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LIM kinases: cofilin and beyond
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ABSTRACT
LIM kinases are common downstream effectors of several signalization pathways 

and function as a signaling node that controls cytoskeleton dynamics through the 
phosphorylation of the cofilin family proteins. These last 10 years, several reports 
indicate that the functions of LIM kinases are more extended than initially described 
and, specifically, that LIM kinases also control microtubule dynamics, independently of 
their regulation of actin microfilament. In this review we analyze the data supporting 
these conclusions and the possible mechanisms that could be involved in the control 
of microtubules by LIM kinases. The demonstration that LIM kinases also control 
microtubule dynamics has pointed to new therapeutic opportunities. Consistently, 
several new LIM kinase inhibitors have been recently developed. We provide a 
comprehensive comparison of these inhibitors, of their chemical structure, their 
specificity, their cellular effects as well as their effects in animal models of various 
diseases including cancer.

INTRODUCTION

The LIM kinase protein family is composed of 
two highly related members, LIM kinase 1 (LIMK1) 
and LIM kinase 2 (LIMK2). Both have the same unique 
organization of signaling domains, with two amino-
terminal LIM domains, adjacent PDZ and proline/serine 
(P/S)-rich regions, followed by a kinase domain (Figure 
1)[1, 2].

Although LIMK1 and LIMK2 are very homologous, 
particularly within their kinase domain, there is emerging 
evidence that different upstream pathways can control 
the activity of each kinase. LIMK1 and LIMK2 may 
thus contribute to both distinct and overlapping cellular 
functions [1, 2]. Moreover different patterns of tissue 
distribution, as well as, for instance distinct localization 
during cell cycle progression also suggest different 
biological functions for each kinase [1, 2].

In the present review we will specify LIMK1 or 
LIMK2 when the data are strictly related to one form of 

these LIM kinases, whereas we will refer to LIMK when 
the study does not distinguish between the two isoforms.

It has been shown, using mutants or limited 
proteolysis, that the LIM domains are able to bind to 
the C-terminal kinase domain and negatively regulate 
the kinase activity [3]. The LIM domains also likely 
contribute to LIMK function by acting as sites of protein-
protein interactions, in addition to the PDZ domain.

While LIMK1 and LIMK2 were originally 
described as serine/threonine kinases, they share sequence 
similarities with tyrosine kinases [4, 5]. In addition, 
LIMK1 has been described to present a tyrosine kinase 
activity [6, 7]. Thus, instead of being strictly serine/
threonine kinases, LIMKs appear to have dual-specificity 
serine/threonine and tyrosine activities. 

LIMKs were initially identified as kinases 
downstream of the Rho pathway (Figure 2). Deregulation 
of this pathway and of LIMK activity have been 
implicated in several diseases including cancer and 
neurological diseases [8-11]. Thus, LIMKs have been 
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described as promising pharmacological targets and 
a few small molecule inhibitors have been developed 
[1]. Over the last 5 years, there have been publications 
indicating that the substrates of LIMK are indeed more 
diverse than previously thought. Moreover, several 
new LIMK inhibitors have been reported, which could 
help to decipher LIMK functions and pave the way for 
pharmacological applications.

LIMK: A SIGNALING NODE THAT 
CONTROLS BOTH ACTIN AND 
MICROTUBULE DYNAMICS

LIMK was discovered 20 years ago and its initially- 
and most extensively- described substrates are members 
of the actin-depolymerizing factor (ADF)/cofilin family 
of actin-binding proteins. Three forms are expressed 
in mammals: ADF (also known as destrin); cofilin-1, 
the major ubiquitous form in non-muscle tissues; and 
cofilin-2, the major form in differentiated muscle. 
Although these proteins are different, we will use the 
general term of cofilin, for the sake of simplicity. Binding 
of cofilin to actin filaments stabilizes a twisted form of 
F-actin, thereby weakening lateral subunit interactions and 
promoting filament severing and depolymerization [12]. 
However, filament severing by cofilin also results in the 
generation of free barbed ends, which in turn is crucial for 
efficient enhancement of actin polymerization [13]. Cofilin 
is therefore a protein which favors depolymerization or 
polymerization of actin, depending on the cellular content 
of actin filaments relative to actin monomers and free 
barbed ends [14]. Both LIMK1 and LIMK2 phosphorylate 
and inactivate cofilin at serine 3 allowing an additive fine-
tuning of the control of actin dynamics (Figure 2).

Besides LIMK’s well-described effect on actin 
microfilament dynamics through cofilin phosphorylation, 
several experimental data indicate that LIMK controls 
microtubule functions, independently of its effect on 
actin dynamics. Although the mechanism of control of 
microtubule dynamics by LIMK is still not elucidated, 
it is now currently admitted that LIMK regulates both 
components of the cytoskeleton (Figure 2). The following 
sections aim at summarizing the experimental data that 
support this conclusion and the possible mechanisms 
involved in that regulation. 

LIMK regulates microtubule dynamics

Microtubule dynamics can be investigated using 
several methods. First, modification of the appearance 

of the microtubule network can be an indicator of the 
microtubule dynamic status: non dynamic or stabilized 
microtubules are often bundled or with a sinuous, 
somehow “curly” appearance [15, 16]. Microtubule 
dynamics can also be directly followed by measuring the 
spatial and temporal distribution of microtubule plus-end 
tracking proteins (+TIPs) that specifically mark growing 
microtubule plus ends, using immunofluorescence on fixed 
cells or time-lapse fluorescence microscopy on GFP-+TIP 
transfected cells. This latter approach allows the analysis 
of microtubule dynamic instability parameters [17]. 

The resistance of the microtubule network to cold-
[18] or nocodazole-[19] induced depolymerization is 
also a good indicator of microtubule stability. Indeed, 
microtubules depolymerize upon cold exposure when not 
stabilized by associated proteins such as microtubule-
associated protein 6 (MAP6, [20]) or by drugs such 
as paclitaxel [19]. Nocodazole binds free tubulin and 
prevents its incorporation into microtubules, inducing 
microtubule depolymerization. Microtubules with slow 
dynamics have reduced exchanges with the free tubulin 
pool and are thus less sensitive to nocodazole-induced 
depolymerization [21]. 

Finally an increased amount of post-translationally 
modified tubulin forms is a good marker of microtubule 
stability. Indeed, it has been shown that old and stable 
microtubules are enriched in detyrosinated and acetylated 
tubulin [15]. Thus stabilization of the microtubule 
network has been revealed using antibodies recognizing 
detyrosinated [22] or acetylated tubulin [23]. 

The first work reporting that LIMK regulates 
microtubule dynamics was published by the group 
of Voyno-Yasenetskaya, in 2005 [24]. Using 
immunofluorescence they showed that LIMK1 colocalizes 
with microtubules in endothelial cells and forms a complex 
with tubulin through its PDZ domain. Overexpression of 
LIMK1 induced a depolymerisation of the microtubule 
network whereas LIMK1 down regulation, using siRNA, 
induced microtubule stabilization detected by an increase 
in acetylated microtubules. This required the kinase 
activity, as LIMK1 kinase-dead mutants were found 
unable to modify microtubule dynamics. Moreover 
modulation of LIMK1 expression was sufficient to impact 
microtubule dynamics, as in these experiments no impact 
of LIMK2 expression levels was observed [24]. 

