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ABSTRACT

Occurring at cytosine (C) of RNA, 5-methylcytosine (m5C) is an important 
post-transcriptional modification (PTCM). The modification plays significant roles 
in biological processes by regulating RNA metabolism in both eukaryotes and 
prokaryotes. It may also, however, cause cancers and other major diseases. Given 
an uncharacterized RNA sequence that contains many C residues, can we identify 
which one of them can be of m5C modification, and which one cannot? It is no doubt 
a crucial problem, particularly with the explosive growth of RNA sequences in the 
postgenomic age. Unfortunately, so far no user-friendly web-server whatsoever has 
been developed to address such a problem. To meet the increasingly high demand 
from most experimental scientists working in the area of drug development, we have 
developed a new predictor called iRNAm5C-PseDNC by incorporating ten types of 
physical-chemical properties into pseudo dinucleotide composition via the auto/cross-
covariance approach. Rigorous jackknife tests show that its anticipated accuracy is 
quite high. For most experimental scientists’ convenience, a user-friendly web-server 
for the predictor has been provided at http://www.jci-bioinfo.cn/iRNAm5C-PseDNC 
along with a step-by-step user guide, by which users can easily obtain their desired 
results without the need to go through the complicated mathematical equations 
involved. It has not escaped our notice that the approach presented here can also be 
used to deal with many other problems in genome analysis.

INTRODUCTION

Post-transcriptional modifications (PTCM) of RNA 
plays a paramount role for the metabolism processes of 
RNAs, such as for their splicing export, immune tolerance, 
and transcription [1–3]. So far, more than 100 distinct 
PTCMs have been identified in tRNAs, rRNAs, Mt-tRNAs, 
miRNAs, lincRNAs, miscRNAs, protein-coding genes, 
pseudogenes, etc. [1]. Among these modifications, the 
methylation of the 5-methylcytosine (m5C) is an epigenetic 

one [4] formed by the action of RNA methyltransferases 
[5] (Figure 1). The m5C modification is well investigated in 
DNA, but the corresponding studies in cellular RNA were 
mainly confined to tRNA and rRNA [6].

Actually, the m5C modification site in RNA has 
various biological functions, including the one that 
can regulate RNA metabolism in both eukaryotes and 
prokaryotes [7]. Furthermore, it plays a key role in yeast cell 
fate decision [4]. It is also significant for animal (such as 
mouse) and human embryonic development [1].
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Although many efforts have been made by using 
biological experiments to determine the m5C sites in RNA 
(see, e.g. [2, 3]), it is time-consuming and expensive to 
completely rely on the experimental approaches alone. 
Facing today’s explosive growth of uncharacterized RNA 
sequences, it is highly demanded to develop computational 
approach to help getting the information.

Very recently, in a pioneering study, Feng et al. [8] 
proposed an interesting method to identify RNA m5C sites 
via the powerful PseKNC approach [9–11]. But no web-
server has been provided for their method, and hence its 
practical application value is quite limited. In view of this, 
the present study was initiated to fill such an empty area.

RESULTS AND DISCUSSION

A predictor called “iRNAm5C-PseDNC” has been 
established. The success rates achieved by it on the 
benchmark dataset constructed based on experimental 
servations (Supplementary Information 1) are
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Figure 1: Schematic drawing to show the m5C modification in RNA: an important post-transcriptional modification 
(PTCM) in RNA [4, 5]. During the modification process, a methyl group is attached to the 5th atom of the 6-atom ring. SAM and SAH 
are the abbreviations of S-adenosylmethionine and S-adenosylhomocysteine, respectively. The former is the source of the methyl group; 
while the latter, the byproduct.
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Table 1: A cohort comparison with some existing web-server predictors for different purposes

Predictor’s name Purpose Acca MCCa Sna Spa

iRSpot-PseDNCb DNA recombination spot 0.8204 0.6380 0.7306 0.8949

iSNO-PseAACc Cysteine S-nitrosylation site 0.6762 0.3515 0.6701 0.6815

iPro54-PseKNCd Sigma-54 promoter 0.8043 0.6101 0.7702 0.8385

iRSpot-TNCPseAACe DNA recombination spot 0.8372 0.6710 0.8714 0.7959

iNitro-Tyrf Nitrotyrosine site 0.8452 0.4905 0.8176 0.8598

iRNAm5C-PseDNCg RNA 5-methylcytosine site 0.9237 0.7935 0.6989 0.9986

a See Eq.13 for the definition.
b See ref. [12].
c See ref. [13].
d See ref. [14].
e See ref. [15].
f See ref. [16].
g The web-server predictor developed in this paper.

