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ABSTRACT
Wilms’ tumor is the most common childhood renal malignancy. A genome-wide 

association study identified LIM domain only 1 (LMO1) as having oncogenic potential. 
We examined the associations between LMO1 gene polymorphisms and susceptibility 
to Wilms’ tumor. In this hospital-based, case-control study, we recruited 145 children 
with Wilms’ tumor and 531 cancer-free children. Four polymorphisms (rs110419 
A>G, rs4758051 G>A, rs10840002 A>G and rs204938 A>G) were genotyped using 
Taqman methodology. Odds ratios (ORs) and 95% confidence intervals (CIs) were 
calculated to measure the associations between selected polymorphisms and Wilms’ 
tumor susceptibility. Only rs110419 AG was found to be protective against Wilms’ 
tumor (adjusted OR = 0.62, 95% CI = 0.41–0.94, P = 0.024) when compared to 
rs110419 AA. Wilms’ tumor risk was markedly greater in children with 1–4 risk 
genotypes (nucleotide alterations) than in those with no risk genotypes (adjusted 
OR = 1.84, 95% CI = 1.25–2.69, P = 0.002). In a stratified analysis, the protective 
effect of rs110419 AG/GG was predominant in males. The association of 1–4 risk 
genotypes with Wilms’ tumor risk was limited to subgroups of children who were >18 
months old, female, and in clinical stages III+IV. Thus, LMO1 gene polymorphisms 
may contribute to Wilms’ tumor risk, but this conclusion should be validated in other 
populations and larger studies.

INTRODUCTION 

Wilms’ tumor, also known as nephroblastoma, is 
the most common renal malignancy in children [1, 2]. The 
incidence of Wilms’ tumor is about 1 in 10,000 children 
of Western descent < 15 years of age [3]. Wilms’ tumor 
is less prevalent in China than in Western countries, with 
an incidence of ~3.3 per million [4]. Dramatic progress 
has been made in the treatment of children with Wilms’ 
tumor, with overall survival rates exceeding 90% in 2009, 
compared with about 30% in the 1930s [5, 6]. This success 
has mainly been due to multidisciplinary therapy and multi-
institutional clinical trials [7, 8]. However, about 25% of 

affected children cannot be cured by current treatments, 
and approximately 50% of these children will die of Wilms’ 
tumor despite aggressive re-treatment [9, 10].

Wilms’ tumor appears to arise from nephrogenic 
rests, lesions that form when mesenchymal tissue fails to 
differentiate to nephrons [11]. Although there have been 
major advances in understanding the pathogenesis of 
Wilms’ tumor, the molecular mechanisms responsible for 
this differentiation failure are not completely understood. 
Chromosomal abnormalities are known to promote the 
formation of Wilms’ tumor by stimulating the uncontrolled 
growth of these undifferentiated cells [12, 13]. While a 
substantial proportion of Wilms’ tumor cases are sporadic 
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and unilateral, 1–2% are hereditary [14–16]. Thus, genetic 
factors may also be involved in the predisposition to and 
aggressiveness of Wilms’ tumor [17, 18].

The Wilms’ tumor gene was the first identified 
suppressor of Wilms’ tumor development [19]. Thereafter, 
several susceptibility genes were found predispose 
individuals to Wilms’ tumor, such as FWT1 [20], FWT2 
[21], BRCA2 [22], TP53 [23, 24], BARD1 [25] and 
CTR9 [26]. The LIM domain only 1 (LMO1) gene is 
located at 11p15, and encodes a cysteine-rich two-LIM-
domain transcriptional regulator. LMO1, along with three 
paralogues (LMO2, LMO3 and LMO4), is a member 
of the LMO gene superfamily. LMO1 is abundantly 
expressed in the nervous system and has been implicated 
in its development [27]. Overexpression of LMO1 was 
initially found in patients with T-cell acute lymphoblastic 
leukemia [28]. Although numerous subsequent studies 
have demonstrated the association of this critical gene 
with neuroblastoma risk [29–31], none have investigated 
the associations between LMO1 single nucleotide 
polymorphisms (SNPs) and Wilms’ tumor risk. 

Four polymorphisms in LMO1 (rs110419 A>G, 
rs4758051 G>A, rs10840002 A>G and rs204938 A>G) 
were found to be associated with the risk of several cancers 
in a genome-wide association study (GWAS) [29, 32]. We 
speculated that these polymorphisms might also contribute to 
the risk of Wilms’ tumor. Thus, we examined the associations 
between these LMO1 polymorphisms and Wilms’ tumor risk 
in Southern Chinese children.

