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ABSTRACT

Transcription factors and histone modifications are vital for the regulation of 
gene expression. Hence, to estimate the effects of transcription factors binding and 
histone modifications on gene expression, we construct a statistical model for the 
genome-wide 15 transcription factors binding data, 10 histone modifications profiles 
and DNase-I hypersensitivity data in three mammalian. Remarkably, our results show 
POLR2A and H3K36me3 can highly and consistently predict gene expression in three 
cell lines. And H3K4me3, H3K27me3 and H3K9ac are more reliable predictors than 
other histone modifications in human embryonic stem cells. Moreover, genome-wide 
statistical redundancies exist within and between transcription factors and histone 
modifications, and these phenomena may be caused by the regulation mechanism. In 
further study, we find that even though transcription factors and histone modifications 
offer similar effects on expression levels of genome-wide genes, the effects of 
transcription factors and histone modifications on predictive abilities are different 
for genes in independent biological processes.

INTRODUCTION

Earlier studies [1-4] showed transcription factors 
(TFs) binding and histone modifications (HMs) were 
critical for gene expression, and the abnormities of 
TFs binding and HMs may affect the cell fate such 
as differentiation and apoptosis [5]. The ability to 
comprehend and predict their effects is vital to develop 
treatments for hundreds of human diseases, including 
leukemia [6], diabetes [7] and various cancers such as 
prostate cancer [8, 9], lung cancer [10] and breast cancer 
[11, 12], etc.

The significant regulations of mammalian 
gene expression are deemed to occur at the level of 
transcriptional initiation and elongation [13]. TFs can 
activate or block the initiation of gene transcription 
by binding to specific DNA sequences in enhancers 
or promoters [14, 15] or recruiting some chromatin-
modifying enzymes to induce the changes of chromatin 
structure [16]. HMs are recognized to activate or inhibit 
transcription by either modulating the local chromatin 

structure to control TFs accessibility [17] or directly 
recruiting related enzymes [18]. 

In previous studies, by analyzing the relations 
of HMs and TF binding to gene expression, Cheng et 
al. [19] found that HMs or TFs binding in different 
positions show different predictive abilities, and they 
suggested HMs and TF binding may be redundant for 
predicting gene expression levels. Karlic et al. [20] 
noticed that different combinations of HMs are needed for 
predicting the expression levels of genes with different 
CpG content promoters. In this study, we investigate the 
relative contribution of each TF (HM) or combination 
of them to gene expression by constructing a support 
vector regression (SVR) model for the genome-wide 
15 TFs binding data, 10 HMs profiles and DNase-I 
hypersensitivity data in three mammalian, and verify their 
universality in H1-HESc, Gm12878 and K562 cell lines. 
We further explore how TFs, HMs and gene expression 
interact with each other. At last, we research the effects 
of TFs and HMs on prediction for genes in independent 
biological processes.
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RESULTS AND DISCUSSIONS

The “Optimal” TFs for predicting gene expression 
are cell-specific

TFs can bind to specific DNA elements and 
stimulate or suppress gene transcription. There are 
approximately 1700 to 1900 TFs in human, including 
1391 manually curated sequence-specific TFs [5]. In 
this study, we download respectively available 57, 87 
and 96 TFs for H1-hESc (human embryonic stem cells), 
Gm12878 (B-lymphoblastoid cell) and K562 (erythrocytic 
leukemia cells) which are immortal [21] and have the 
most completed data [22]. Then the top 15 TFs which are 
vital TFs for predicting gene expression levels are chosen 
by using stepwise regression analysis (the usage about 
stepwise regression analysis is detailed in Supplementary 
information), and regarded as the “optimal” TFs for each 
cell line (shown in Figure 1). We observe that different 
“optimal” TFs are needed for different cell lines, indicating 
TFs binding is a dynamical process that depends on tissues 
or cell lines. A likely explanation for these phenomena 
may be the essential difference among the three cell lines, 
necessitating the selection of alternative TFs [2].

TFs and HMs predict gene expression levels

The presences or absences of some TFs and HMs 
are correlated with gene expression levels [1, 16, 20, 23]. 
To better understand the relations between TFs (HMs) 
and gene expression levels, we construct log-linear model 
and non-linear SVR model for three immortalized human 
cell lines: H1-hESC, GM12878 and K562. The predictive 
power (R2) of the two models in 10-fold cross-validation 
are shown in Table 1 and Supplementary file Table S1.

