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ABSTRACT

Recommended by the World Health Organization (WHO), drug compounds have 
been classified into 14 main ATC (Anatomical Therapeutic Chemical) classes according 
to their therapeutic and chemical characteristics. Given an uncharacterized compound, 
can we develop a computational method to fast identify which ATC class or classes 
it belongs to? The information thus obtained will timely help adjusting our focus and 
selection, significantly speeding up the drug development process. But this problem is 
by no means an easy one since some drug compounds may belong to two or more than 
two ATC classes. To address this problem, using the DO (Drug Ontology) approach 
based on the ChEBI (Chemical Entities of Biological Interest) database, we developed 
a predictor called iATC-mDO. Subsequently, hybridizing it with an existing drug ATC 
classifier, we constructed a predictor called iATC-mHyb. It has been demonstrated by 
the rigorous cross-validation and from five different measuring angles that iATC-mHyb 
is remarkably superior to the best existing predictor in identifying the ATC classes for 
drug compounds. To convenience most experimental scientists, a user-friendly web-
server for iATC-mHyd has been established at http://www.jci-bioinfo.cn/iATC-mHyb, 
by which users can easily get their desired results without the need to go through 
the complicated mathematical equations involved.

INTRODUCTION

Based on their therapeutic and chemical 
characteristics, drug compounds are classified into 14 
main categories, or 14 main ATC (Anatomical Therapeutic 
Chemical) classes (see, e.g., http://www.whocc.no/atc/
structure_and_principles/).

Given an uncharacterized compound, can we 
develop a computational method to identify which ATC 
class it belongs to? The information thus obtained will 
timely help adjusting our focus and selection, significantly 
speed up the drug development process.

In a pioneer work, Dunkel et al. [1] proposed a 
computational method to identify the ATC classes of 
drug compounds based on their structural fingerprint 
information. Three years later, Chen et al. [2] developed 
an improved method by using the information of chemical-
chemical interactions and chemical-chemical similarities. 
Actually, the ATC classification is a multi-label system 
[3], in which a same drug compound may belong to two 
or more different classes. To effectively deal with the 
difficulty caused by the multi-label nature, recently Cheng 
et al. [4] proposed a powerful predictor called “iATC-
mISF” by incorporating the informations of the chemical-
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chemical interaction, structural similarity, and fingerprintal 
similarity into the sample formulation.

As is known, mapping the protein samples into the GO 
(gene ontology) database space [5–11] could significantly 
enhance the quality of predicting protein subcellular 
localization. Particularly when the proteins investigated 
might belong to two or more subcellular locations, as 
demonstrated by many publications for various different 
organisms [12–23], where the PseAAC (pseudo amino 
acid composition) approach [24, 25] was also adopted as a 
backup. Inspired by the successes of gene ontology approach, 
Chen et al. [26] proposed a drug ontology method to predict 
the ATC classification. The corresponding improvement, 
however, was not as remarkable as in the case of protein 
subcellular location prediction.

The present study was initiated in an attempt to 
propose a new DO (Drug Ontology) method for predicting 
the ATC classes of drug compounds by being based on the 
ontology via the ChEBI (Chemical Entities of Biological 
Interest) database [27].

RESULTS AND DISCUSSION

A new predictor called iATC-mHyb has been 
established by hybridizing the iATC-mISF method [4] 
with the powerful iATC-mDO sub-predictor. The later is a 
newly constructed predictor with the DO approach via the 
ChEBI database. The reason to adopt such hybrid method 
is because (1) some drug compounds are not included 
in the current ChEBI database, and hence iATC-mDO 
cannot cover them although it is extremely powerful to 
those within the ChEBI database, and (2) the iATC-mISF 
had been the most powerful one among the existing ATC 
predictors [4].