RESULTS

Population characteristics

In total, 145 Wilms’ tumor patients and 531 
cancer-free controls were included in our analysis. 
Their demographic characteristics are presented in 
Supplementary Table 1. The mean age was 26.17 ± 21.48 
months for the Wilms’ tumor patients and 29.73 ± 24.86 
months for controls. The distributions of age (P = 0.725) 
and gender (P = 0.956) did not differ significantly between 
the cases and controls. Regarding the clinical stages of the 
cases, 4 (2.76%), 49 (33.79%), 50 (34.48%), 33 (22.76%), 
and 9 (6.21%) cases were classified into stages I-IV and 
‘not available’, respectively, in accordance with National 
Wilms Tumor Study-5 criteria [33].

Associations between LMO1 gene 
polymorphisms and Wilms’ tumor risk

We then genotyped the Wilms’ tumor patients and 
cancer-free controls for four LMO1 gene polymorphisms 
(rs110419 A>G, rs4758051 G>A, rs10840002 A>G and 
rs204938 A>G). The LMO1 genotype frequencies and 
their associations with Wilms’ tumor risk are listed in 
Table 1. The observed genotype frequencies among the 

controls were all in agreement with Hardy-Weinberg 
equilibrium. Among the four polymorphisms, only 
rs1140419 A>G was associated with Wilms’ tumor risk 
– the risk was lower for children with the AG genotype 
than for those with the AA genotype (adjusted odds ratio 
[OR] = 0.62, 95% confidence interval [CI] = 0.41–0.94, 
P = 0.024). We further examined the joint effect of these 
risk genotypes on Wilms’ tumor susceptibility. The risk 
for developing Wilms’ tumor was significantly greater in 
individuals carrying one to four risk genotypes (nucleotide 
alterations) than in those with no risk genotypes (adjusted 
OR = 1.84, 95% CI = 1.25–2.69, P = 0.002).

Stratification analysis

We further evaluated the relationship between the 
LMO1 risk genotypes and Wilms’ tumor susceptibility in 
subjects stratified by age, gender, and clinical stage (Table 2). 
The stratification analysis indicated that the rs110419 AG/
GG genotype was more likely to reduce Wilms’ tumor 
risk in males (crude OR = 0.60, 95% CI = 0.36–0.996,  
P = 0.048), but this association disappeared after adjustment 
for age and gender (adjusted OR = 0.61, 95% CI = 0.36–
1.01, P = 0.057). No significant associations between 
rs110419 A>G and Wilms’ tumor risk were observed in the 
age or clinical-stage subgroups. The stratification analysis 
also indicated that the association of one to four risk 
genotypes with increased Wilms’ tumor risk was limited 
to the subjects who were >18 months old (adjusted OR = 
2.69, 95% CI = 1.57–4.61, P = 0.0003), female (adjusted 
OR = 2.67, 95% CI = 1.47–4.85, P = 0.001), and in clinical 
stages III+IV (adjusted OR = 2.16, 95% CI = 1.31–3.55, 
P = 0.002).

Haplotype analysis and false-positive report 
probability (FPRP) analysis

The inferred haplotypes for the LMO1 gene (in the 
order of rs110419, rs4758051, rs10840002 and rs204938) 
and their associations with Wilms’ tumor risk are shown 
in Table 3. Wilms’ tumor risk was greater in GGAG 
haplotype carriers (OR = 3.23, 95% CI = 1.26–8.26,  
P = 0.014) than in GGAA haplotype carriers. Likewise, 
the GGGA haplotype was also associated with greater 
Wilms’ tumor risk than GGAA (OR = 3.46, 95% CI = 
1.46–8.18, P = 0.005).

In the FPRP analysis (Table 4), due to the small 
sample size, nearly all of the significant findings 
disappeared at a prior probability level of 0.1 and an FPRP 
threshold of 0.2, except for the increased Wilms’ tumor risk 
in carriers of one to four risk genotypes (FPRP = 0.099).

DISCUSSION

In the present hospital-based case-control study 
of 145 children with Wilms’ tumor and 531 cancer-free 
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controls, we investigated the associations of four GWAS-
identified LMO1 gene polymorphisms with Wilms’ tumor 
susceptibility. We discovered that rs110419 A>G was 
associated with Wilms’ tumor susceptibility in a Southern 
Chinese population. To the best of our knowledge, this is 
the first report of an association between a LMO1 gene 
polymorphism and Wilms’ tumor susceptibility in Chinese 
children.