A potential functional link between LIMK2 and 
microtubule dynamics was however later suggested 
by M. Kavallaris’ group, when they showed that down 
regulation of LIMK2 perturbs mitotic spindle formation 
and causes abnormal cell division [25]. This group 
also demonstrated that LIMK2 activity is involved in 

Figure 1: Schematic structure of LIM Kinases.
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neuroblastoma cell sensitivity to microtubule-destabilizing 
drugs. Surprisingly, LIMK2 expression is increased 
in cells selected for resistance to the microtubule 
destabilizing agents vincristine and colchicine. Thus, 
down regulation of LIMK2 enhanced cell sensitivity to 
microtubule-destabilizing drugs, suggesting that LIMK2 
mediates sensitivity to these drugs. These results were 
recently independently confirmed by Mardilovitch and 
coll. who showed that a pharmacological LIMK inhibitor 
acts synergistically with agents that inhibit microtubule 
polymerization, such as vinca alkaloids or colchicine, to 
inhibit in vitro cancer cell proliferation [26]. 

A comprehensive study about the modification 
of microtubule dynamics upon LIMK pharmacological 
inhibition was conducted by Prudent and coll. [19]. This 
study showed that microtubules treated with the LIMK 
inhibitor Pyr1 are enriched in detyrosinated tubulin, 
have reduced dynamic instability and are resistant to 
nocodazole-induced depolymerization. These stabilizing 
properties were shared by structurally similar- as well as 
structurally different- LIMK inhibitors, indicating that they 
resulted from LIMK inhibition and not from side effects 
of these pharmacological compounds. Moreover, LIMK1 
overexpression was able to counteract the microtubule 
stabilizing effect of Pyr1 and LIMK down regulation was 
able to mimic LIMK pharmacological inhibition [19]. It 
was established that the microtubule stabilizing effect 
of the LIMK inhibitor was independent of its effect on 
the actin cytoskeleton because when the microfilaments 

were completely depolymerized using cytochalasin, Pyr1 
was still able to induce the formation of detyrosinated 
microtubules, indicating that the microtubule network was 
stabilized.

The signaling axis involving the chemokine 
CXCL12 and its receptor CXCR4 has been suspected to 
be involved in the docetaxel chemoresistance of several 
malignancies, including prostate cancer. Bhardwaj and 
coll. have shown that stimulation of the receptor CXCR4 
by CXCL12 lead to a PAK4-mediated LIMK activation, 
which induced a destabilization of microtubules and 
docetaxel resistance. They have also shown that chemical 
inhibition of LIMK with the compound LIMKi from 
Bristol-Myers Squibb (BMS) led to a stabilization of the 
microtubule network, as assessed by an enhancement of 
detyrosinated tubulin [27]. 

Using the same LIMK chemical inhibitor, it was 
independently shown that such an inhibition induced 
an hyperstabilization of the microtubules of the mitotic 
spindle, as assessed by their resistance to cold-induced 
depolymerisation [28]. 

Recently, Olson’s group, when studying the role 
of LIMK1 in the nuclear translocation of the androgen 
receptor, showed that pharmacological inhibition of 
LIMK, using different LIMK inhibitors, induced an 
increase of acetylated microtubules in prostate cancer 
cells, indicative of an enhanced microtubule stability [29]. 
This was also observed in a human lung adenocarcinoma 
cell line [26]. 

Figure 2: LIMK1 and LIMK2, a signalization hub that controls actin and microtubule dynamics 
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In a study aiming at understanding the role of the 
obscurin-RhoGEF in the formation of microtentacles 
and in the progression of breast cancer, it was observed 
that a reduced LIMK activity in MCF10A cells treated 
with sh-obscurins correlated with an increase of tubulin 
detyrosination, indicative of microtubule stabilization 
[30].

Finally, a microtubule stabilizing effect following 
LIMK down regulation has been described ex vivo in 
mouse submandibular salivary glands [31]. Moreover, 
pharmacological inhibition of LIMK was able to induce 
a stabilization of microtubules in vivo in experimental 
tumors, as revealed by an increased detyrosination or 
acetylation [32].

LIMK regulates mitotic spindle structure and 
positioning

Besides the above-described effects of LIMK 
on microtubule dynamics in interphase cells, several 
groups have reported that LIMK regulates microtubule 
organization in mitotic spindles.

An early study conducted by Sumi and coll. 
indirectly suggested a link between LIMK and mitotic 
microtubules. Using specific antibodies that they raised 
against LIMK1 and LIMK2, they observed that LIMK1 
and LIMK2 underwent a remarkable redistribution in 

HeLa cells during the cell cycle. LIMK1, which was 
associated with cell-cell adhesion sites during interphase, 
concentrated at spindle poles in metaphase cells and then, 
to the contractile ring during cytokinesis. LIMK2, which 
was distributed diffusely in the cytoplasm, associated with 
the mitotic spindle in mitosis. These results indicated that 
LIMK1 and LIMK2 might have roles in the organization 
of the mitotic apparatus. Moreover, Sumi and coll. 
suggested that LIMK2 might have a different role in 
the control of mitotic spindle organization compared to 
LIMK1 and could have other targets than cofilin [33].

Later on, a RhoA-ROCK-LIMK2 pathway was 
found crucial for the regulation of astral microtubule 
formation as well as spindle orientation [34]. Using wild 
type and constitutively active (S3A) cofilin mutants, as 
well as overexpression of slingshot, a phosphatase for 
cofilin, it was clearly shown that cofilin was not involved 
in this process. TPPP/p25, a protein that belongs to the 
tubulin polymerization promoting protein (TPPP) family 
was suggested to be an alternative substrate of LIMK2 
responsible of that process, but this is not the case as it was 
later shown that TPPP/p25 is rather a substrate of ROCK 
than of LIMK [35]. Thus the mechanism through which 
LIMK2 regulates astral microtubules is still unsolved.

Abnormalities in mitotic spindle structure or in 
spindle positioning was recurrently reported whether 
LIMK was down regulated using siRNA [36] or inhibited 
using pharmacological compounds [19, 26].

Figure 3: Possible mechanisms for LIMK regulation of microtubule dynamics.
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Potential control mechanisms of microtubule 
dynamics by LIMK

Thus, converging evidences indicate that LIMK 
is able to increase microtubule dynamics and to control 
microtubule functions. As the microtubule and actin 
microfilament networks are highly interconnected, 

this could be an indirect consequence of the regulation 
of actin dynamics through LIMK mediated cofilin 
phosphorylation. This is, however, unlikely as it has 
been observed that complete actin depolymerisation by 
cytochalasin does not prevent microtubule stabilization 
induced by LIMK inhibition [19]. Moreover, it has been 
shown that manipulation of cofilin phosphorylation has no 
consequence on astral microtubules [34].

Table 1A: Structure and characteristics of the different published LIMK inhibitors
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The intracellular dynamicity of microtubules is 
known to be tightly regulated by various microtubule-
associated proteins (MAPs) that physically interact with 

microtubules and promote their stabilization and/or 
destabilization. The binding of MAPs to microtubules is 
often regulated by phosphorylations. Although it has been 

Table 1B: Structure and characteristics of the different published LIMK inhibitors
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shown that the MAP TPPP/p25 is not a substrate of LIMK 
[35], as initially thought [37], it could not be excluded 
that another known or still unidentified MAP could be a 
substrate of LIMK (Figure 3-1).