The results show that TFs, HMs and DNase have 
stronger correlation with gene expression levels in SVR 
model than in log-linear model. It may be resulted from 
the non-linear relationships between TFs (HMs) and gene 
expression [19, 24]. Therefore, SVR model is applied in 
the remainder of this work, despite a remarkable increase 
in required CPU time.

Different HMs and TFs are required for 
predicting gene expression levels

In order to check whether all HMs (TFs) are equally 
important for predicting gene expression, we construct 
SVR models for all possible combinations of 10 HMs 
and DNase or 15 TFs, which results in 2047 HMs+DNase 

Figure 1: List of the TFs involved in the current study for H1, Gm12878 and K562.
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combination modes and 32767 TFs combination modes. 
The detailed information and statistical results are 
depicted in Supplementary tables 1-6 and Figure 2. The 
distributions of Pearson correlation coefficient (PCC) 
for these 2047 HMs+DNase combination modes in the 
H1-hESc, GM12878 and K562 are respectively shown 
in Figure 2A, 2C and 2E). The distributions of PCC for 
these 32767 TFs combination modes in the H1-hESc, 
GM12878 and K562 are shown in Figure 2B, 2D and 2F). 
The maximum PCC for combination modes of different 
amounts of HMs or different amounts of TFs is connected 
by a black curve. It is found that the predictive powers 
will basically reach summit in the maximum combination 
of four HMs or four TFs. The combination modes of 
maximum prediction accuracy for the four factors (i.e. 
four HMs or four TFs) are described in Table 2. These 
results show that all HMs+DNase or TFs are not equally 
important and there are statistical redundancies within 
HMs (TFs).

In addition, to further identify which HMs 
contribute more to predicting gene expression, we focus 
on the combinations modes of 4 kinds of HMs. We study 
all four-HMs modes whose PCC reach at least 95% of 
the all-HMs mode (PCCall_H1 = 0.786, PCCall_Gm12878 = 
0.852 and PCCall_K562 = 0.836). There are finally 58, 116 
and 117 combination modes, respectively, for H1-hESc, 
Gm12878 and K562, which is an enough large number to 
evaluate the over-representation analysis. By investigating 
the appearance times of each HM in these combination 
modes, we find the following results (see Figure 3):

Firstly, H3K36me3 appears in all these modes 
for the three cell lines, and it may be vital for gene 
expression. The better predictive results (PCCH3K36me3_H1 = 
0.496, PCCH3K36me3_Gm12878 = 0.698 and PCCH3K36me3_K562 = 
0.750) for gene expression levels are obtained by using 
single H3K36me3 information parameter. Our results 
are consistent with previous work, Hahn et al. showed 
H3K36me3 is a intragenic mark of active genes, and it 
is associated with two categories of genes [25]. Nanty et 
al. noticed that H3K36me3 has bimodalities in gene-body, 

which would influence DNA methylation levels and help 
shape gene-body CpG density profiles [26].

Secondly, for the H1-hESc, each of H3K9ac, 
H3K27me3 and H3K4me3 appears in nearly half of the 
58 combination modes (53.45%, 43.10% and 43.10%, 
respectively), while other HMs appear in at most 29.31% 
of 58 modes (shown in Figure 3A). Thus, H3K9ac, 
H3K27me3 and H3K4me3 are more reliable information 
parameters than other HMs in H1-hESc, which consist 
with previous study [23]. Furthermore, we check the times 
that H3K9ac, H3K27me3, H3K4me3 and H3K36me3 
appear together (shown in Figure 3B). We notice that 
H3K4me3 and H3K9ac appear simultaneously only seven 
times in the 58 modes, it may be that the information they 
represented are not simultaneously needed in 58 modes 
because their information redundancy, which is supported 
by the high correlation (PCC = 0.905). H3K4me3 and 
H3K27me3 (H3K27me3 and H3K9ac) occur together 
eight times in the 58 modes, and the correlation between 
H3K4me3 and H3K27me3 (H3K27me3 and H3K9ac) 
is PCC = 0.507 (PCC = 0.502), suggesting that they 
are partially redundant. However, we find H3K36me3 
combines with one of H3K4me3, H3K27me3 and H3K9ac 
respectively appear in 23, 25 and 31 times, showing that 
the information they provide may be non-redundant. In 
fact, the correlations respectively are PCC = 0.097, PCC 
= 0.203 and PCC = 0.202.

