PAK1, changes its conformation 
and scaffold function, and interferes with RAF/MEK/
ERK1/2 pathway and controls cancer cell growth

[47]

Cholangio-
carcinoma

TFK-1, 
HuCCT1

Down-regulates PI3K/Akt and NF-κB, and their 
regulated gene products, such as p-AKT, p65, XIAP, 
Bcl-2, COX-2 and VEGF

[46]

Familial 
adenomatous 
polyposis

Mouse Interferes with polyp progression through induction of 
tumor-cell specific apoptosis and by modulating Wnt 
signaling through the activation of GSK-3β

[63]

Gastric cancer HGC27, 
BGC823, 
SGC7901

Inhibits STAT3 phosphorylation, associated with 
reduction in JAK2 and c-Src activity, as well as Bcl-
2, cyclin D, survivin, and VEGF

[24]

Mouse Down-regulates STAT3 [24]
Glioblastoma M059K, 

M059J 
Induces DNA damage, telomere attrition by inhibiting 
telomerase and cell death

[19]

U-87, CCF-
STTG1

Down-regulates FAK, associated with a reduction of 
ERK phosphorylation as well MMP-2 and MMP-9 
secretion, and consequently inhibits cell migration 
and invasion

[48]

Hepatic carcinoma HepG2 Stimulates expression of pro-apoptotic Bcl-xS and 
TRAIL death receptors, and inhibits expression of the 
anti-apoptotic gene Bcl-2, as well as inhibits NF-κB 
and IL-8 and stimulates apoptosis

[45]
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cell proliferation regulator E2F-1 was indicated as the 
mechanism behind thymoquinone’s action in prostate cancer 
[20]. Thymoquinone and its synthetic derivative poloxin was 
found to inhibit the serine/threonine kinase Polo-like kinase 
1 (Plk1) (usually over-expressed in many types of cancers) 
by interfering with its intracellular localization [21]. Another 
important target of thymoquinone is the signal transducer 
and activator of transcription 3 (STAT3) pathway. In a 
study, thymoquinone was found to inhibit both constitutive 
and interleukin-6 (IL-6)-inducible STAT3 phosphorylation, 
which is correlated with the inhibition of c-Src and JAK2 
(Janus kinase) activation. Also, the expression of STAT3-
regulated gene products, such as cyclin D1, Bcl-2, Bcl-xL, 
survivin, Mcl-1 and vascular endothelial growth factor 

(VEGF), was inhibited by thymoquinone, which ultimately 
increased apoptosis and killed cancer cells or inhibited their 
growth [22]. Suppression of STAT3 phosphorylation by 
thymoquinone was also found to be associated with decrease 
of F-actin polymerization and reduction of proliferation 
of human multiple myeloma cells [23]. Thymoquinone’s 
inhibition of STAT3 phosphorylation, associated with 
reduction in JAK2 and c-Src activity, as well as Bcl-2, 
cyclin D, survivin, and VEGF was also reported in gastric 
cancer cells [24]. In human colon cancer cells (HCT116), 
thymoquinone induced apoptosis, which was associated with 
the up-regulation of Bax and the inhibition of Bcl-2 as well 
as the activation of caspases -9, -7 and -3 and the induction of 
the cleavage of poly-(ADP-ribose) polymerase (PARP) [25]. 

Rat Decreases the expression of antioxidant enzymes, 
such as, glutathione peroxidase, glutathione-s-
transferase and catalase; regulates G1/S phase cell 
cycle transition

[64]

Lung cancer A549 Reduces ERK1/2 phosphorylation and controls 
proliferation and migration

[50]

Multiple myeloma U266, 
RPMI8226

Inhibits IL-6-inducible STAT3 phosphorylation, 
which is correlated with the inhibition of c-Src and 
JAK2 activation. Also inhibits the expression of 
STAT3-regulated gene products, D1, Bcl-2, Bcl-xL, 
survivin, Mcl-1 and VEGF, which ultimately induces 
apoptosis 

[23, 38, 93]

Murine Leukemia WEHI-3 Mouse Increases early apoptosis through the up-regulation of 
Bcl-2, and down-regulation of Bax.