Moreover it has been proposed that LIMK1 itself 
could behave as a MAP: it was shown in prostate cancer 
cells that LIMK1 physically interacts with tubulin 
(Figure 3-2). Such an interaction is abolished when 
the phosphorylation of LIMK1 is increased upon cell 

stimulation by the cytokine CXCL12. As written by the 
authors “these data suggest that LIMK1 acts as a MAP 
in its unphosphorylated state to promote the stability of 
microtubules” [27].

Likewise, it could not be excluded that LIMK1 
directly affects microtubule dynamics by phosphorylating 
tubulin (Figure 3-3). Such a scenario has been described 
for CDK1 and β-tubulin, where phosphorylation of 
tubulin by CDK1 was shown to have consequences in the 

Table 1C: Structure and characteristics of the different published LIMK inhibitors
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regulation of microtubule dynamics during mitosis [38]. 
Finally it has been demonstrated that Aurora-A 

is a substrate of LIMK [39, 40] and subsequently 
suggested that Aurora A could be involved in the control 
of microtubule dynamics by LIMK (Figure 3-4) [41]. 
Indeed, although Aurora A is a key mitosis regulator, 
it has been shown that its pharmacological inhibition 

can impair interphase microtubule dynamics, inducing 
their stabilisation, raising the issue of the identity of the 
substrates of Aurora-A that are involved in the regulation 
of interphase microtubule dynamics [42]. 

A study regarding megakaryocyte maturation 
mechanisms has shown that genetic deletion of Pak2 is 
associated with altered megakaryocyte ultrastructure, 

Table 1D: Structure and characteristics of the different published LIMK inhibitors
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including depolymerized microtubule cytoskeleton. Such a 
phenotype is concomitant with a reduced phosphorylation 
of LIMK, possibly regulating its activity, and of 
Aurora-A [41]. The authors conclude that the observed 
depolymerized microtubule cytoskeleton could result from 
a reduced Aurora-A activity, which is not in accordance 
with the suppression of interphase microtubule dynamic 
instability that would have been expected [42]. Therefore, 
the interplay between LIMK, Aurora A and microtubule 
dynamics remains unclear. 

Thus, although an increasing amount of data 
indicates that LIMK is able to regulate microtubule 
dynamics, independently of their effect on microfilament 
dynamics, there is still an incomplete understanding of the 
underlying mechanisms. Approaches aiming at identifying 
LIMK substrates such as kinase substrate specific labeling 
[43] would help deciphering such mechanisms.

OTHER SUBSTRATES OF LIMK: AN 
UPDATE 

Besides cofilin, the transcription factor cAMP-
responsive element-binding protein (CREB) was the first 
other protein that has been reported to be phosphorylated 
at serine 133 by LIMK1. It was shown that LIMK1 could 
directly interact with and phosphorylate CREB in vitro in 
immortalized hippocampal progenitor (H19-7) cells and 
therefore be important for their neuronal differentiation 
[44]. Recently, these in vitro observations, indicating a 
regulation of CREB by LIMK, have been confirmed in 
vivo using LIMK1 (-/-) mice. The authors showed that such 
mice have an impaired Long Term Memory (LTM) but a 
normal short-term memory. They observed that LIMK1 
(-/-) mice have a selective defect in late-phase long-term 
potentiation (L-LTP), a form of synaptic plasticity required 
for the formation of Long Term Memory (LTM). They 
showed that LIMK1 regulation of L-LTP is independent 
of cofilin and that both L-LTP and LTM deficits in LIMK1 
(-/-) mice could be rescued by increasing the activity of 
CREB. Finally they demonstrated that LIMK1 binds to 
CREB and inhibits its activity through phosphorylation 
[45]. 

Besides its role in neuronal functions, CREB has 
been involved in the control of diverse physiological 
processes, including the control of cellular metabolism 
and growth-factor-dependent cell survival. CREB 
overexpression, which is a marker of worse prognostic in 
Acute Myeloid Leukemia [46], has been shown to promote 
abnormal proliferation and survival of myeloid cells [47, 
48]. Thus, modulation of CREB activity through LIMK 
inhibition could represent a therapeutic opportunity. 

The nuclear receptor related 1 protein (NURR1) 
is also known as NR4A2 (nuclear receptor subfamily 
4, group A, member 2). The differential activation 
of NR4A target genes, depending of the cell context, 
has been described to regulate cell cycle, apoptosis, 

inflammation, atherogenesis, metabolism, DNA repair 
and tumorigenesis as well as the midbrain dopamine 
neuron development, differentiation, and survival [49]. 
Because of their potential therapeutic interest, both in 
cancer and in Parkinson disease [49], NURR1 regulators 
are the subjects of intense research. However, since the 
original description that LIMK1 binds NURR1 and that 
LIMK1 overexpression reduced NURR1 transcriptional 
activity, no new data regarding, for instance, NURR1 
phosphorylation by LIMK1 have been reported, to our 
knowledge. 

TPPP/p25 is a MAP that induces tubulin 
polymerization and microtubule bundling. Microtubule 
stabilization induced in vitro by TPPP/p25 has been 
shown to be regulated by phosphorylation [50]. It has 
been claimed that LIMK phosphorylates TPPP/p25 and 
inhibits microtubule polymerization [34, 37], which 
could give a molecular explanation of the observed 
regulation of microtubule dynamics by LIMK. As stated 
above, this observation turned out to be wrong as it 
was subsequently clearly demonstrated that TPPP/p25 
is in fact phosphorylated by ROCK1 and that neither 
overexpression of LIMK nor its suppression has an effect 
on TPPP/p25 phosphorylation. Thus, as ROCKs strongly 
interact and copurify with LIMK, the previously published 
findings are likely to reflect TPPP/p25 phosphorylation 
through contaminant ROCKs [35].

An early study has reported that LIMK1 can 
autophosphorylate in vitro on serine and tyrosine 
residues [51]. This was confirmed later on, still in vitro, 
by the observation that LIMK1 was able to incorporate 
32P, while the kinase dead mutant was not [52]. To 
date, the in vivo relevance of these findings, the sites of 
autophosphorylation and how they may regulate LIMK 
activity or function are still unknown.

Aurora A kinase is a mitotic kinase that regulates 
initiation of mitosis through centrosome separation and 
proper assembly of bipolar spindles. Recently, a mutual 
phosphorylation of Aurora A and LIMK has been reported, 
leading to a functional cooperativity of the two kinases. 
It has been shown that LIMK can activate Aurora A 
through phosphorylation [39, 53]. In turn, Aurora A 
directly phosphorylates LIMK primarily at serine 307 
(LIMK1 only), serine 283 (LIMK2 only), threonine 494 

(LIMK2 only) and threonine 505 (LIMK2 only) [40, 
53]. It is speculated that LIMK1 phosphorylation on 
serine 307 would induce a conformational change that 
makes LIMK1’s threonine 508 accessible for a second 
site phosphorylation [39]. pLIMK1T508 colocalizes with 
Aurora-A and γ-tubulin [54] to the centrosomes during 
mitosis, suggesting that recruitment of LIMK1 to the 
centrosomes is necessary for proper spindle formation 
through modulation of actin filaments. This study 
demonstrated that functions of both LIMK1 and Aurora-A 
are important for the integrity and bipolarity of mitotic 
spindles [39].
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Cytoplasmic Polyadenylation Element Binding 
(CPEB) proteins, a family of RNA binding proteins, are 
known to regulate synaptic activity and stabilization 
of memory. The Drosophila CPEB, called Orb2, and 
its amyloid-like oligomers are required for long-term 
memory [55]. Orb2 has two isoforms: Orb2A, which is 
present only in low abundance, and Orb2B, which is an 
abundant form. Moreover, Orb2A has a very short half-life 
and the Orb2 interacting protein Transducer of Erb2 (Tob), 
a known regulator of cellular growth, stabilizes Orb2A. It 
has recently been shown that Tob is a substrate for LIMK1 
and that Orb2 proteins become a substrate of LIMK1 when 
associated with Tob. The precise site of phosphorylation 
has not been determined, but LIMK1 Orb2A 
phosphorylation is supposed to induce a conformational 
change, leading to an increased Orb2A half-life, which can 
act as a seed to induce Orb2 oligomerization [56]. Whether 
the same regulation mechanism occurs in mammals is not 
yet known. 