Figure 2: A graphical illustration to show the proposed predictor’s performances via the ROC (receiver operating 
characteristic) curves [29, 30]. The area under the ROC curve is called AUC (area under the curve). The greater the AUC value is, the 
better the performance will be. See the text for further explanation.
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where the definitions for the metrics Sn, Sp, Acc, and 
MCC are given in Eq.13 of the MATERIALS AND 
DISCUSSION section later.

Since it is the first web-server predictor ever 
developed for identifying the m5C sites in RNA sequences, 
it is not possible to demonstrate its power by comparing 
with its counterparts for exactly the same purpose. 
Nevertheless, we can indirectly show its power via a 
cohort of the anticipated success rates (Table 1) reported 
from the five powerful web-server predictors in genome 
and proteome analyses [12] [13–16]. As we can see from 
the table, the iRNAm5C-PseDNC is with the highest  
score for Acc (see column 3), and the same is true for 
MCC (column 4), indicating the proposed predictor is not 
only high in overall accuracy but also quite stable.

Also, it is instructive to point out that, among the 
four metrics in Eq.13, the most important are the Acc 
and MCC. The metrics Sn and Sp are used to measure a 
predictor from two completely opposite angles, and they 
are actually constrained with each other [17]. Therefore, it 
is meaningless to use only one of the two for comparison 
[18]. When, and only when, both Sn and Sp of the 
predictor A are higher than those of the predictor B, can 
we say A is better than B. In other words, a meaningful 
comparison in this regard should count the scores of both 
Sn and Sp, or even better, the rate of their combination that 
is none but the score of MCC [19, 20].

Now, let us use graphic analysis to further show the 
proposed predictor’s quality. Graphs are a useful vehicle 
for studying complicated biological systems because 
they can provide intuitive insights, as demonstrated by a 
series of previous studies (see, e.g., [21–28]). To provide 
an intuitive illustration, the graph of Receiver Operating 
Characteristic (ROC) [29, 30] was adopted as given in  
Figure 2, where the green line is the ROC for iRNAm5C-
PseDNC. The area under the ROC curve is called the  
AUC (area under the curve). Being within the region of 
0 and 1, the greater the AUC is, the better the predictor 
would be. For the current predictor, the AUC is 0.9626, 
which is very close to 1, the value for a perfect predictor.

As shown in a series of recent publications (see, 
e.g., [18, 19, 31–43]), papers with a user-friendly and 
publicly accessible web-server will significantly enhance 
their impacts; this is particularly true for those papers that 
were aimed at developing various prediction methods 
[44, 45]. In view of this, the web-server for iRNAm5C-
PseDNC has been established at http://www.jci-bioinfo.
cn/iRNAm5C-PseDNC. Furthermore, to maximize users’ 
convenience, a step-to-step guide of how to use it is given 
in Supplementary Information 2.

MATERIALS AND METHODS

As practiced in a series of recent studies [19, 20, 
35-37, 39-41, 46-53] in complying with the 5-step rule 
proposed in [54], to establish a really useful sequence-

based predictor for a biological system, one should make 
the following five steps very clear: (1) how to construct 
or select a valid benchmark dataset to train and test the 
predictor; (2) how to formulate the biological sequence 
samples with an effective mathematical expression that 
can truly reflect their essential correlation with the target 
concerned; (3) how to introduce or develop a powerful 
algorithm (or engine) to run the prediction; (4) how to 
properly conduct cross-validation tests to objectively 
evaluate the anticipated accuracy; (5) how to provide a 
web-server and user guide to make people very easily to 
get their desired results. In the rest of this paper, we are to 
address these point-by-point.