Listed in Table 1 are the tested results by the new 
predictor iATC-mHyb on the benchmark dataset (see 
the section of MATERIALS AND METHODS later) via 
the most rigorous cross-validation method, the jackknife 
test [28, 29]. For facilitating comparison, listed in that 
table are also the corresponding results obtained by the 
iATC-mISF, the best one among the existing predictors 
for ATC classification. It can be seen from Table 1 that 
(1) the success rates obtained by the new predictor are 
all higher than those by iATC-mISF in “absolute true”, 
“accuracy”, “aiming”, and “coverage”, and that (2) the 
“absolute false” rate for the new predictor is almost 50% 
lower than that of the existing best predictor. As pointed 
out in a comprehensive review paper [3], among the 
aforementioned five metrics for the multi-label systems, 
the most important are “absolute true” and “absolute 
false”. It is extremely difficult to increase the absolute true 
rate and reduce the absolute false rate of a predictor for 
multi-label systems. Therefore, in reporting the results of 
their various prediction methods for multi-label systems, 
many investigators (see, e.g., [2, 12–17, 30–32] even did 
not mention the “absolute true” and “absolute false” rates. 

Actually, as pointed out by two recent papers [4, 33], the 
absolute true rates reported by most multi-label predictors 
(see, e.g. [23, 34]) were under 50%. In contrast to that, the 
66.75% of absolute true achieved by the new predictor 
(Table 1) should be deemed a significantly improvement. 
Also, to our best knowledge, iATC-mHyb is the first 
multi-label predictor ever developed in biomedicine that 
can achieve lower than 3% of absolute false rate.

The aforementioned facts have indicated that, 
significant improvement can be achieved as well by 
adopting the DO approach.

Moreover, with its development, the ChEBI 
database will cover more and more drug compounds, and 
the iATC-mDO will further enhance its power, and so will 
the iATC-mHyb predictor.

As pointed out in [35], the publicly accessible web-
servers represent the new direction and trend for developing 
new predictors or computational tools [33, 36–58]. Actually, 
papers with a user-friendly and publicly accessible web-
server will significantly enhance their impacts [59]. In view 
of this, the web-server for iATC-mHyb has been established 
at http://www.jci-bioinfo.cn/iATC-mHyb.

To maximize users’ convenience, a step-to-step 
guide of how to use the iATC-mHyb web-server is given 
below.

Step 1. Open the web-server at http://www.jci-
bioinfo.cn/iATC-mHyb, the top page of iATC-mHyb will 
appear on the computer screen, as shown in Figure 1. 
Click on the Read Me button to see a brief introduction 
about the iATC-mHyb and the caveat when using it.

Step 2. Either type or copy/paste the formulae of 
query compounds into the input box at the center of Figure 
1. The input compounds should be in the SMILES format. 
For the example of compounds in SMILES format, click 
the Example button right above the input box.

Step 3. Click on the Submit button to see the 
predicted result. For example, if using the formulae of the 
five compounds in the Example window as the input, one 
will see Figure 2 shown on the computer screen, indicating 
the following results. (1) Compound-1 belongs to three 
different ATC-classes; i.e., classes 3, 5 and 9, which are 
predicted by iATC-mDO subpredictor, meaning that 
the compound is covered by the ChEBI database. (2) 
Compound-2 belongs to only one ATC-class; i.e., class 3, 
which is predicted by iATC-mDO subpredictor, meaning 
the compound is covered by the ChEBI database. (3) 
Compound-3 belongs to four different ATC-classes; i.e., 
classes 3, 4, 10 and 12, which are predicted by iATC-mDO 
subpredictor, meaning that the compound is covered by 
the ChEBI database. (4) Compound-4 belongs to three 
different ATC-classes; i.e., classes 4, 5 and 13, which 
are predicted by iATC-mISF subpredictor, meaning that 
the compound is not covered by the ChEBI database. (5) 
Compound-5 belongs to two different ATC-classes; i.e., 
classes 4 and 12, which are predicted by iATC-mISF 
subpredictor, meaning that the compound is also not 
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Figure 1: The semi-screenshot for the top page of the iATC-mHyb web-server, which is located at http://www.jci-
bioinfo.cn/iATC-mHyb.