[68]

Myeloid leukemia KBM-5 Suppresses TNF-α-induced NF-κB activation, 
and consequently inhibits the activation of I-κB 
alpha kinase, I-κB alpha phosphorylation, I-κB 
alpha degradation, p65 phosphorylation, p65 
nuclear translocation, and the NF-κB -dependent 
reporter gene expression; Also down-regulates the 
expression of NF-κB -regulated antiapoptotic gene 
products like IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and 
surviving; proliferative gene products like cyclin D1, 
cyclooxygenase-2, and c-Myc, and angiogenic gene 
products MMP-9 and VEGF

[35]

Oral cancer T28 Down-regulates proliferation activator p38 MAPK [26]
Osteosarcoma MG63 Generates ROS to induce oxidative damage and 

apoptosis 
[11, 70]

Prostate Cancer LNCaP Antioxidant activity controls cancer cell growth [9]
DU145,  
PC-3, LNCaP

Inhibits DNA synthesis and proliferation [20]

Pancreatic cancer FG/
COLO357, 
CD18/HPAF

Down-regulates MUC4 expression through the 
proteasomal pathway and induces apoptosis by the 
activation of JNK) and p38 MAPK pathways

[17]

Mouse Down-regulates MMP-9, XIAP [59]
Squamous cell 
carcinoma

Mouse Inhibits cell proliferation and induces apoptosis by 
inhibiting Akt and JNK phosphorylations

[62]
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In molecular level, it was found that thymoquinone exerts 
effects by blocking STAT3 signaling via the inhibition of 
JAK2- and Src-mediated phosphorylation of EGFR tyrosine 
kinase [25]. In oral cancer cells (T28), thymoquinone 
showed anticancer activity via the down-regulation of 
proliferation activator p38 MAPK [26]. In breast cancer 
cell lines (MDA-MB-468 and T47D), thymoquinone 
interfered with PI3K/Akt signaling and promoted G(1) 
arrest and induced apoptosis [27]. Thymoquinone inhibited  
p53-mutated acute lymphoblastic leukemia (ALL) cells 
via the activation of a p73-dependent mitochondrial and 
cell cycle checkpoint signaling pathway; this pathway 
subsequently targets the anti-apoptotic and epigenetic 
integrator UHRF1, which is essential for cell cycle 
progression [28]. Furthermore, it was found that down-
regulation of cyclic nucleotide phosphodiesterase 
PDE1A is the key event of p73 and UHRF1 deregulation 
in thymoquinone-induced ALL cell apoptosis [29]. In 
ALL cell line CEM-ss, thymoquinone treatment generated 
reactive oxygen species (ROS) and HSP70, down-
regulated Bcl-2, up-regulated Bax, and activated caspase 
3 and caspase 8 for inducing apoptosis [30]. A recent 
study confirms that thymoquinone can induce apoptosis 
in MCF-7 breast cancer cells via the up-regulation of p53 
expression [31]. Thymoquinone significantly increased 
the expression of miR-34a via p53, and down-regulated 
Rac1 expression, followed by actin depolymerisation and 
disruption of the actin cytoskeleton [32]. This damage in 
the actin cytoskeleton leads to a significant reduction in 
the lamellipodia and filopodia formation on cell surfaces, 
thus retarding cell migration [32]. In hepatic carcinoma, 

thymoquinone induced cell cycle arrest and apoptosis by 
repressing the Notch signaling pathway [33]. A detail on 
the thymoquinone action in different signaling pathways 
involved in cancer has been reviewed by Rahmani et al. [34].