Thirdly, for the Gm12878 and K562 cell lines, even 
though other HMs except H3K36me3 appear in similar 
level (about 30%, see Figure 3C and 3D), the combination 
of H3K36me3 and H3K79me2 can effectively increase 
the predictive power. We find the predictive accuracy of 
this combination in the four-HMs modes reaches at least 
97.59% of the all-HMs mode.

Similarly, we focus on those four-TFs modes 
whose PCC reach at least 95% of the all-TFs mode 
(PCCall_H1 = 0.753, PCCall_Gm12878 = 0.799, PCCall_K562 = 
0.802), 85, 172 and 345 modes are lastly remained for 
H1-hESc, Gm12878 and K562, respectively. We obtain 
that POLR2A is ubiquitous in all studied modes for the 

The CV-R2 is the average R2 for the 10 fold cross-validation.

Table 1: Prediction accuracy of log-linear and SVR model. 
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Figure 2: The PCC distributions for all combination of 15 TFs or 10 HMs and DNase. A., B. H1, C., D. Gm12878 and E., 
F. K562 cell line. X-axis represents the combination of c kinds of HMs and DNase (choose c out of 10 HMs and DNase, c = 1,2,…,11) or 
d kinds of TFs (choose d out of 15 TFs, d = 1,2,…,15), and the black curves represent the maximum PCC for the combination mode of c 
HMs and DNase or the combination mode of d TFs.

Table 2: The combination modes of the maximum prediction accuracy for four factors.
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three cell lines and it can faithfully model gene expression 
levels (PCCPOLR2A_H1 = 0.661, PCCPOLR2A_Gm12878 = 0.677 
and PCCPOLR2A_K562 = 0.730). Previous researches had 
shown the importance of this mark which is linked to 
the synthesis of messenger RNA [27, 28]. For the K562 
cell line, we also find the combination of POLR2A and 
ZBTB7A in the four-TFs modes reaches at least 97.58% 
of the all-TF mode. At last, to verify whether the above 
inferences depend on four-factors modes, we implement 
same analysis for five-factors and six-factors modes and 
analogous consequences are found.

TFs and HMs provide similar effect on predicting 
genome-wide gene expression

As shown in Table 1, TFs and HMs model both 
obtain high predictive power, and TF+HM+DNase 
model only get similar predictive accuracy with them, 
indicating TFs binding and HMs may offer similar 
effects on genome-wide gene expression. To quantify 
this phenomenon, the PCC between the predictive 
values of TFs model and the predictive values of HMs 

Table 3: List of three random GO-ID for each ratio range in the three cell lines.
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Figure 3: The appearance frequency of each HM in the studied modes. A. The frequency of each HM in H1 cell line, where 
the integer represents the occurrence times in the studied modes. B. Venn diagram shows that the co-occurrence times of the four important 
HMs. C. and D. The frequency of each HM in Gm12878 and K562. 

Table 4: List of five random GO-ID where TFs and HMs model show distinct PCC for the same biological process in 
the different cell lines.
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Figure 4: Heatmaps of PCC both within TFs (HMs) and between TFs and HMs for the three cell lines. A., B. and C. 
represent H1, Gm12878 and K562 cell lines, respectively.

Figure 5: Venn diagram shows the number of the co-regulated and solo-regulated genes within and between TFs and 
HMs. The blue depicts the co-regulated target genes, the pink and purple represent solo-regulated genes by factors attach to the charts, 
respectively.
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model is respectively calculated for the three cell lines. 
Strong correlations (PCCH1 = 0.827, PCCK562 = 0.908, 
and PCCGm12878 = 0.895 respectively) support that TFs 
and HMs offer similar effects on genome-wide gene 
expression and show the statistical redundancies also exist 
between TFs and HMs. Although TF+HM+DNase model 
does not obtain obviously improved predictive ability, it 
tends to more stable than TFs or HMs model (i.e. smaller 
RMSE between R2 and CV-R2 than TFs or HMs model).