Table 1: The jackknife success rates achieved by iATC-mHyb and ATC-mISF on the benchmark dataset   of Eq.1 
(cf. Supporting Information S1)

Predictor Five metrics for multi-label systema

Aiming↑b Coverage↑b Accuracy↑b Absolute true↑b Absolute false↓c

iATC-mISFd 67.83% 67.10% 66.41% 60.98% 5.85%
iATC-mHybe 71.91% 71.46% 71.32% 66.75% 2.43%

aSee Eq.12 for the definitions of the five metrics used to measure the prediction quality for multi-label systems [3].
bThe upper arrow means that the larger the rate the better the prediction quality is.
cThe down arrow means that the smaller the rate the better the prediction quality is.
dThe predictor proposed in [4].
eThe predictor proposed in the current paper.

Figure 2: The semi-screenshot for the output generated by the Step 3 of users’ guide in the Results and Discussion 
section.
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Table 2: Breakdown of the 3,883 drug compounds in the benchmark dataset   according to the 14 ATC classes (cf. Eq.1)

Subset Name Number of drugs 

1 Alimentary tract and metabolism 540

2 Blood and blood forming organs 133

3 Cardiovascular system 591

4
Dermatologicals 421

5
Genito-urinary system and sex hormones 248

6

Systemic hormonal preparations, excluding sex hormones 
and insulins 126

7
Antiinfectives for systemic use 521

8
Antineoplastic and immunomodulating agents 232

9
Musculo-skeletal system 208

10
Nervous system 737

11
Antiparasitic products, insecticides and repellents 127

12
Respiratory system 427

13
Sensory organs 390

14
Various 211

Number of total virtual drugs 4,912a

Number of total structural different drugs 3,883b

a The number of virtual drugs is counted as follows: for a structurally same drug, its contribution to the total number of 
virtual drugs is 2 if it occurs in two different ATC classes; that is 3 if it occurs in three different ATC classes; and so forth.
b Of the 3,883 structural different drugs, 3,295 belong to one class, 370 to two classes, 110 to three classes, 37 to four 
classes, 27 to five classes, and 44 to six classes. See Supporting Information S1 for the detailed drug codes listed in each of 
14 ATC-classes.

Figure 3: A plot to show the process of finding the optimal θ value in Eq.9. See the main text for further explanation.
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covered by the ChEBI database. All these results are fully 
consistent with the experimental observations.

Step 4. Click on the Citation button to find the 
key relevant papers that have been used to document the 
detailed development and algorithm of iATC-mHyb.

Step 5. Click the Supporting Information button 
to download the all the “Supporting Information” files 
mentioned in this paper.

MATERIALS AND METHODS

As demonstrated in a series of recent method-
developing studies [33, 45–49, 51–55, 57, 60–65], to 
establish a really useful statistical predictor for a drug 
system, according to the Chou's 5-step rule [66] we 
should make the following five steps very clear: (1) how to 
construct or select a valid benchmark dataset to train and 
test the predictor; (2) how to formulate the drug compound 
samples with an effective mathematical expression that 
can truly reflect their essential correlation with the target 
concerned; (3) how to introduce or develop a powerful 
algorithm (or engine) to run the prediction; (4) how to 
properly conduct cross-validation tests to objectively 
evaluate the anticipated accuracy; (5) how to provide a 
web-server and user guide to make users very easily to get 
their desired results. Below, let us to address these point-
by-point.

Benchmark dataset

For facilitating comparison, in this study we used 
the same benchmark dataset (Supporting Information S1) 
as used in [2, 4]. It contains 3,883 drugs classified into the 
14 main ATC-classes whose names in medicinal chemistry 
are given in Table 2. Thus, the benchmark dataset   can 
be formulated as

1m1 2 13 14∪ ∪�∪ ∪�∪ ∪      ( )=

where the subset 
m  only contains the samples from 

the m-th ATC class (m = 1,2,3,...,14), and ∪ denotes the 
symbol for “union” in the set theory. Listed in Table 2  is 
a breakdown of the benchmark dataset according to the 14 
subsets in Eq.1.

As we can see from the table, among the 3,883 
drugs, 3,295 occur in one class, 370 in two classes, 110 
in three classes, 37 in four classes, 27 in five classes, 44 
in six classes, and none occurs in more than six classes. 
For such a multi-label system, let us use a more intuitive 
method to describe the benchmark dataset as given in 
Supporting Information S2, where the symbol “1” under 
the title of “ATC classification” means the drug concerned 
occurs in the corresponding class, “0” means not.