Membrane-anchored Type 1- Matrix Metallo 
Proteinase (MT1-MMP) is a matrix-degrading protease, 
which is involved in the dissemination of carcinoma cells. 
It has recently been shown that MT1-MMP and LIMK1 
interact in cells through the cytoplasmic part of MT1-
MMP and that LIMK1 phosphorylates in vitro MT1-MMP 
at tyrosine 573. This finding confirms that LIMK is not 
a strict serine/threonine kinase, as well as previous data 
indicating that LIMK and MT1-MMP functionally interact 
[57]. It was further shown, using cells knocked down for 
LIMK1, LIMK2 or both, as well as using a LIMK specific 
inhibitors, that LIMK activity is required for MT1-MMP-
mediated matrix proteolysis [58]. 

Moreover, although both knockdown of LIMK1 and 
LIMK2 inhibit matrix degradation, depletion of LIMK1 
specifically affects cortactin association on MT1-MMP-
positive endosomes while LIMK2 knockdown specifically 
affects the invadopodial cortactin pool, suggesting 
non-redundant roles for LIMK1 and LIMK2 in matrix 
degradation and protein recruitment to invadopodia in 
breast tumor cells [58]. 

PHARMACOLOGICAL INHIBITORS 
OF LIMK: UNIQUE TOOLS FOR 
DECIPHERING LIMK FUNCTIONS AND 
POTENTIAL THERAPEUTICS FOR THE 
TREATMENT OF DIVERSE PATHOLOGIES

The reaction of phosphorylation catalyzed by 
kinases such as LIMK allows the cell to rapidly switch 
off or on the function of the substrates. Regarding 
LIMK, the relevant substrates regulate highly dynamic 
polymers such as actin microfilaments and microtubules. 
Microtubule and actin filament rearrangements typically 
occur over seconds, a time scale unreachable by the mean 
of genetic approaches. A clear image of the functions 

of LIMK needs thus appropriate tools. Small molecules 
such as pharmacological inhibitors are valuable probes 
to study dynamic biological processes. Generally acting 
within minutes or even seconds, they can provide a high 
degree of temporal control over protein function. As they 
are also often reversible, they allow both rapid inhibition 
and re-activation, when withdrawn. Moreover, small 
molecules permit dose-dependent control of biological 
functions. If cell-permeable, coupled with approaches 
such as videomicroscopy, small molecules can give 
important insights regarding LIMK functions in a cellular 
context. Indeed, small-molecule inhibitors have proven to 
be essential in dissecting mechanisms such as mitosis or 
cytokinesis [59].

Also, small-molecule inhibitors could offer some 
complementary advantages to LIMK knock down using 
RNA interference (RNAi). The comparison of their 
cellular effect to those of RNAi should help to decipher 
which LIMK functions rely on the kinase domain and 
which depend on other domains, such as the LIM and PDZ 
domains.

Moreover, RNAi approaches are not or poorly 
suitable for some specific cells such as platelets or 
neurons. Yet LIMK activity plays a central role in platelet 
maturation [41, 60] and activation [61] as well as in 
neuronal growth cone motility [4, 6, 62] and in synaptic 
plasticity [9, 44, 63-65].

Finally, LIMK inhibitors could be potential 
therapeutic agents as a deregulation of LIMK activity has 
been reported in several diseases including cancers and 
cancer cell migration/invasion [8, 29, 66-68], Alzheimer’s 
disease [69], schizophrenia [70], neurofibromatosis type 2 
[53], psoriatic epidermal lesions [71], primary pulmonary 
hypertension [72], allergic diseases [73], ocular hyper-
tension and glaucoma [74, 75], erectile dysfunction [76], 
HIV and other viral infections [77, 78].

Because of the therapeutic potential of LIMK1/ 
2 inhibitors, and because of their interest as tools to 
investigate LIMK functions, the number of reports of new 
LIMK inhibitors is steadily increasing (Tables 1A, 1B, 1C, 
1D).

The most studied inhibitor, LIMKi (also called 
BMS5 or compound 3) is the first that has been 
disclosed (compound #1, Table 1A). It was developed by 
BMS and belongs to a series of inhibitors based on an 
aminothiazole scaffold, that includes many compounds 
with off-target effects. For example many of these 
compounds depolymerize microtubules, independently 
of their effect on LIMK, which was responsible of their 
cytotoxicity [79]. Among this series, only LIMKi induces 
both cofilin dephosphorylation [29, 79] and microtubule 
stabilization [19, 29] in cells, although it induces a slight 
depolymerisation of microtubules when assayed in vitro 
on tubulin assembly [79]. 

Four years later, BMS described a new series of 
thiazole derivatives, as potent LIMK inhibitors (compound 
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#8, Table 1C) [80]. These cell-permeable compounds were 
found highly selective, as they inhibit only 8 additional 
kinases out of a panel of 307 kinases. The activity of these 
compounds regarding microtubule dynamics has not been 
reported.

Lexicon pharmaceuticals has also developed a 
LIMK inhibitor (compound #2, Table 1A, [75]) and a dual 
LIMK- ROCK inhibitor (compound #3, Table 1A,  [74]), 
that were planned to be used topically for the treatment 
of ocular hypertension and associated glaucoma. More 
recently, the same group revealed allosteric LIMK2 
inhibitors, based on a sulfonamide scaffold (compound 
#9, Table 1C). This new class of inhibitors appears to be 
highly specific for LIMK2. Their cell permeability, as well 
as their effect on the microtubule cytoskeleton, is however, 
not reported [81]. It has to be mentioned that apart of these 
latter compounds, other LIMK inhibitors are proven or 
predicted Type I inhibitors. 

Using a cell-based assay and by screening a diverse 
chemical library for its ability to modify microtubule 
dynamics, a pyridocarbazolone, Pyr1, was selected 
(compound #4, Table 1B). It was further discovered 
that this compound was a LIMK inhibitor. Although 
ATP-competitive, Pyr1 inhibits only LIMKs out of 110 
kinases tested. When applied on cells, this inhibitor 
stabilizes microtubules and, through inhibition of cofilin 
phosphorylation, blocks actin microfilament dynamics 
[19]. It was further shown that Pyr1 was active on 
paclitaxel sensitive and resistant tumors, while being 
well tolerated [19, 32]. Due to its four ring scaffold, this 
inhibitor is however poorly soluble, limiting its further 
pharmacological development.