Immunomodulatory activities of thymoquinone

The immunomodulatory activity of thymoquinone 
is another important mechanism of its anticancer activity. 
Evidence revealed that thymoquinone suppresses tumor 
necrosis factor (TNF-α)-induced NF-kappa B (NF-κB) 
activation, and consequently inhibits the activation of  
I kappa B alpha (I-κBα) kinase, I-κBα phosphorylation, 
I-κBα degradation, p65 phosphorylation, p65 nuclear 
translocation, and NF-κB -dependent reporter gene 
expression [35]. It also down-regulated the expression 
of NF-κB -regulated antiapoptotic gene products, like 
IAP1, IAP2, XIAP Bcl-2, Bcl-xL; surviving proliferative 
gene products, like cyclin D1, cyclooxygenase-2  
(COX-2), and c-Myc; and angiogenic gene products like 
matrix metalloproteinase-9 (MMP-9) and VEGF [35]. 
Thymoquinone was found to suppress NF-κB signaling 
and IL-8 expression in childhood malignant brain tumor 
medulloblastoma, and it induced both extrinsic and 
intrinsic pathways of apoptosis [36]. It also inhibited 
monocyte chemo-attractant protein-1 (MCP-1), TNF-α, 
interleukin (IL)-1β and COX-2, ultimately reducing the 
NF-κB activation in pancreatic ductal adenocarcinoma 
cells, indicating its role as an inhibitor of proinflammatory 
pathways [37]. In multiple myeloma cells, thymoquinone 
was found to inhibit CXCL12-induced chemotaxis and 

Figure 2: Important mechanisms of thymoquinone’s anticancer action. Thymoquionone induces apoptosis in cancer cells 
via generating reactive oxygen species (ROS), DNA damage, telomeric attrition, immunomodulation, regulating signaling pathways and 
autophagy induction. Thymoquinone also regulates epitheilial to mesenchymal transition (EMT) and inhibits cancer metastasis. In non-
cancer cells, thymoquione shows anti-oxidant activities and chemopreventive activity.
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increase their susceptibility to Fas-mediated apoptosis 
[38]. Thymoquinone is also involved in conditioning  
T cells in vitro for adoptive T-cell therapy against cancer, 
reported by Salem et al. [39], as it enhances the survival 
and activity of antigen-specific CD8-positive T cell. 
Activated B-cell lymphoma (ABC) is a subtype of 
diffuse large B-cell lymphoma (DLBCL), which has the 
worst survival rate after upfront chemotherapy, and is 
characterized by constitutively activated NF-κB [40]. 
Thymoquinone induced the release of ROS in ABC 
cell lines, which, in turn, inhibited NF-κB activity by 
dephosphorylating I-κBα and reducing the translocation 
of p65 subunit of NF-κB in the nuclear compartment 
of cells [40]. In addition to apoptosis induction, 
thymoquinone also plays a role in inducing autophagy 
in glioblastoma cells [41]. Autophagy induction was 
also reported in head and neck squamous cell carcinoma 
(HNSCC) as a result of thymoquinone treatment [42]. 
Thymoquinone induced caspase-independent autophagic 
cell death by increasing the mitochondrial outer membrane 
permeability and activation of JNK and p38 in CPT-
11-R LoVo colon cancer cells [43]. Without affecting the 
tubulin levels in normal human fibroblast, thymoquinone 
induces degradation of α and β tubulin proteins in 
human astrocytoma U87 cells and in T lymphoblastic 
leukaemia Jurkat cells, and thus exerts anticancer activity 
[44]. Thymoquinone treatment in hepatic carcinoma 
cells (HepG2) stimulated mRNA expression of pro-
apoptotic Bcl-xS and TRAIL death receptors, inhibited 
the expression of the anti-apoptotic gene Bcl-2, inhibited 
NF-κB and IL-8, and stimulated apoptosis [45]. In 
cholangiocarcinoma cell lines (TFK-1 and HuCCT1), 
thymoquinone showed anticancer activity by down-
regulating PI3K/Akt and NF-κB and other regulated gene 
products, such as p-AKT, p65, XIAP, Bcl-2, COX-2 and 
VEGF [46]. Another study revealed that thymoquinone 
binds to oncogene PAK1, changes its conformation and 
scaffold function, and interferes with RAF/MEK/ERK1/2 
pathway in colorectal cancer [47].