Benchmark dataset

To make the description simpler and cleaner, the 
Chou’s sequential scheme, which had been used by many 
previous investigators for analyzing the enzyme specificity 
[55], signal peptide cleavage sites [56], nitrotyrosine sites 
[16, 57], hydroxyproline or hydroxylysine sites [50, 58], 
methylation sites [34, 39, 59], protein-protein interaction 
[32], protein-protein binding sites [60, 61], carbonylation 
sites [48], and phosphorylation sites [51], was adopted in 
this study. According to Chou’s scheme, a potential RNA 
m5C modificationsite sample can be generally expressed 
by

Rξ ξ ξ ξ ξ( )
( ) ( )

 = − − − − − + + + − +N N N N N N N N
1 2 1 1 2 1
 

 (2)

where the center symbol   denotes the single nucleic 
acid code cytosine (C), the subscript ξ  is an integer, 
N−ξ

 represents the ξ -th upstream nucleotide from 
the center, the N+ξ

 denotes the ξ -th downstream 
nucleotide, and so forth. The ( )2 1ξ + -tuple RNA sample 
Rξ ( )  can be further classified into the following two 
categories:

R R
R

ξ ξ

ξ

 


( )∈ ( )
( )







+

−

,

,

if its center can be of m C

otherwise

5  (3)

where Rξ
+ ( )  represents a true m C

5  sample with C at its 
center, Rξ

− ( )  a false one with C at its center, and the 
symbol ∈  means “a member of” in the set theory.

In literature the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is 
for training a model, while the latter for testing it. But 
as elucidated in a comprehensive review [62], there is no 
need to artificially separate a benchmark dataset into the 
two parts if the prediction model is tested by the jackknife 
or subsampling (K-fold) cross-validation because the 
outcome thus obtained is actually from a combination 
of many different independent dataset tests. Thus, the 
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benchmark dataset S Cξ ( )  for the current study can be 
formulated as

    ξ ξ ξ∪= + −

 
(4)

where the positive and negative subsets, 
ξ
+  and ξ

− , only contain the true and 
false m5C samples, Rξ

+ ( )  and Rξ
− ( ) ,  

respectively (see Eq.3); while ∪  denotes the symbol of 
“union” in the set theory [62].

The benchmark dataset used in this study was 
derived from RMBase [1], which is a resource for 
decoding the landscape of RNA modifications from high-
throughput sequencing data. The detailed procedures 
are as follows. (1) The genomic sequences downloaded 
from RMBase [63] are in the form of DNA; to make the 
entire description of this paper in a coherent manner, 
we first change the code T to U for all the genomic 
sequences taken from RMBase and make them become 
RNA sequences. (2) As done in [64], by sliding the 

2 1ξ +( ) -tuple nucleotide window along each of the RNA 
sequences thus obtained, collected were only those RNA 
segments with  = C  at the center. (3) If the upstream 
or downstream in a RNA sequence was less than ξ or 
greater than L − ξ  where L is the length of the RNA 
sequence concerned, the lacking code was filled with the 
same code of its nearest neighbor. (4) The RNA segment 
samples thus obtained were put into the positive subset 
ξ
+  if their centers were experimentally annotated as the 

m C
5  sites; otherwise, into the negative subset ξ

− . (5) 
To reduce redundancy and bias, none of included RNA 
segments had pairwise sequence identity with any other in 
a same subset. By strictly following the above procedures, 
we obtained an array of benchmark datasets with different 
ξ  values, and hence different lengths of RNA samples as 
well (see Eq.2), as illustrated below
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But it was observed via preliminary tests that when 
ξ = 20  (i.e., the RNA samples formed by 41 nucleotides), 
the corresponding results were most promising. In other 
words, we observed a turning point for the success rates 
at ξ = 20 . After this point, the success rates would 
become going down with the increase of such parameter. 
Accordingly, hereafter we only consider the 41-tuple 
nucleotide samples without explicitly mentioning the 
parameter ξ  any more.

The benchmark dataset  thus obtained is given in 
Supplementary Information 1, which can also be downloaded 
at http://www.jci-bioinfo.cn/iRNAm5C/Supp-S1.pdf. It 
contains 1,900 RNA samples, of which 475 belong to the 
positive subset +  and 1,425 to the negative subset − .