Using a smart fluorescence complementation assay 
and by screening a small chemical library, a natural 
product, Damnacanthal (compound #6, Tables 1B) was 
found to be a cell-permeable LIMK inhibitor [7]. Yet, 
this compound irreversibly binds LIMKs. Moreover, 
subsequent studies demonstrated that this compound was 
a multi kinase inhibitor, with poor selectivity [82]. 

A LIMK2 inhibitor, T56-LIMKi (compound #5, 
Table 1B), was discovered through a computer-based 
procedure by Tel-Aviv University [83]. Although this 
cell permeable compound showed a high selectivity for 
LIMK2 versus LIMK1, its effect on other kinases has 
not been investigated. T56-LIMKi was further shown to 
inhibit the growth of pancreatic tumor cells in a mouse 
xenograft model [84].

Using a luciferase based assay of ATP consumption 
[85], several compounds were selected out of a 60, 000 
compound library by high throughput screening and 
optimized by researchers from the Beatson Institute in 
collaboration with Cancer Research Technology Discovery 
Laboratories, UK [26, 86]. These compounds (compound 
#11 and compound #12, Table 1D) appear to be cell 
permeable and to have an effect on actin and microtubule 
dynamics. Although active on LIMK in the nanomolar 

range, the selectivity of these compounds was variable, 
when assayed in the micromolar range, depending on the 
structure of the compounds. 

5, 6-substituted 4-aminothieno[2, 3-d]pyrimidines, 
selected from the same high throughput screening 
campaign, were also optimized by a group of scientists 
from Australia. They were found to inhibit LIMK1 in the 
low micromolar range (compound #7, Table 1D, [87]). 
The selectivity of these compounds is however unknown, 
as well as their activity in a cellular context. 

Recently, cell-permeable bis-aryl urea derivatives 
were discovered and optimized by chemists from the 
Scripps Research Institute in the US. These compounds 
inhibit potently LIMK. They appear to be selective for 
LIMK, but they were only assayed for they inhibitory 
effect on ROCK and JNK kinases (compound #10, Table 
1D, [88]).

Thus, the past 5 years have led to the discovery 
of several structurally different LIMK inhibitors with 
different characteristics, which may or may not be suitable, 
depending on their intended use. For instance, inhibitors 
designed to be used in cells for the understanding of the 
function of LIMK have to be both highly specific and 
cell permeable. The need of specificity is less critical for 
compounds intended to serve as pharmacological drugs, 
as multi-target kinases have proven to be more efficient in 
the treatment of cancer. In that latter case, the knowledge 
of the compound toxicity when administered to animals 
is crucial.

CONCLUSIONS

Located downstream of several signaling pathways 
LIMK occupies a strategic position. It integrates the 
upstream signals by regulating the dynamics of actin 
and, most probably, that of microtubules. Convergent 
data indicate that, indeed LIMK regulates microtubule 
dynamics. A molecular dissection of the mechanisms 
involved in that regulation is however essential to 
ascertain that control. LIMK is also able to regulate the 
degradation of the matrix by phosphorylating MT1-MMP 
and to control the activity of Aurora kinase A. 

Among the problems still unsolved are the 
knowledge of the respective role of each of the LIMKs 
and the understanding of how the activity of each kinase 
is differentially regulated. 

The development of optogenetics as well as the 
controlled genetic ablation of each kinase should help to 
solve these problems.

CONFLICTS OF INTEREST

I would like to mention that, as shareholders of 
Cellipse S.A.S., L.Lafanechère and R. Prudent disclose a 
potential conflict of interest.



Oncotarget41760www.impactjournals.com/oncotarget

REFERENCES

1. Manetti F. LIM kinases are attractive targets with many 
macromolecular partners and only a few small molecule 
regulators. Med Res Rev. 2012; 32:968–98.

2. Scott RW, Olson MF. LIM kinases: function, regulation and 
association with human disease. J Mol Med (Berl). 2007; 
85:555–68.

3. Nagata K, Ohashi K, Yang N, Mizuno K. The N-terminal 
LIM domain negatively regulates the kinase activity of 
LIM-kinase 1. Biochem J. 1999; 343:99–105.

4. Okano I, Hiraoka J, Otera H, Nunoue K, Ohashi K, Iwashita 
S, Hirai M, Mizuno K. Identification and characterization of 
a novel family of serine/threonine kinases containing two 
N-terminal LIM motifs. J Biol Chem. 1995; 270:31321–30.

5. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam 
S. The protein kinase complement of the human genome. 
Science. 2002; 298:1912–34.

6. Endo M, Ohashi K, Sasaki Y, Goshima Y, Niwa R, 
Uemura T, Mizuno K. Control of growth cone motility 
and morphology by LIM kinase and Slingshot via 
phosphorylation and dephosphorylation of cofilin. J 
Neurosci. 2003; 23:2527–37.

7. Ohashi K, Sampei K, Nakagawa M, Uchiumi N, Amanuma 
T, Aiba S, Oikawa M, Mizuno K. Damnacanthal, an 
effective inhibitor of LIM-kinase, inhibits cell migration 
and invasion. Mol Biol Cell. 2014; 25:828–40.

8. Manetti F. Recent findings confirm LIM domain kinases as 
emerging target candidates for cancer therapy. Curr Cancer 
Drug Targets. 2012; 12:543–60.

9. Cuberos H, Vallée B, Vourc’h P, Tastet J, Andres CR, 
Bénédetti H. Roles of LIM kinases in central nervous 
system function and dysfunction. FEBS Lett. 2015; 
589:3795–806.

10. Mali RS, Ramdas B, Ma P, Shi J, Munugalavadla V, Sims 
E, Wei L, Vemula S, Nabinger SC, Goodwin CB, Chan 
RJ, Traina F, Visconte V, et al. Rho kinase regulates the 
survival and transformation of cells bearing oncogenic 
forms of KIT, FLT3, and BCR-ABL. Cancer Cell. 2011; 
20:357–69.

11. Prudnikova TY, Rawat SJ, Chernoff J. Molecular pathways: 
targeting the kinase effectors of RHO-family GTPases. Clin 
Cancer Res. 2015; 21:24–29.

12. Galkin VE, Orlova A, Kudryashov DS, Solodukhin A, 
Reisler E, Schröder GF, Egelman EH. Remodeling of actin 
filaments by ADF/cofilin proteins. Proc Natl Acad Sci USA. 
2011; 108:20568–72.

13. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence 
DS, Condeelis JS. Cofilin promotes actin polymerization 
and defines the direction of cell motility. Science. 2004; 
304:743–46.

14. Bamburg JR. Proteins of the ADF/cofilin family: essential 
regulators of actin dynamics. Annu Rev Cell Dev Biol. 
1999; 15:185–230.

15. Gundersen GG, Kalnoski MH, Bulinski JC. Distinct 
populations of microtubules: tyrosinated and nontyrosinated 
alpha tubulin are distributed differently in vivo. Cell. 1984; 
38:779–89.

16. Paturle-Lafanechère L, Manier M, Trigault N, Pirollet F, 
Mazarguil H, Job D. Accumulation of delta 2-tubulin, a 
major tubulin variant that cannot be tyrosinated, in neuronal 
tissues and in stable microtubule assemblies. J Cell Sci. 
1994; 107:1529–43.