Thymoquinone’s effects on cancer cell migration 
and invasion

In addition to controling cancer cell proliferation, 
thymoquinone also reduces cancer metastasis. In human 
glioblastoma U-87 and CCF-STTG1 cells, thymoquinone 
treatment was found to influence a drastic down-
regulation of Focal Adhesion Kinase (FAK), associated 
with a reduction of ERK phosphorylation and matrix 
metalloproteinase (MMP-2 and MMP-9) secretion, 
consequently inhibiting cell migration and invasion 
[48]. The immunotherapeutic and anti-metastatic role of 
thymoquinone in controlling and preventing metastatic 
melanoma has been reported in another study, where 
the NLRP3 inflammasome was found to be the target of 
thymoquinone [49]. Thymoquinone inhibited human non-

small carcinoma cell lung cancer (A549 cell) proliferation 
and migration by reducing ERK1/2 phosphorylation [50]. 
It has been evident that thymoquinone treatment inhibits 
TWIST1 promoter activity and decreases its expression 
in breast cancer cell lines; leading to the inhibition of 
epithelial-mesenchymal transition (EMT) mediated cancer 
cell migration, invasion and metastasis [51]. Along with 
interfering with EMT, thymoquinone also attenuated 
mTOR activity, and inhibited PI3K/Akt signaling in 
bladder cancer [52, 53].

In vivo success of thymoquinone as anticancer 
molecule

Over the last decade, a number of studies 
used thymoquinone against animal cancer models. 
Similar to in vitro studies, in vivo investigations also 
revealed the antioxidant activity of thymoquinone in 
controlling rat hepatic carcinoma by decreasing the 
expression of antioxidant enzymes, such as glutathione 
peroxidase, glutathione-s-transferase and catalase [54]. 
In 1,2-dimethyl-hydrazine (DMH)-induced oxidative 
stress during the initiation and promotion of colon 
carcinogenesis in rats, thymoquinone showed chemo-
preventive activity by reducing oxidative stress [55]. In 
colorectal cancer model of mice, thymoquinone delayed 
the growth of tumors, reduced tumor cell invasion and 
increased apoptosis [56]. In a study by Yi et al. [57], 
thymoquinone was found effective in inhibiting human 
umbilical vein endothelial cell migration, invasion, and 
tube formation, thus preventing tumor angiogenesis in 
xenograft prostate cancer model in mice. In cellular level, 
suppressing the activation of Akt was indicated as mode 
of action [57]. In addition, thymoquionone modulates 
the immune system of animals, as it inhibited NF-κB 
expression in breast cancer model of mice and interferes 
with later stages of mammary tumor progression [58]. 

In nude mice model of human pancreatic carcinoma, 
thymoquinone showed anti-neoplastic and anti-metastatic 
effects by down-regulating MMP-9 and X-linked inhibitor 
of apoptosis protein (XIAP) [59]. XIAP is actually a 
caspase inhibitor, which was found to be down-regulated 
by thymoquinone also in mouse neuroblastoma cells 
(Neuro-2a) [60]. Degradation of XIAP and inactivation 
of Akt by thymoquinone has been reported in breast 
cancer model in vitro and in vivo, where thymoquinone 
exerts anti-angiogenic and anti-invasive activities [61]. 
In mouse xenograft model of squamous cell carcinoma, 
thymoquinone was found to inhibit cell proliferation 
and induce apoptosis by inhibiting Akt and JNK 
phosphorylation [62]. 

In mouse model of familial adenomatous polyposis 
(FAP), thymoquinone interfered with polyp progression 
by inducting tumor-cell specific apoptosis and by 
modulating Wnt signaling through the activation of  
GSK-3β, thus reducing the risk of colorectal cancer [63]. 
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In hepatocellular carcinoma model of rat, thymoquinone 
showed anti-proliferative activity by regulating the G1/S 
phase cell cycle transition [64]. In breast cancer xenograft 
model of mice, thymoquinone showed anti-proliferative 
and pro-apoptotic effects by down-regulating p38 MAPK 
via the generation of ROS [65]. In triple negative breast 
cancer, thymoquinone reduced phosphorylation of Akt, 
decreased expression of XIAP, and enhanced cisplatin- 
and docetaxel-induced cytotoxicity [66]. Thymoquinone 
combined with paclitaxel showed anti-tumor activity by 
interplaying with the apoptosis network in triple-negative 
breast cancer [67]. In xenograft model of gastric cancer 
mice, thymoquinone showed anticancer activity by down-
regulating STAT3 pathway [24].