Regulation mechanism leads to statistical 
redundancy

To investigate the fundamental source of statistical 
redundancies among factors, the PCC between and 
within TFs and HMs are calculated for the three cell lines 
(see Figure 4). High correlations among these factors 
indicate the statistical redundancies maybe come from 
the regulation mechanism (i.e. two factors have similar 
regulatory functions). To verify the above supposition, 
the target genes of TFs or HMs are predicted by using 
the software BETA [29]. Then, the co-regulated and solo-
regulated targets for TFs (HMs) whose PCC > 0.85 within 
TFs (HMs) and the co-regulated and solo-regulated targets 
for TF and HM whose PCC > 0.70 between TF and HM in 
H1-hESc cell lines are counted. The results present that the 

co-regulated genes are far more than solo-regulated genes 
for those factors (Figure 5 and Supplementary Figure S1, 
similar work is done for Gm12878 and K562 (not shown)), 
which effectively support our inferences. It is worth noting 
that some factors with similar regulatory functions have 
been demonstrated, for instance, CEBPB and SP1 which 
have strong correlation both can activate the expression of 
the insulin receptor gene [30]. Enrichments of H3K4me2 
or H3K4me3 at TSS are positively correlated to the extents 
of gene activities [31], etc.

Construction of TFs, HMs and gene expression 
interaction network

For further investigating how TFs, HMs interact 
with each other and the effects of TFs and HMs on gene 
expression, the interaction networks among TFs, HMs and 
gene expression are constructed, where Partial correlation 
coefficient is used to estimate inherent relationship 
between each paired factors and they are calculated as the 
edges of the networks. The entire process is done by R 
package ‘GeneNet_1.2.13’. Finally, 60 most significant 
edges are selected out for visualization (Figure 6 and 
Supplementary Figure S2). 

For the three cell lines, we notice that H3K36me3 
and POLR2A have direct correlations with gene expression 

Table 5: The predictive results compare with other studies.

 The bold represents co-factors in the comparison.
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levels and both promote the expression of genes, which 
maybe an interpretation why H3K36me3 and POLR2A 
are important in the section 2.3. Moreover, we find there 
is a higher positive correlation between H3K4me1 and 
H3K4me2 (between H3K4me2 and H3K4me3) in three 
cell lines. But the higher positive correlation between 
ATF2 and SP4 (between USF1 and USF2) is cell line 
specific. Besides, based on the interactive networks, we 
know that the gene expressions not only are affected by 
TFs and HMs, but also influenced by the interactions 
among factors (detailed in the legend of Figure 6). In order 
to check the robustness of the networks, we implement 50 
times simulations by randomly removing 200 genes and 
same networks are found.

The effects of TFs and HMs on prediction are 
different for genes in independent biological 
processes

In section 2.4, we find that TFs and HMs model 
offer similar predictive power for genome-wide gene 
expression. In order to further investigate the effects of 
TFs and HMs on prediction for genes in independent 
biological processes, we focus on the Gene Ontology 

biological processes [32, 33] for the high expression genes 
in the three cell lines (based on RPKM values, the top 
fifteen percent of all genes are selected as high expressed 
genes [3, 23]). Firstly, biological processes containing less 
than 30 genes are discarded, 1104, 1136 and 1070 sets of 
genes are remained, respectively, for H1-hESc, Gm12878 
and K562 cell line. In order to ensure the effectiveness 
of statistics, the 604, 741 and 398 sets of genes for H1-
hESc, Gm12878 and K562 cell line are lastly remained 
when TFs or HMs model’s Benjamini-Hochberg-corrected 
P-value [34] is fewer than 0.05..