Sample formulation

One of the keys in developing a powerful predictor 
is to formulate the samples with an effective mathematical 

expression that can truly reflect their intrinsic correlation 
with the target to be predicted [66]. In the previous paper 
[4], three different maximum score approaches were used 
to formulate the samples; they are (1) the interaction 
among the drug compounds concerned, (2) their structural 
similarity, and (3) their fingerprint similarity. Here, we are 
to address this problem by considering the maximum score 
in the DO (drug ontology) similarity; i.e., a sample in the 
benchmark dataset   of Eq.1 is defined by

D
T

DO-Sim
1 2 3 14 ( )= α α α α



            2

where T is the transposition operator, α1 stands for its 
maximum DO similarity score with the drugs in the subset 

1 , α2 for its maximum DO similarity score with the drugs 
in the subset 2 , α3 for that in subset 

3 , and so forth. 
These DO similarity scores can be easily calculated [67, 
68] from the ChEBI database [27] via KEGG [69].

Note that, of the 3,833 drug compounds in the 
benchmark dataset, only 1,144 can be found in the current 
ChEBI database (ftp://ftp.ebi.ac.uk/pub/databases/chebi/
ontology/), and can be defined by Eq.2. For remaining 
(3,883 – 1,144) = 2,689 samples that are not included in 
the ChEBI, they will be expressed by the formulation in [4] 
and treated by the method described there. For clarity, let us 
use DO Ì  to denote the 1,144 samples that occur in the 
current ChEBI database. The 1,144 drug compounds in the 
subset DO  are given in the Supporting Information S3.

Operation algorithm

In this study, the ML-GKR (multi-label Gaussian 
kernel regression) classifier has been adopted to predict 
the ATC-classes, as described below.

Suppose the i-th drug in the benchmark dataset DO  
can be formulated as

iD ( 1,2, , 1144) 3i i i i i
T

1 2 3 14                                  ( )= α α α α



 = 

And its attribution in a multi-label system can be 
formulated as a vector Li given by

L          4i i i i i
T

1 2 3 14� � � � � ( )= 





where

m
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1        otherwise 
   ( 1,  2,  , 14) 5m

i
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−




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=

Likewise, for a query drug or compound, we have

D  6
T

q
1
q

2
q
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q

14
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
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Its attribution label vector in the ACT system is 
predicted as
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T
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q
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m
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1         otherwise  
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The Δm in Eq.8 is given by
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where θ is a parameter whose optimal value will be 
determined later, ||Dq – Di||2 is the Euclidean distance in 
the 14-D space (see Eq.2) between the query drug and the 
i-th drug of the benchmark dataset DO , as given by [28]

∑( ) ( )− = α − α
=

D D 10i

u

u u
iq

2

1

14
q

2

Thus, the attribution label vector Lq of Eq.7 for the 
query drug Dq is well defined, and hence its ATC class or 
classes can be explicitly predicted as well. For example: 
if 11

q
2
q

14
q

  = = = +  while all the other components 
in Eq.7 are equal to −1, this means that the query drug 
belongs to the 1st, 2nd, and 14th ATC classes; if 13

q
 = +  

while all the others are equal to −1, meaning that the 
query drug belongs to the 3rd ATC class only; and so 
forth.

The predictor established via the aforementioned 
procedures is called iATC-mDO, where “i” means 
“identify”, “ATC” means “Anatomical Therapeutic 
Chemical” classification, “m” means “multiple” labels, 
and “DO” means “drug ontology”.

Hybridization with iATC-mISF

Question might be raised as asking how to deal with 
the remaining 2,689 compounds that are not included in 
the existing ChEBI database? Actually, similar question 
also existed in using GO (Gene Ontology) to predict the 
protein subcellular localization [5, 70], enzyme family 
classes [71, 72], analyzing protein pathway networks [73], 
and protein-protein interaction [74]. In those cases, the 
pseudo amino acid composition (PseAAC) approach [24, 
25, 75] was applied to deal with those proteins without 
GO numbers. Likewise, we can also introduce a hybrid 
predictor for the ATC classification as given by

iATC - mHyb
iATC - mDO

iATC - mISF
 

,     for the compounds in ChEBI 

,     Otherwise
11( )=







where “Hyb” means “hybridization” with the iATC-mISF 
predictor [4].