17. Honore S, Braguer D. Investigating microtubule dynamic 
instability using microtubule-targeting agents. Methods Mol 
Biol. 2011; 777:245–60.

18. Lieuvin A, Labbé JC, Dorée M, Job D. Intrinsic microtubule 
stability in interphase cells. J Cell Biol. 1994; 124:985–96.

19. Prudent R, Vassal-Stermann E, Nguyen CH, Pillet C, 
Martinez A, Prunier C, Barette C, Soleilhac E, Filhol 
O, Beghin A, Valdameri G, Honoré S, Aci-Sèche S, et 
al. Pharmacological inhibition of LIM kinase stabilizes 
microtubules and inhibits neoplastic growth. Cancer Res. 
2012; 72:4429–39.

20. Delphin C, Bouvier D, Seggio M, Couriol E, Saoudi 
Y, Denarier E, Bosc C, Valiron O, Bisbal M, Arnal I, 
Andrieux A. MAP6-F is a temperature sensor that directly 
binds to and protects microtubules from cold-induced 
depolymerization. J Biol Chem. 2012; 287:35127–38.

21. Florian S, Mitchison TJ. Anti-Microtubule Drugs. 
2016:403-421. https://doi.org/10.1007/978-1-4939-3542-
0_25.

22. Vassal E, Barette C, Fonrose X, Dupont R, Sans-Soleilhac 
E, Lafanechère L. Miniaturization and validation of 
a sensitive multiparametric cell-based assay for the 
concomitant detection of microtubule-destabilizing and 
microtubule-stabilizing agents. J Biomol Screen. 2006; 
11:377–89.

23. Sadoul K, Khochbin S. The growing landscape of tubulin 
acetylation: lysine 40 and many more. Biochem J. 2016; 
473:1859–68.

24. Gorovoy M, Niu J, Bernard O, Profirovic J, Minshall 
R, Neamu R, Voyno-Yasenetskaya T. LIM kinase 1 
coordinates microtubule stability and actin polymerization 
in human endothelial cells. J Biol Chem. 2005; 280:26533–
42.

25. Po’uha ST, Shum MS, Goebel A, Bernard O, Kavallaris M. 
LIM-kinase 2, a regulator of actin dynamics, is involved 
in mitotic spindle integrity and sensitivity to microtubule-
destabilizing drugs. Oncogene. 2010; 29:597–607.

26. Mardilovich K, Baugh M, Crighton D, Kowalczyk D, 
Gabrielsen M, Munro J, Croft DR, Lourenco F, James D, 
Kalna G, McGarry L, Rath O, Shanks E, et al. LIM kinase 
inhibitors disrupt mitotic microtubule organization and 
impair tumor cell proliferation. Oncotarget. 2015; 6:38469–
86. doi: 10.18632/oncotarget.6288.

27. Bhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, 
Andrews J, McClellan S, Carter JE, Singh AP. CXCL12/



Oncotarget41761www.impactjournals.com/oncotarget

CXCR4 signaling counteracts docetaxel-induced 
microtubule stabilization via p21-activated kinase 
4-dependent activation of LIM domain kinase 1. Oncotarget. 
2014; 5:11490–500. doi: 10.18632/oncotarget.2571

28. Oku Y, Tareyanagi C, Takaya S, Osaka S, Ujiie H, Yoshida 
K, Nishiya N, Uehara Y. Multimodal effects of small 
molecule ROCK and LIMK inhibitors on mitosis, and 
their implication as anti-leukemia agents. PLoS One. 2014; 
9:e92402.

29. Mardilovich K, Gabrielsen M, McGarry L, Orange C, 
Patel R, Shanks E, Edwards J, Olson MF. Elevated LIM 
kinase 1 in nonmetastatic prostate cancer reflects its role 
in facilitating androgen receptor nuclear translocation. Mol 
Cancer Ther. 2015; 14:246–58.

30. Perry NA, Vitolo MI, Martin SS, Kontrogianni-
Konstantopoulos A. Loss of the obscurin-RhoGEF 
downregulates RhoA signaling and increases microtentacle 
formation and attachment of breast epithelial cells. 
Oncotarget. 2014; 5:8558–68. doi: 10.18632/
oncotarget.2338

31. Ray S, Fanti JA, Macedo DP, Larsen M. LIM kinase 
regulation of cytoskeletal dynamics is required for salivary 
gland branching morphogenesis. Mol Biol Cell. 2014; 
25:2393–407.

32. Prunier C, Josserand V, Vollaire J, Beerling E, Petropoulos 
C, Destaing O, Montemagno C, Hurbin A, Prudent R, de 
Koning L, Kapur R, Cohen PA, Albiges-Rizo C, et al. LIM 
Kinase Inhibitor Pyr1 Reduces the Growth and Metastatic 
Load of Breast Cancers. Cancer Res. 2016; 76:3541–52.

33. Sumi T, Hashigasako A, Matsumoto K, Nakamura T. 
Different activity regulation and subcellular localization of 
LIMK1 and LIMK2 during cell cycle transition. Exp Cell 
Res. 2006; 312:1021–30.

34. Heng YW, Lim HH, Mina T, Utomo P, Zhong S, Lim CT, 
Koh CG. TPPP acts downstream of RhoA-ROCK-LIMK2 
to regulate astral microtubule organization and spindle 
orientation. J Cell Sci. 2012; 125:1579–90.

35. Schofield AV, Steel R, Bernard O. Rho-associated coiled-
coil kinase (ROCK) protein controls microtubule dynamics 
in a novel signaling pathway that regulates cell migration. J 
Biol Chem. 2012; 287:43620–29.

36. Kaji N, Muramoto A, Mizuno K. LIM kinase-mediated 
cofilin phosphorylation during mitosis is required for 
precise spindle positioning. J Biol Chem. 2008; 283:4983–
92.

37. Acevedo K, Li R, Soo P, Suryadinata R, Sarcevic B, 
Valova VA, Graham ME, Robinson PJ, Bernard O. The 
phosphorylation of p25/TPPP by LIM kinase 1 inhibits 
its ability to assemble microtubules. Exp Cell Res. 2007; 
313:4091–106.

38. Fourest-Lieuvin A, Peris L, Gache V, Garcia-Saez I, 
Juillan-Binard C, Lantez V, Job D. Microtubule regulation 
in mitosis: tubulin phosphorylation by the cyclin-dependent 
kinase Cdk1. Mol Biol Cell. 2006; 17:1041–50.

39. Ritchey L, Ottman R, Roumanos M, Chakrabarti R. A 
functional cooperativity between Aurora A kinase and LIM 
kinase1: implication in the mitotic process. Cell Cycle. 
2012; 11:296–309.

40. Johnson EO, Chang KH, Ghosh S, Venkatesh C, Giger K, 
Low PS, Shah K. LIMK2 is a crucial regulator and effector 
of Aurora-A-kinase-mediated malignancy. J Cell Sci. 2012; 
125:1204–16.

41. Kosoff RE, Aslan JE, Kostyak JC, Dulaimi E, Chow 
HY, Prudnikova TY, Radu M, Kunapuli SP, McCarty 
OJ, Chernoff J. Pak2 restrains endomitosis during 
megakaryopoiesis and alters cytoskeleton organization. 
Blood. 2015; 125:2995–3005.