To quantify the effects of TFs and HMs on 
prediction for genes in independent biological processes, 
the ratio of PCC of TFs model to PCC of HMs model 
for these biological processes is calculated (see 
Supplementary tables 7-9 and Table 3). Of the 604, 741 
and 398 biological processes for the three cell lines, it is 
found that 21, 89 and 24 processes show that the effect 
of HMs on prediction is superior to the effect of TFs (the 
ratio ranges from 0.59 to 0.90); 254, 235 and 65 processes 
show that the effect of TFs on prediction is superior to the 
effect of HMs (the ratio ranges from 1.10 to 2.01); but TFs 
and HMs offer similar effect on prediction in others 329, 
418 and 309 processes (the ratio ranges from 0.90 to 1.10). 
In addition, we also notice that this phenomenon exists in 

Figure 6: The interaction network among TFs, HMs and gene expression for H1 cell line. In the network, nodes represent 
TFs, HMs and gene expression. Edges show the partial correlation coefficient between each paired factors, where the dash lines represent 
negative correlations and solid lines represent positive correlations. Bolder the line is, the stronger correlation it represents.
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same biology processes but in different cell lines (shown 
in Table 4). In conclusion, even though TFs and HMs 
offer similar effect on expression levels of genome-wide 
genes, the effects of TFs and HMs on predictive abilities 
are different for genes in some independent biological 
processes.

DISCUSSION

The next-generation sequencing technology 
[35] provides large numbers of data that enable a more 
intensive research the interaction among TFs, HMs and 
DNA to be possible. Through a series of analyses and 
researches, the following interesting results can be put 
forward: (1) The selected TFs obtain better predictive than 
previous studies. Budden et al. [2] investigated the relation 
between core TFs and gene expression in Gm12878 by 
using similar method, their predictive accuracy was only 
CV-R2 = 0.390. But the predictive accuracy is CV-R2 = 
0.617 in our study, this conclusion indicates that TFs 
studied in our paper may contain more information than 
those core TFs or can functionally substitute for some core 
TFs. The compared results are shown in Table 5. (2) Based 
on SVR model, the relationships between HMs and gene 
expression are investigated in Gm12878, and better results 
are obtained. For instance, McLeay et al. [36] studied the 
effects of 7 HMs and DNase on gene expression by a log-
linear regression model, their predictive accuracy is CV-R2 
= 0.412, but the predictive power in our study is CV-R2 = 
0.719, which further imply a non-linear relations between 
HMs and gene expression. Dong et al. [24] constructed 
a two-step model to predict genes expression levels, 
they only use the chromatin feature density of ‘bestbin’ 
as predictor which ignores the information in other bins. 
Comparing with their accuracy PCC = 0.82, we achieve 
PCC = 0.85. The compared results are shown in Table 
5. (3) In section 2.3 and 2.6, we and others observe that 
POLR2A, H3K4me3 and H3K27me3 can activate or 
inhibit gene expression [27, 28, 36-38], these not only 
show the obtained conclusions are accurate, but also 
indicate our model and methods may be reasonable. 

Though improvements have been acquired, there 
are still some insufficiencies. In statistical prediction, the 
jackknife test is deemed the least arbitrary which had been 
elegantly demonstrated by Eqs. (28-30) in [39]. Hence, 
this method had been widely used by researchers to test 
the quality of information parameters (see, e.g., [40-46]). 
However, to reduce the computational time, the 10-fold 
cross validation is adopted in this paper as done by many 
researchers who use SVM as the prediction engine. 

As future works, we will make our efforts to 
adopt more precise test method, and provide a publicly 
accessible and user-friendly web-server as presented in a 
series of recent publications [47-51] to effectively enhance 
their impacts [52]. Meanwhile, more precise and faster 
sequence analysis tools [53, 54] will be fully utilized in 

follow-on work.

MATERIALS AND METHODS

Available data and implementation

The RefSeq genes of the human genome (hg19) 
come from the UCSC database (http://genome.ucsc.
edu/cgi-bin/hgTables), which contains transcription 
start site (TSS). Genes starting with NM are chosen out 
(i.e. the mature messenger RNA). In order to prevent 
the possibility that some genes may be the alternative 
transcripts of the same gene, only one of the genes which 
have the same TSS is retained. At last, a set of 19120 
genes is left for remainder analysis.

All the TFs binding data, HMs profiles and 
DNase-I hypersensitivity data for H1-hESc, K562 and 
Gm12878cell lines are downloaded from the UCSC 
database (detail in Figure 1, Supplementary file Table S2 
and Supplementary file Table S3). Because the DNase-I 
hypersensitivity data for the three cell lines are in hg18 
coordinate, the UCSC liftOver tool [55] is used to convert 
the hg18 data into hg19. For visualization, the raw data is 
converted to bed format by using BEDtools software [56].