Sample formulation

An RNA samples in the aforementioned benchmark 
dataset can be generally expressed as

R = N N N CN N
1 2 19 21 41

 

 (6)

where N
1
 represents the 1st nucleotide of the RNA sample 

at its sequence position 1, N
2

 the 2nd nucleotide at its 
position 2, and so forth. Except for N C

20
= , they can be 

any of the four nucleotides; i.e.,

Ni ∈ { }A (adenine) C (cytosine) G (guanine) U (uracil)  (7)

Based on the sequential model of Eq.6, one could 
directly utilize BLAST to perform statistical analysis. 
Unfortunately, this kind of straightforward and intuitive 
approach failed to work when a query RNA sample did not 
have significant similarity to any of the character-known 
RNA sequences. To overcome this problem, investigators 
have shifted their focus to the discrete or vector model. 
The reason of doing so is also due to the fact that nearly 
all the existing machine-learning aorithms can be directly 
used to handle vector models but not sequences, as 
elaborated in [45].

One of the well-known vector models for DNA/
RNA sequences is the k-tuple nucleotide (or k-mers) 
composition; i.e.,

R
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 (8)

where fi
k
 represents the normalized occurrence frequency 

of the i-th k-mer, and the symbol T is the transpose 
operator.

When k =1 , Eq.8 reduces to

R T T
= ( ) ( ) ( ) ( ) =  [ ]f f f f f f f fA C G U

1

1
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where f1
1 , f

2

1 , f  
3

1  and f
4

1  are the normalized occurrence 
frequencies of adenine, cytosine, thymine, and uracil in 
the RNA sequence, respectively.

When k = 2 , Eq.8 reduces to

R T= ( ) ( ) ( ) ( ) ( )[ ]f f f fAA AC AG AU TT
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where f
1

2  is the normalized occurrence frequencies of AA 
in the RNA sequence, f2

2  is that AC, f
3

2  is that AG, f
4

2  is 
that AU, and so forth.

As we can see from above, the vector’s dimension 
will rapidly increase with the k value, causing the so-called 
“high-dimension disaster” [65] or overfitting problem. 
This will significantly reduce the deviation tolerance or 
cluster-tolerant capacity [66], and make the prediction 
model contain a lot of noise and very unstable.

Therefore, the k-mers approach is useful only 
when the value of k is very small. In other words, it 
can only be used to incorporate the local or short-range 
or local sequence-order information, but certainly not 
the long-range or global sequence-order information. 
To approximately cover the long-range sequence-order 
effects, one popular and well-known method is to use 
the pseudo components that were originally introduced 
in dealing with protein/peptide sequences [67–73] and 
recently extended to deal with DNA/RNA sequences [9-
11, 34, 74-80].

According to the concept of pseudo components, the 
RNA sequence can be generally formulated by [11, 54]

R T= [ ]Ψ Ψ Ψ Ψ
1 2

 u Ω  
(11)

where the subscript Ω  is integer and its value as well as 
the components Ψ Ωu u( , , , )=1 2  will depend on how to 
extract the desired information from the RNA sequence 
of Eq.6.

In this study, we used the approach called “physical-
chemical property matrix combined with auto/cross-
covariance” proposed by Liu et al. [39] to define the 
components in Eq.7. According to that approach, the 
vector components in Eq.7 are given by

Ψ λ λ
µ µ λ λ + λ

u
m u

u
= ( ) ≤ ≤

( ) ≤ ≤ =






AC
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, ( )

, , ( )

1 10

10 1 90
1 2

Ω
 (12)

where λ  is an integer within the range from 0 to 39. 
Using exactly the same calculation approach as elaborated 
in [39], we found that λ = 5  was optimal choice for the 
current study. As for how to calculate the concrete values 
in Eq.12, see ref. [39] where a crystal clear description 
had been given and hence there is no need to repeat here.

Random forest algorithm

Being a powerful algorithm, the random forest (RF) 
has been increasingly used to analyze various different 
problems in computational biology (see, e.g. [32, 36, 

37, 40, 48, 50-52, 60, 61, 81-84]). The essence of RF is 
to compare each individual classifier as a tree, and the 
combination of many such classifiers as a forest. In this 
study, 100 trees were used for the forest, and dimension 
of the random subspace was 22. Each tree in the forest 
is trained with different part of the benchmark dataset, 
and hence may yield a different result. The final outcome 
is determined via a vote from all the trees. For more 
information about RF, see [85] where a very detailed 
description has been given, and hence there is no need to 
repeat here.

The final predictor obtained via the aforementioned 
procedures is called as iRNAm5C-PseDNC, where 
“i” stands for “identify”, and “RNAm5C” for “RNA 
5-methylcytosine modification sites”, and “PseDNC” for 
“pseudo dinucleotide composition”.