In murine leukemic WEHI-3 cells, 
thymoquinone promoted natural killer of cell activities 
and showed highly effective cellular cytotoxicity seen 
in an increase of early apoptosis, up-regulation of anti-
apoptotic protein Bcl2, and down-regulation of apoptotic 
protein Bax; this result was also implicated in WEHI-3 cell 
growth in the BALB/c mice [68]. In 7,12-dimethylbenz[a]
anthracene (DMBA) induced breast cancer, thymoquinone 
treatment showed antioxidant potential and reduced 
MDA, LDH, ALP and AST activities and decreased 
the expression of Brca1, Brca2 and Id-1, consequently 
preventing cancer development [69]. Another in vivo study 
revealed that thymoquinone has anti-osteoclastogenic 
effect by inhibiting inflammation-induced activation 
of MAPKs, NF-κB and ROS generation followed by 
suppressing the gene expression of c-Fos and NFATc1 
in osteoclast precursors [70]. In experimentally induced 
breast cancer model of mouse, thymoquinone inhibited 
tumor growth and cancer metastasis [51].

Road to clinical investigation: problems and 
solutions

Current clinical trials

There is not any clinical trial for thymoquinone 
registered by the U.S government yet (https://clinicaltrials.
gov/ct2/results?term=Thymoquinone). However, in an 
Arabian Phase I trial thymoquinone was found safe and 
well tolerated in patients upto 10 mg/kg/day, but at this 
dosage, there was no significant anticancer activity found 
[71]. The use of thymoquinone in humans is limited due 
to its chemical properties and poor membrane penetration 
capacity. Thymoquinone is chemically hydrophobic, 
which causes its poor solubility, and thus bioavailability. 
In addition, high lipophilicity of thymoquinone causes 
poor formulation characteristics [72]. A number of 
experimental studies have been conducted to overcome the 
pharmacokinetic problems of thymoquinone, its adverse 
effect. Some studies revealed that thymoquinone in 
combination with other chemotherapeutic drugs can show 
better anticancer activities, which might be an interesting 
option in future clinical investigation of thymoquinone.

Pharmacokinetic characteristics of thymoquinone 

Pharmacokinetic studies showed that thymoquinone 
is rapidly eliminated and slowly absorbed, and hence 
thymoquinone has less bioavailability. The calculated 
absolute bioavailability of thymoquinone was reported 
~58% with a lag time of ~23 min by Alkharfy et al. 
[73]. Several chemical derivatives have been used to 
improve the pharmacokinetic behavior of thymoquinone 
to increase the bioavailability. Thymoquinone-
4-α-linolenoylhydrazone and thymoquinone-4-
palmitoylhydrazone was found to inhibit cell proliferation 
dependent on p53 status by activating the cell cycle 
inhibitor p21 [74]. Also the development of nanoparticles 
has created a remarkable approach in thymoquinone 
delivery, which might be very effective in enhancing 
bioavailabity. Thymoquinone-loaded liposomes (TQ-LP) 
and thymoquinone loaded in liposomes modified with 
Triton X-100 (XLP) with diameters of about 100 nm 
were found to maintain stability, improve bioavailability 
and maintain thymoquinone’s anticancer activity [72]. 
Encapsulation of TQ into nanoparticles with 97.5% 
efficiency in biodegradable nanoparticulate formulation 
based on poly (lactide-co-glycolide) (PLGA) and stabilizer 
polyethylene glycol (PEG)-5000 enhances its anti-
proliferative, anti-inflammatory, and chemosensitizing 
effects [75]. Thymoquinone packaged in nanoparticles 
have been proved more useful to improve bioavailability, 
which is called ‘nanochemoprevention’ or ‘nano-
chemotherapy’ [76]. A double mesoporous core-shell silica 
spheres (DMCSSs) loaded with thymoquinone was found 
more effective in inducing cancer cell apoptosis than 
free thymoquinone, due to the slow release of the drug 
from the mesoporous structure [77]. However, studies 
revealed that the aqueous solubility of thymoquinone 
is not a major obstacle for the drug formulations, as it 
possesses considerable water solubility (> 500 μg/mL), 
which may be enough to exert pharmacologic effects after 
parenteral route administration [78]. Thymoquinone-
loaded nanostructured lipid carrier (TQ-NLC) has been 
developed to improve its bioavailability (elimination half-
life ~5 hours), which can exhibit cytotociity against cancer 
cell lines by inducing apoptosis and cell cycle arrest  
[79, 80]. Bhattacharya et al. [32] developed thymoquinone-
encapsulated nanoparticles using biodegradable, 
hydrophilic polymers, like polyvinylpyrrolidone and 
polyethyleneglycol to overcome thymoquinone's poor 
solubility, thermal and light sensitivity, and minimal 
systemic bioavailability, which can greatly improve 
the cancer treatment’s efficiency. This nanoparticle can 
induce breast cancer cell killing and reduced migration. 
Myristic acid-chitosan (MA-chitosan) nanogels were 
prepared by Dehghani et al. [81] and thymoquinone was 
loaded into the nanogels for the treatment of human breast 
adenocarcinoma cell MCF-7. Interestingly, this nanogel 
was found more effective in anticancer activity than 
thymoquinone alone.
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Optimum dose of thymoquinone