There is overwhelming evidence that LMO1 is a 
critical determinant of cancer susceptibility. In a GWAS 

conducted among individuals of European descent, Wang 
et al. discovered that four genetic variants of LMO1 
(rs110419 A>G, rs4758051 G>A, rs10840002 A>G 
and rs204938 A>G) contributed to the tumorigenesis of 
neuroblastoma [29]. Subsequently, this relationship was 
confirmed in four other epidemiological studies among 
people of different ethnicities [30, 32, 34, 35]. Beuten 
et al. identified an association between another genetic 
variant (rs442264 A>G) in the LMO1 gene and acute 
lymphoblastic leukemia susceptibility in a population of 

Table 1: Associations between LMO1 gene polymorphisms and Wilms’ tumor susceptibility
Genotype Cases

(N = 143)
Controls
(N = 531)

Pa Crude OR
(95% CI)

P Adjusted OR
(95% CI) b

Pb

rs110419 (HWE = 0.248)
 AA 55 (38.46) 159 (29.94) 1.00 1.00
 AG 59 (41.26) 275 (51.79) 0.62 (0.41–0.94) 0.024 0.62 (0.41–0.94) 0.024
 GG 29 (20.28) 97 (18.27) 0.86 (0.52–1.45) 0.579 0.87 (0.52–1.46) 0.605
 Additive 0.070 0.87 (0.67–1.14) 0.323 0.88 (0.67–1.15) 0.335
 Dominant 88 (61.54) 372 (70.06) 0.055 0.68 (0.47–1.01) 0.053 0.68 (0.47–1.01) 0.053
 Recessive 114 (81.73) 434 (81.73) 0.587 1.14 (0.72–1.81) 0.584 1.15 (0.72–1.83) 0.554
rs4758051 (HWE = 0.199)
 GG 52 (36.36) 194 (36.53) 1.00 1.00
 AG 64 (44.76) 242 (45.57) 0.99 (0.65–1.49) 0.949 0.98 (0.65–1.49) 0.936
 AA 27 (18.88) 95 (17.89) 1.06 (0.63–1.79) 0.827 1.05 (0.62–1.77) 0.863
 Additive 0.962 1.02 (0.79–1.32) 0.863 1.02 (0.79–1.32) 0.898
 Dominant 91 (63.64) 337 (63.47) 0.970 1.01 (0.69–1.48) 0.970 1.00 (0.68–1.47) 0.995
 Recessive 116 (81.12) 436 (82.11) 0.786 1.07 (0.67–1.72) 0.785 1.06 (0.66–1.70) 0.818
rs10840002 (HWE = 0.070)
 AA 46 (32.17) 182 (34.27) 1.00 1.00
 AG 62 (43.36) 240 (45.20) 1.02 (0.67–1.57) 0.920 1.02 (0.67–1.57) 0.929
 GG 35 (24.48) 109 (20.53) 1.27 (0.77–2.09) 0.348 1.26 (0.77–2.08) 0.362
 Additive 0.597 1.12 (0.87–1.44) 0.381 1.12 (0.87–1.44) 0.395
 Dominant 97 (67.83) 349 (65.73) 0.635 1.10 (0.74–1.63) 0.637 1.10 (0.74–1.63) 0.650
 Recessive 108 (75.52) 422 (79.47) 0.312 1.26 (0.81–1.94) 0.307 1.25 (0.81–1.93) 0.319
rs204938 (HWE = 0.153)
 AA 94 (65.73) 354 (66.67) 1.00 1.00
 AG 42 (29.37) 165 (31.07) 0.96 (0.64–1.44) 0.839 0.96 (0.64–1.44) 0.830
 GG 7 (4.90) 12 (2.26) 2.20 (0.84–5.73) 0.108 2.20 (0.84–5.75) 0.109
 Additive 0.280 1.13 (0.81–1.58) 0.481 1.13 (0.80–1.58) 0.487
 Dominant 49 (34.27) 177 (33.33) 0.834 1.04 (0.71–1.54) 0.833 1.04 (0.70–1.54) 0.842
 Recessive 136 (95.10) 519 (97.74) 0.114 2.23 (0.86–5.76) 0.099 2.23 (0.86–5.78) 0.099
Combined effect of risk genotypes
 0 51 (35.66) 268 (50.47) 1.00 1.00
 1–4 92 (64.34) 263 (49.53) 0.002 1.84 (1.25–2.69) 0.002 1.84 (1.25–2.69) 0.002

OR: odds ratio; CI: confidence interval; HWE: Hardy–Weinberg equilibrium.
aχ2 test for genotype distributions between Wilms’ tumor patients and controls.
bAdjusted for age and gender.