The expression data of the H1-hESc, Gm12878 and 
K562 are measured by applying the RNA-seq techniques. 
The mapped RNA-seq reads reported in this paper are 
depicted in the Gene Expression Omnibus database 
(GSM915329 (H1-hESc), GSM958730 (Gm12878) and 
GSM958731 (K562)). The expression levels of all genes 
are calculated according to the reads per kilobase of 
exon model per million mapped reads and represented as 
RPKM value [57]. 

Transcription factors binding signal

The DNA regions flanking the TSS (-10~10kb) of 
all RefSeq genes are separated into 100 bins, each of 200 
bps in size. Based on our previous study [3], signals of 
TFs binding are normalized by using the following Eq. (1), 

 (1)
in which Nk

ij represents normalized signal, nk
ij is the 

total tags that k-th TF locates in the j-th bin of the i-th 
gene, 109 is used to eliminate the difference of magnitude 
with RPKM. 200 is the length of the j-th bin, and nk

tag is 
the total tags of the k-th TF. This results in a 19120×100 
matrix N (matrix element is Nk

ij (i = 1, 2,…,19120; j = 
1,2,…,100; k = 1,2,…,15) for the k-th TF.

HMs and DNase binding signal

Similarly, the DNA regions flanking the TSS 
(-2~2kb) of all RefSeq genes are divided into 20 bins, with 



Oncotarget40100www.impactjournals.com/oncotarget

each consisting of 200 bps. Then, the signals of HMs and 
DNase binding are normalized by using the following Eq. 
(2), 

 (2)
where Hl

im represents the normalized signal, hl
im is 

the total tags that l-th HM or DNase locates in the m-th 
bin of the i-th gene, and hl

tag is the total tags of the l-th HM 
or DNase. This results in a 19120×20 matrix H (matrix 
element is Hl

im (m = 1,2,…,20; l = 1,2,…,11) for the l-th 
HM or DNase.

Calculation of TFs association strength (TFAS)

For the i-th gene and the k-th TF, TFAS is calculated 
by the following Eq. (3) 

  (3)
where Nk

ij is computed by Eq.(1), Fk is the 
normalized Gaussian kernel density function, where the 
bandwidth is calculated by the rule of thumb [58]. dj is 
a relative distance between the midpoint of the j-th bin 
and the corresponding gene’s TSS, the σk is a pseudocount 
(the detailed information is displayed in supplementary 
information). For 19120 genes and 15 TFs, the TFAS 
profiles are denoted by the 19120×15 matrix a (the matrix 

element is
'
ika ).

Calculation of HMs or DNase association strength 
(HMAS)

For the i-th gene and the l-th HM or DNase, the 
HMAS is calculated by using the following Eq. (4) 

  (4)
where Hl

im is computed by Eq.(2), the σi is a 
pseudocount, the HMAS profiles are denoted by the 

19120×11 matrix b (the matrix element is
'
ilb ).

Log-linear regression model and non-linear SVR 
model

Combining with the TFASs, HMASs and 
multivariate linear regression, the log-linear regression 
model is derived by the following Eq. (5)

 (5)
in which Li is the RPKM value of the i-th gene, 

σ is a pseudocount, υ is the intercept, αk and βl are the 
regression coefficients.

Based on the support vector machines, a SVR model 
is constructed by using the Eq. (6)

 (6)
in which μ is the intercept, K(Xi, X) is the kernel 

function and γi is the Lagrange multiplier. Matrix X is 
the matrix a (calculated by Eq.(3)) and/or the matrix b 
(calculated by Eq.(4)), Xi is the i-th row elements of matrix 
X. The entire process is done by libSVM software [59].

Abbreviations

TF, transcription factor; HM, histone modification; 
SVR, support vector regression; PCC, Pearson correlation 
coefficient; TSS, transcription start site; RPKM, reads per 
kilobase of exon model per million mapped reads; TFAS, 
Transcription factors association strength; HMAS, histone 
modifications or DNase association strength;.
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