42. Lorenzo C, Liao Q, Hardwicke MA, Ducommun B. 
Pharmacological inhibition of aurora-A but not aurora-B 
impairs interphase microtubule dynamics. Cell Cycle. 2009; 
8:1733–37.

43. Allen JJ, Li M, Brinkworth CS, Paulson JL, Wang 
D, Hübner A, Chou WH, Davis RJ, Burlingame AL, 
Messing RO, Katayama CD, Hedrick SM, Shokat KM. A 
semisynthetic epitope for kinase substrates. Nat Methods. 
2007; 4:511–16.

44. Yang EJ, Yoon JH, Min DS, Chung KC. LIM kinase 1 
activates cAMP-responsive element-binding protein during 
the neuronal differentiation of immortalized hippocampal 
progenitor cells. J Biol Chem. 2004; 279:8903–10.

45. Todorovski Z, Asrar S, Liu J, Saw NM, Joshi K, Cortez 
MA, Snead OC 3rd, Xie W, Jia Z. LIMK1 regulates long-
term memory and synaptic plasticity via the transcriptional 
factor CREB. Mol Cell Biol. 2015; 35:1316–28.

46. Cheng JC, Esparza S, Sandoval S, Shankar D, Fu C, 
Sakamoto KM. Potential role of CREB as a prognostic 
marker in acute myeloid leukemia. Future Oncol. 2007; 
3:475–80.

47. Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, 
Gill A, Rao NP, Landaw EM, Sakamoto KM. The role of 
CREB as a proto-oncogene in hematopoiesis and in acute 
myeloid leukemia. Cancer Cell. 2005; 7:351–62.

48. Pigazzi M, Ricotti E, Germano G, Faggian D, Aricò M, 
Basso G. cAMP response element binding protein (CREB) 
overexpression CREB has been described as critical for 
leukemia progression. Haematologica. 2007; 92:1435–37.

49. Decressac M, Volakakis N, Björklund A, Perlmann T. 
NURR1 in Parkinson disease—from pathogenesis to 
therapeutic potential. Nat Rev Neurol. 2013; 9:629–36.

50. Hlavanda E, Klement E, Kókai E, Kovács J, Vincze O, 
Tökési N, Orosz F, Medzihradszky KF, Dombrádi V, 
Ovádi J. Phosphorylation blocks the activity of tubulin 
polymerization-promoting protein (TPPP): identification 
of sites targeted by different kinases. J Biol Chem. 2007; 
282:29531–39.

51. Pröschel C, Blouin MJ, Gutowski NJ, Ludwig R, Noble 
M. Limk1 is predominantly expressed in neural tissues and 
phosphorylates serine, threonine and tyrosine residues in 



Oncotarget41762www.impactjournals.com/oncotarget

vitro. Oncogene. 1995; 11:1271–81.
52. Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno 

K. MAPKAPK-2-mediated LIM-kinase activation is critical 
for VEGF-induced actin remodeling and cell migration. 
EMBO J. 2006; 25:713–26.

53. Petrilli A, Copik A, Posadas M, Chang LS, Welling DB, 
Giovannini M, Fernández-Valle C. LIM domain kinases as 
potential therapeutic targets for neurofibromatosis type 2. 
Oncogene. 2014; 33:3571–82.

54. Chakrabarti R, Jones JL, Oelschlager DK, Tapia T, Tousson 
A, Grizzle WE. Phosphorylated LIM kinases colocalize 
with gamma-tubulin in centrosomes during early stages of 
mitosis. Cell Cycle. 2007; 6:2944–52.

55. Krüttner S, Traunmüller L, Dag U, Jandrasits K, Stepien B, 
Iyer N, Fradkin LG, Noordermeer JN, Mensh BD, Keleman 
K. Synaptic Orb2A Bridges Memory Acquisition and Late 
Memory Consolidation in Drosophila. Cell Reports. 2015; 
11:1953–65.

56. Si K, Kandel ER. The Role of Functional Prion-Like 
Proteins in the Persistence of Memory. Cold Spring Harb 
Perspect Biol. 2016; 8:a021774.

57. Tapia T, Ottman R, Chakrabarti R. LIM kinase1 modulates 
function of membrane type matrix metalloproteinase 1: 
implication in invasion of prostate cancer cells. Mol Cancer. 
2011; 10:6.

58. Lagoutte E, Villeneuve C, Lafanechère L, Wells CM, 
Jones GE, Chavrier P, Rossé C. LIMK Regulates Tumor-
Cell Invasion and Matrix Degradation Through Tyrosine 
Phosphorylation of MT1-MMP. Sci Rep. 2016; 6:24925.

59. Peterson JR, Mitchison TJ. Small molecules, big impact: a 
history of chemical inhibitors and the cytoskeleton. Chem 
Biol. 2002; 9:1275–85.

60. Kauskot A, Poirault-Chassac S, Adam F, Muczynski V, 
Aymé G, Casari C, Bordet JC, Soukaseum C, Rothschild 
C, Proulle V, Pietrzyk-Nivau A, Berrou E, Christophe 
OD, et al. LIM kinase/cofilin dysregulation promotes 
macrothrombocytopenia in severe von Willebrand disease-
type 2B. JCI Insight. 2016; 1:e88643.

61. Pandey D, Goyal P, Bamburg JR, Siess W. Regulation of 
LIM-kinase 1 and cofilin in thrombin-stimulated platelets. 
Blood. 2006; 107:575–83.

62. Montani L, Gerrits B, Gehrig P, Kempf A, Dimou L, 
Wollscheid B, Schwab ME. Neuronal Nogo-A modulates 
growth cone motility via Rho-GTP/LIMK1/cofilin in the 
unlesioned adult nervous system. J Biol Chem. 2009; 
284:10793–807.

63. Meng Y, Zhang Y, Tregoubov V, Falls DL, Jia Z. 
Regulation of spine morphology and synaptic function by 
LIMK and the actin cytoskeleton. Rev Neurosci. 2003; 
14:233–40.

64. Liu A, Zhou Z, Dang R, Zhu Y, Qi J, He G, Leung C, Pak 
D, Jia Z, Xie W. Neuroligin 1 regulates spines and synaptic 
plasticity via LIMK1/cofilin-mediated actin reorganization. 
J Cell Biol. 2016; 212:449–63.

65. Wang W, Townes-Anderson E. Lim kinase, a bi-functional 
effector in injury-induced structural plasticity of synapses. 
Neural Regen Res. 2016; 11:1029–32.

66. Shibue T, Brooks MW, Weinberg RA. An integrin-
linked machinery of cytoskeletal regulation that enables 
experimental tumor initiation and metastatic colonization. 
Cancer Cell. 2013; 24:481–98.

67. Wang W, Eddy R, Condeelis J. The cofilin pathway in 
breast cancer invasion and metastasis. Nat Rev Cancer. 
2007; 7:429–40.

68. Park JB, Agnihotri S, Golbourn B, Bertrand KC, Luck A, 
Sabha N, Smith CA, Byron S, Zadeh G, Croul S, Berens M, 
Rutka JT. Transcriptional profiling of GBM invasion genes 
identifies effective inhibitors of the LIM kinase-Cofilin 
pathway. Oncotarget. 2014; 5:9382–95. doi: 10.18632/
oncotarget.2412

69. Heredia L, Helguera P, de Olmos S, Kedikian G, Solá 
Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio 
J, Cáceres A, Lorenzo A. Phosphorylation of actin-
depolymerizing factor/cofilin by LIM-kinase mediates 
amyloid beta-induced degeneration: a potential mechanism 
of neuronal dystrophy in Alzheimer’s disease. J Neurosci. 
2006; 26:6533–42.