Oncotarget50668www.impactjournals.com/oncotarget

Caucasian children (163 cases and 251 controls) [36]. 
Recently, Oldridge et al. found that the rs2168101 G>T 
polymorphism in LMO1 predisposed individuals to 
neuroblastoma. The authors also performed biological 
function studies to elucidate the oncogenic role of this 
polymorphism in tumor cells [37].

Despite the growing body of research demonstrating 
the associations of LMO1 gene variants with cancer 
susceptibility, until now, no study had investigated the 
relationship between LMO1 polymorphisms and Wilms’ 
tumor risk. Here, we performed an epidemiologic study on 

the associations between four LMO1 gene polymorphisms 
and Wilms’ tumor risk in 145 affected children and 531 
healthy children. We found that the rs110419 AG genotype 
reduced Wilms’ tumor risk in the overall analysis, while 
we did not detect significant associations between the 
other three polymorphisms and Wilms’ tumor risk. 
However, we found that the predisposition to Wilms’ 
tumor was significantly greater in children with one to 
four risk genotypes than in those with no risk genotypes. 
This relationship was significant in children who were 
> 18 months old, female, and in clinical stages III+IV, but 

Table 2: Stratification analysis of the associations between risk genotypes and Wilms’ tumor 
susceptibility

Variables rs110419
(cases/controls) OR P Adjusted ORa Pa Risk genotypes

(cases/controls) OR P Adjusted OR a Pa

AA AG/GG (95% CI) (95% CI) 0 1–4 (95% CI) (95% CI)

Age, months

≤18 24/74 41/159 0.80 (0.45–1.41) 0.433 0.80 (0.45–1.41) 0.434 28/110 37/123 1.18 (0.68–2.06) 0.555 1.17 (0.67–2.04) 0.575

>18 31/85 47/213 0.61 (0.36–1.02) 0.057 0.61 (0.36–1.02) 0.059 23/158 55/140 2.70 (1.58–4.62) 0.0003 2.69 (1.57–4.61) 0.0003

Gender

Female 23/73 41/160 0.81 (0.46–1.45) 0.486 0.81 (0.45–1.44) 0.468 19/123 45/110 2.65 (1.46–4.80) 0.001 2.67 (1.47–4.85) 0.001

Male 32/86 47/212 0.60 (0.36–0.996) 0.048 0.61 (0.36–1.01) 0.057 32/145 47/153 1.39 (0.84–2.30) 0.198 1.37 (0.82–2.26) 0.227

Clinical stages

I+II 22/159 31/372 0.60 (0.34–1.07) 0.085 0.61 (0.34–1.08) 0.091 23/268 30/263 1.33 (0.75–2.35) 0.327 1.31 (0.74–2.33) 0.358

III+IV 28/159 53/372 0.81 (0.49–1.33) 0.401 0.81 (0.49–1.32) 0.396 26/268 55/263 2.16 (1.31–3.54) 0.002 2.16 (1.31–3.55) 0.002

 aAdjusted for age and gender.
OR, odds ratio. CI, confidence interval.

Table 3: The frequencies of inferred LMO1 gene haplotypes based on observed genotypes, and 
their associations with Wilms’ tumor susceptibility

Haplotypesa Cases
(n = 286)

Controls
(n = 1062)

Crude OR
(95% CI)