Test procedure

One of the important procedures [54] in developing 
a new prediction method is how to objectively evaluate 
its anticipated success rate [54]. To address this, we 
need to consider two issues. (1) What metrics should be 
used to quantitatively reflect the predictor’s quality? (2) 
What kind of test approach should be utilized to score the 
metrics?
Metrics formulation

The following metrics are generally used to measure 
the prediction quality from four different angles: (1) Acc 
for measuring the overall accuracy of a predictor, (2) 
MCC for its stability, (3) Sn for its sensitivity, and (4) Sp 
for its specificity [86]. Unfortunately, their conventional 
formulations as given in [86] lack intuitiveness and most 
experimental scientists feel difficult to understand them, 
particularly for the MCC. Interestingly, using the Chou’s 
symbols introduced in studying signal peptides [56], Xu 
et al. [13] and Chen et al. [12] converted them into a set of 
four intuitive equations, as given by

 (13)

where N +  represents the total number of the true m5C 
sites investigated, while N−

+  is the number of the true 
m5C sites incorrectly predicted to be of false m5C site; 

( , , , ; , , , , ; )m = = ≠1 2 10 1 2 10
1 2 1 2

 µ µ µ µ
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N −  is the total number of the false m5C sites investigated, 
while N+

−  is the number of the false m5C sites incorrectly 
predicted to be of true m5C site.

According to Eq.13, it is crystal clear to see the 
following. When N−

+ = 0  meaning none of the true m5C 
sites are incorrectly predicted to be of false m5C site, we 
have the sensitivity Sn =1 . When N N−

+ +=  meaning that 
all the true m5C sites are incorrectly predicted to be of false 
m5C site, we have the sensitivity Sn = 0 . Likewise, when 
N+

− = 0  meaning none of the false m5C sites are incorrectly 
predicted to be of m5C site, we have the specificity Sp =1 ;  
whereas N N+

− −=  meaning that all the false m5C sites 
are incorrectly predicted to be of true m5C sites, we have 
the specificity Sp = 0 . When N N−

+
+
−= = 0  meaning that 

none of true m5C sites in the positive dataset and none of 
the false m5C sites in the negative dataset are incorrectly 
predicted, we have the overall accuracy Acc =1  and 
MCC =1 ; when N N−

+ +=  and N N+
− −=  meaning that 

all the true m5C sites in the positive dataset and all the 
false m5C sites in the negative dataset are incorrectly 
predicted, we have the overall accuracy Acc = 0  and 
MCC = −1; whereas when N N−

+ += / 2  and N N+
− −= / 2  

we have Acc = 0 5.  and MCC = 0  meaning no better than 
random guess. Therefore, Eq.13 has made the meanings 
of sensitivity, specificity, overall accuracy, and stability 
much more intuitive and easier-to-understand, particularly 
for the meaning of MCC, as concurred recently by many 
investigators (see, e.g., [18, 20, 31-35, 47-52, 60, 75-77, 
84, 87-92]).

Note that, however, the set of equations defined in 
Eq.13 is valid only for the single-label systems. For the 
multi-label systems whose emergence has become more 
frequent in system biology [93–95] and system medicine 
[96] or biomedicine [40], a completely different set of 
metrics are needed as elaborated in [97].
Test method

Now let us discuss what kind of test method should 
be used to score the four metrics in Eq.13. In statistical 
analysis, the following three methods are often used to test 
a predictor: (1) independent dataset test, (2) subsampling 
(or K-fold cross-validation) test, and (3) jackknife test 
[98]. Of these three, however, the jackknife test is deemed 
the least arbitrary that can always yield a unique outcome 
for a given benchmark dataset as elucidated in [54]. 
Accordingly, the jackknife test has been widely recognized 
and increasingly used by investigators to examine the 
quality of various predictors (see, e.g., [15, 99–108]).

Accordingly, here we also used the jackknife test 
to check the quality of iRNAm5C-PseDNC predictor. 
During the jackknifing process, both the training dataset 
and testing dataset are actually open, and each sample 
will be in turn moved between the two. The jackknife test 
can exclude the “memory” effect. Also, the arbitrariness 
problem [54] rooted in the independent dataset and 

subsampling tests can be completely avoided because 
the outcome obtained by the jackknife cross-validation is 
always unique for a given benchmark dataset.
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