70. Yin DM, Chen YJ, Lu YS, Bean JC, Sathyamurthy A, Shen 
C, Liu X, Lin TW, Smith CA, Xiong WC, Mei L. Reversal 
of behavioral deficits and synaptic dysfunction in mice 
overexpressing neuregulin 1. Neuron. 2013; 78:644–57.

71. Honma M, Shibuya T, Fujii M, Iinuma S, Ishida-Yamamoto 
A. Aberrant LIM-kinase 1 expression in hyperproliferative 
psoriatic epidermis. J Dermatol. 2017; 44:91–92.

72. Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, 
Shannon M, He W, Das S, Massague J, Bernard O. Direct 
signaling by the BMP type II receptor via the cytoskeletal 
regulator LIMK1. J Cell Biol. 2003; 162:1089–98.

73. Kapur R, Shi J, Ghosh J, Munugalavadla V, Sims E, 
Martin H, Wei L, Mali RS. ROCK1 via LIM kinase 
regulates growth, maturation and actin based functions in 
mast cells. Oncotarget. 2016; 7:16936–47. doi: 10.18632/
oncotarget.7851.

74. Harrison BA, Almstead ZY, Burgoon H, Gardyan M, 
Goodwin NC, Healy J, Liu Y, Mabon R, Marinelli B, 
Samala L, Zhang Y, Stouch TR, Whitlock NA, et al. 
Discovery and Development of LX7101, a Dual LIM-
Kinase and ROCK Inhibitor for the Treatment of Glaucoma. 
ACS Med Chem Lett. 2014; 6:84–88.

75. Harrison BA, Whitlock NA, Voronkov MV, Almstead 
ZY, Gu KJ, Mabon R, Gardyan M, Hamman BD, Allen J, 
Gopinathan S, McKnight B, Crist M, Zhang Y, et al. Novel 
class of LIM-kinase 2 inhibitors for the treatment of ocular 
hypertension and associated glaucoma. J Med Chem. 2009; 
52:6515–18.

76. Cui K, Luan Y, Wang T, Zhuan L, Rao K, Wang SG, Ye 
ZQ, Liu JH, Wang DW. Reduced corporal fibrosis to protect 
erectile function by inhibiting the Rho-kinase/LIM-kinase/



Oncotarget41763www.impactjournals.com/oncotarget

cofilin pathway in the aged transgenic rat harboring human 
tissue kallikrein 1. Asian J Androl. 2017; 19:67–72.

77. Manetti F. HIV-1 proteins join the family of LIM kinase 
partners. New roads open up for HIV-1 treatment. Drug 
Discov Today. 2012; 17:81–88.

78. Wen X, Ding L, Wang JJ, Qi M, Hammonds J, Chu 
H, Chen X, Hunter E, Spearman P. ROCK1 and LIM 
kinase modulate retrovirus particle release and cell-cell 
transmission events. J Virol. 2014; 88:6906–21.

79. Ross-Macdonald P, de Silva H, Guo Q, Xiao H, Hung 
CY, Penhallow B, Markwalder J, He L, Attar RM, Lin 
TA, Seitz S, Tilford C, Wardwell-Swanson J, Jackson D. 
Identification of a nonkinase target mediating cytotoxicity 
of novel kinase inhibitors. Mol Cancer Ther. 2008; 7:3490–
98.

80. He L, Seitz SP, Trainor GL, Tortolani D, Vaccaro W, 
Poss M, Tarby CM, Tokarski JS, Penhallow B, Hung CY, 
Attar R, Lin TA. Modulation of cofilin phosphorylation by 
inhibition of the Lim family kinases. Bioorg Med Chem 
Lett. 2012; 22:5995–98.

81. Goodwin NC, Cianchetta G, Burgoon HA, Healy J, Mabon 
R, Strobel ED, Allen J, Wang S, Hamman BD, Rawlins 
DB. Discovery of a Type III Inhibitor of LIM Kinase 2 That 
Binds in a DFG-Out Conformation. ACS Med Chem Lett. 
2014; 6:53–57.

82. García-Vilas JA, Pino-Ángeles A, Martínez-Poveda 
B, Quesada AR, Medina MÁ. The noni anthraquinone 
damnacanthal is a multi-kinase inhibitor with potent anti-
angiogenic effects. Cancer Lett. 2017; 385:1–11.

83. Mashiach-Farkash E, Rak R, Elad-Sfadia G, Haklai 
R, Carmeli S, Kloog Y, Wolfson HJ. Computer-based 
identification of a novel LIMK1/2 inhibitor that synergizes 
with salirasib to destabilize the actin cytoskeleton. 
Oncotarget. 2012; 3:629–39. doi: 10.18632/oncotarget.525

84. Rak R, Haklai R, Elad-Tzfadia G, Wolfson HJ, Carmeli S, 
Kloog Y. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor 
Growth in a mouse xenograft model. Oncoscience. 2014; 
1:39–48. doi: 10.18632/oncoscience.7

85. Mezna M, Wong AC, Ainger M, Scott RW, Hammonds T, 
Olson MF. Development of a high-throughput screening 
method for LIM kinase 1 using a luciferase-based assay of 
ATP consumption. J Biomol Screen. 2012; 17:460–68. 

86. Charles MD, Brookfield JL, Ekwuru TC, Stockley M, 
Dunn J, Riddick M, Hammonds T, Trivier E, Greenland 
G, Wong AC, Cheasty A, Boyd S, Crighton D, Olson MF. 
Discovery, Development, and SAR of Aminothiazoles as 
LIMK Inhibitors with Cellular Anti-Invasive Properties. J 
Med Chem. 2015; 58:8309–13.

87. Sleebs BE, Nikolakopoulos G, Street IP, Falk H, Baell 
JB. Identification of 5,6-substituted 4-aminothieno[2,3-d]
pyrimidines as LIMK1 inhibitors. Bioorg Med Chem Lett. 
2011; 21:5992–94.

88. Yin Y, Zheng K, Eid N, Howard S, Jeong JH, Yi F, Guo J, 
Park CM, Bibian M, Wu W, Hernandez P, Park H, Wu Y, 
et al. Bis-aryl urea derivatives as potent and selective LIM 
kinase (Limk) inhibitors. J Med Chem. 2015; 58:1846–61.

89. Li R, Doherty J, Antonipillai J, Chen S, Devlin M, Visser 
K, Baell J, Street I, Anderson RL, Bernard O. LIM kinase 
inhibition reduces breast cancer growth and invasiveness 
but systemic inhibition does not reduce metastasis in mice. 
Clin Exp Metastasis. 2013; 30:483–95.

90. Scott RW, Hooper S, Crighton D, Li A, König I, Munro 
J, Trivier E, Wickman G, Morin P, Croft DR, Dawson J, 
Machesky L, Anderson KI, et al. LIM kinases are required 
for invasive path generation by tumor and tumor-associated 
stromal cells. J Cell Biol. 2010; 191:169–85.