Another problem of clinical usage of thymoquinone 
lies in the safety issue. The LD50 in mice was determined 
104.7 mg/kg after intra-peritoneal injection and 870.9 mg/kg 
after oral ingestion of thymoquionone, and in rats, LD50 was 
found to be 57.5 mg/kg and 794.3 mg/kg after intraperitoneal 
and oral ingestion respectively [82]. However, thymoquinone 
shows anticancer activity in very small concentrations, 
approximately < 10 mg/kg [51, 82]. Thus, safety issue might 
not pose a big problem.

Combination of thymoquinone with other 
chemotherapeutic drugs

Combination of thymoquinone with other clinically 
used anticancer drugs may enhance chemotherapeutic 
potentiality. In fact, thymoquinone has been proved to 
be very effective in synergistic anticancer activity with 
available drugs. While 5-fluorouracil is regarded as the 
chemotherapeutic gold-standard for certain cancers, 
especially colon cancer, thymoquinone’s activity was 
found closely comparable to 5-fluorouracil in both  
SW-626 human colon cancer cell killing and 
intercellular metabolic function interference. 
Moreover, when used in combination with 
5-fluorouracil, thymoquionone augments its 
apoptotic activity in gastric cancer cells in vitro and 
in vivo [83, 84]. A combination of thymoquionone,  
5-fluorouracil, and epigallocatechin-3-gallate 
showed more potent anticancer activity against FaDu 
nasopharyngeal carcinoma cell and SK-OV-3 ovarian 
cancer cell line [85, 86]. A recent study reports that 
5-fluorouracil and thymoquinone cooperate to repress the 
expression of procancerous Wnt, β-catenin, NF-κB, COX-
2, iNOS, VEGF, and TBRAS; up-regulate the expression 
of anti-tumorigenesis DKK-1, CDNK-1A, TGF-β1, TGF-
βRII, Smad4, and GPx; and show chemopreventive effects 
on colorectal carcinogenesis in rats [87]. Doxorubicin is 
another chemotherapeutic drug, whose anticancer activity 
is improved by combining thymoquinone in a cell-line 
specific manner, specifically in HL-60 and multi-drug 
resistant MCF-7/TOPO cancer cells [88]. Thymoquinone 
also induces apoptosis by up-regulating PTEN and 
inhibiting Akt phosphorylation in doxorubicin-resistant 
human breast cancer cells [89]. Cisplatin is one of the 
most active chemotherapeutic agents in lung cancer. 
Combination of cisplatin and thymoquinone is highly 
effective in non-small cell lung cancer (NSCLC), small 
cell lung cancer (SCLC) cell lines and mouse xenograft 
model; this combination is even able to overcome the 
cisplatin resistance [90]. In fact, thymoquinone was 
reported to be more potent than cisplatin in killing 
human cervical squamous carcinoma cells SiHa by 
inducing apoptosis with Bcl-2 down-regulation [91]. 