Test procedure

One of the important procedures [66] in developing 
a new prediction method is how to objectively evaluate its 
anticipated success rate [66]. To address this, we need to 

consider two issues. (1) What metrics should be used to 
quantitatively reflect the predictor’s quality? (2) What kind 
of test approach should be utilized to score the metrics?
A set of five metrics for multi-label systems

The metrics used to measure the prediction quality 
for multi-label systems are much more complicated 
than those for single-label systems. To make them more 
intuitive and easier to understand for most experimental 
scientists, the following five metrics were introduced by 
Chou [3]: (1) “aiming”, which is for checking the rate 
or percentage of the correctly predicted labels over the 
practically predicted labels; (2) “coverage”, for checking 
the rate of the correctly predicted labels over the actual 
labels in the system concerned; (3) “accuracy”, for 
checking the average ratio of correctly predicted labels 
over the total labels including correctly and incorrectly 
predicted labels as well as those real labels but are missed 
in the prediction; (4) “absolute true”, for checking the ratio 
of the perfectly or completely correct prediction events 
over the total prediction events; (5) “absolute false”, for 
checking the ratio of the completely wrong prediction over 
the total prediction events.

The aforementioned Chou’s five metrics can be 
formulated as [3]
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Where N is the total number of the samples concerned, M 
is the total number of labels for the investigated system,  
means the operator acting on the set therein to count the 
number of its elements, ∪ means the symbol for the “union” 
in the set theory, ∩ denotes the symbol for the “intersection”, 
k  denotes the subset that contains all the labels observed 
by experiments for the k-th sample, k

*  represents the subset 
that contains all the labels predicted for the k-th sample, and

, 

1,    if all the labels in  are identical to those in 

0,   otherwise
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The above approach had been effectively used to 
study various multi-label systems, such as those in which 

∑( ) ( )− = α − α
=

D D 10i

u

u u
iq

2
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14
q

2

iATC - mHyb
iATC - mDO

iATC - mISF
 

,     for the compounds in ChEBI 

,     Otherwise
11( )=






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a protein may occur in two or more different subcellular 
locations [18–23, 76], or an antimicrobial peptide may 
have two or more different types [34], or a membrane 
protein may have two or more different types [77].
Test by cross validation

Three cross-validation methods are often used in 
statistical prediction. They are: (1) independent dataset test, 
(2) subsampling (or K-fold cross-validation) test, and (3) 
jackknife test [28]. Of these three, however, the jackknife test 
is deemed the least arbitrary that can always yield a unique 
outcome for a given benchmark dataset as elucidated in [66]. 
Accordingly, the jackknife test has been widely recognized 
and increasingly used by investigators to examine the quality 
of various predictors (see, e.g., [11, 65, 78–90]). Accordingly, 
the jackknife test was also used in this study.
Parameter determination

Since Eq.9 contains a parameter θ, the predicted 
results obtained by iATC-mDO will depend on the 
parameter’s value. In this study, the optimal value for θ 
was determined by maximizing the absolute true rate (see 
the 4th sub-equation in Eq.12) by the jackknife validation 
on the benchmark dataset DO . As shown in Figure 3, 
when θ = 1/36, the absolute true rate reached its highest 
score. And such a value would be used for iATC-mDO 
predictor in further study.

CONCLUSION

A new method for predicting the ATC classes has 
been developed by hybridizing the drug ontology approach 
with the best existing ATC predictor. The new predictor has 
outperformed the best existing ATC predictor in all the five 
metrics used to examine the prediction quality of a predictor 
for multi-label systems, particularly in the “absolute true” 
rate and the “absolute false” rate, the two most difficult-
to-improve indexes. To maximize the users’ convenience, 
a publically accessible web-server has been established at 
http://www.jci-bioinfo.cn/iATC-mHyb along with a step-
by-step guide. Moreover, the MATLAB code for the new 
method is also available as in Supporting Information S4, 
which can be directly downloaded from the web-server.
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