Thymoquinone enhanced cisplatin-mediated cytoxicity in 
ID8-NGL mouse ovarian cancer cells and ovarian cancer 
model C57BL/6 mice. Thymoquinone treatment actually 
promoted cisplatin-induced pH2AX (double-strand DNA 
break marker) expression in cultured cells and in tumors 
[92]. In multiple myeloma treatment, thymoquinone can 
enhance the anticancer activity of bortezomib in vitro 
and in vivo, and can even overcome chemoresistance 
[93]. Castrate-resistant prostate cancer (CRPC) is a major 
concern in cancer therapeutic research. The combination 
of thymoquione and docetaxel has been proved to be 
effective against CRPC cells in inducing cytotoxicity 
and apoptosis by modulating PI3K-Akt pathway [94]. 
Thymoquinone pretreatment following gemcitabine 
treatment synergistically increased apoptosis and inhibited 
tumor growth in pancreatic cancer in vitro and in vivo. 
This combination contributes to suppression of Notch1 
and NICD accompanying with up-regulation of PTEN, 
inactivation of Akt/mTOR/S6 signaling pathways, and the 
suppression of phosphorylation and nuclear translocation 
of p65 induced by TNF-α. Thymoquinone pretreatment 
with gemcitabine therapy also down-regulated anti-
apoptotic Bcl-2, Bcl-xL, and XIAP; it also up-regulated or 
activated the pro-apoptotic molecules, such as, Caspase-3, 
Caspase-9, Bax and increased release of cytochrome 
c [95]. Thymoquinone in combination with mesalazine 
reduced tumor development and multiplicity in Msh2 
(loxP/loxP) Villin-Cre mice by reducing microsatellite 
instability independent of a functional mismatch repair 
system [96]. In hormone and drug resistant prostate cancer 
cells (PC-3 and DU-145), thymoquionone in combination 
with zoledronic acid showed significant synergistic 
cytotoxic activity and DNA fragmentation, as well as 
increased the caspase 3/7 activity in PC-3 cell line [97]. 
In combination with paclitaxel, thymoquinone was found 
very effective against triple negative breast cancer, both 
drugs worked synergistically [67]. Thymoquinone also 
increased the efficacy of tamoxifen in inducing apoptosis 
in human breast cancer cells MCF-7 and MDA-MB-231 
[98]. Glioblastoma multiforme is one of the most lethal 
forms of human cancer, and thymoquinone was found to 
enhance the anticancer activity of temozolomide, which 
is currently part of the standard treatment for this disease 
[99]. A recent study showed that thymoquinone can 
potentiate the chemopreventive effect of vitamin D during 
the initiation phase of colon cancer in rat model [100]. In 
addition to chemotherapeutic combination, as an adjuvant, 
thymoquinone also mediates radiosensitization and cancer 
chemo-radiotherapy [101]; in combination with single 
dose of ionizing radiation (2.5 Gy), thymoquinone was 
found to exert supra-additive cytotoxic effects on MCF7 
and T47D breast cancer cells by enhancing apoptosis and 
cell cycle modulation. Interestingly, our group recently 
found that thymoquinone can synergistically enhance the 
potential of another therapeutic agent, miR-34a [102].
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Future direction

Considering the multiple molecular mechanism of 
thymoquinone action, its potency in small concentrations, 
in vivo success, enhanced bioavailability, success in 
combination with other drugs, it is time to focus on clinical 
trials for thymoquinone. Moreover, the basic biochemical 
or molecular biological investigations should be continued 
for the better understanding of the molecular mechanisms 
of thymoquinone. Using the nanomaterial encapsulation 
of thymoquinone, synthesizing its more effective new 
chemical derivatives with more potential pharmacokinetic 
characteristics might be interesting in future drug 
development and clinical usage. As targeting specific 
cancer therapeutics is a major focus in present anticancer 
treatment, specific molecular targets for thymoquinone, 
like enzymes, receptors, DNA or RNA materials should 
also be kept under investigation.

CONCLUSIONS

Thymoquinone is evident as a potent anticancer 
molecule by regulating numerous molecular mechanisms, 
and it has the potential to be a good therapeutic small 
molecule in the prevention and treatment of cancer. 
Now is the right time to think about clinical trials, 
specifically Phase I trials. For thymoquinone delivery, it 
can be administered in a very low dosage encapsulated 
in a lipophilic biogels or nanoparticles, or be used in 
combination with other established chemotherapeutic 
drugs. Meanwhile, laboratory investigations should 
continue for better understanding of molecular mechanism 
of thymoquinone action to develop potent analogs with 
limited side effects and a more convenient drug delivery 
system, ultimately improving cancer management system.
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