P Adjusted ORb

 (95% CI)
Pb

GGAA 53 (18.53) 276 (25.99) 1.00 1.00
GGAG 8 (2.80) 12 (1.13) 3.23 (1.26–8.26) 0.014 3.23 (1.26–8.28) 0.015
GGGA 10 (3.50) 14 (1.32) 3.46 (1.46–8.18) 0.005 3.53 (1.49–8.35) 0.004
GAAA 2 (0.70) 0 (0.00) / / / /
GAGA 39 (13.64) 149 (14.03) 1.27 (0.81–1.99) 0.306 1.28 (0.81–2.01) 0.293
GAGG 5 (1.75) 18 (1.69) 1.35 (0.48–3.77) 0.573 1.35 (0.48–3.79) 0.570
AGAA 73 (25.52) 253 (23.82) 1.40 (0.95–2.06) 0.090 1.41 (0.96–2.07) 0.083
AGAG 18 (6.29) 60 (5.65) 1.45 (0.80–2.64) 0.222 1.45 (0.80–2.65) 0.223
AGGA 5 (1.75) 8 (0.75) 3.03 (0.96–9.59) 0.060 2.96 (0.93–9.43) 0.066
AGGG 1 (0.35) 7 (0.66) 0.69 (0.08–5.73) 0.733 0.72 (0.09–6.00) 0.762
AAAA 0 (0.00) 3 (0.28) / / / /
AAGA 48 (16.78) 170 (16.01) 1.37 (0.89–2.10) 0.153 1.36 (0.88–2.09) 0.164
AAGG 24 (8.39) 92 (8.66) 1.26 (0.74–2.15) 0.390 1.26 (0.74–2.15) 0.395

aThe haplotype order is rs110419, rs4758051, rs10840002, rs204938.
bObtained from logistic regression models adjusted for age and gender.
OR, odds ratio. CI, confidence interval.
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not in their counterpart subgroups. The above conflicting 
results may be ascribed to the following: 1) the relatively 
small sample size, 2) the relatively weak impact of LMO1 
SNPs, and 3) the influence of environmental factors on 
Wilms’ tumor susceptibility.

Our study was the first to investigate the 
associations of LMO1 gene polymorphisms with Wilms’ 
tumor risk in a Chinese population. However, several 
limitations should be considered in the interpretation of 
our results. Firstly, only 145 patients and 531 controls 
were included in this analysis. This relatively small 
sample size inevitably reduced the statistical power, 
especially for the stratification and FPRP analyses. 
Secondly, the inherent selection bias could not be 
completely eliminated, since our study was a hospital-
based study with subjects restricted to South China. 
Thirdly, due to the nature of retrospective studies, some 
valuable information could not be collected, such as 
parental exposures and dietary intakes, which diminished 
the precision of the results. Finally, these four SNPs 
were identified in a GWAS on neuroblastoma, while 
the present study dealt with Wilms’ tumor. A GWAS 
regarding LMO1 gene SNPs and Wilms’ tumor remains 
to be performed.

In conclusion, we determined that the rs110419 AG 
polymorphism in LMO1 may reduce the susceptibility to 
Wilms’ tumor in a Southern Chinese population. Well-
designed studies with larger sample sizes in different 
ethnicities should be performed in the future. Furthermore, 
other LMO1 gene variants and gene-environment 
interactions should be investigated to provide essential 
insights into the etiology of Wilms’ tumor.

MATERIALS AND METHODS

Study subjects

Details on the recruited control subjects were 
reported previously [38–42]. For the present study, 
145 patients with newly diagnosed and histologically 
confirmed Wilms’ tumor were recruited from the 
Department of Pediatric Urology, Guangzhou Women and 
Children’s Medical Center between March 2001 and June 
2016, while 531 cancer-free children undergoing routine 
physical examinations in the same hospital were randomly 
selected as controls. All the subjects were genetically 
unrelated ethnic Han Chinese from South China  
[24, 25, 43]. The response rate was approximately 90% for 
Wilms’ tumor patients and 95% for cancer-free controls. 
The current study was approved by the Institutional 
Review Board of Guangzhou Women and Children’s 
Medical Center. Written informed consent was obtained 
from each participant’s parents or legal guardians. 

Genotyping

About 2 mL of peripheral blood was collected from 
each subject for genotyping. Four LMO1 gene SNPs 
(rs110419 A>G, rs4758051 G>A, rs10840002 A>G and 
rs204938 A>G) identified in a GWAS on neuroblastoma 
were chosen for genotyping [29]. Genomic DNA was 
isolated from peripheral blood leukocytes with a TIANamp 
Blood DNA Kit (TianGen Biotech, Beijing, China) 
[38, 40]. A 7900 Sequence Detection System (Applied 
Biosystems, Foster City, CA) and Taqman real-time PCR 

Table 4: False-positive report probability values for the significant findings

Genotype
Crude OR 
(95% CI) Pa

Statistical
powerb

Prior probability
0.25 0.1 0.01 0.001 0.0001

LMO1 rs110419 A>G
 AG vs. AA 0.62 (0.41–0.94) 0.024 0.441 0.140 0.329 0.844 0.982 0.998
 AG/GG vs. AA
 Males 0.60 (0.36–0.996) 0.048 0.328 0.305 0.568 0.935 0.993 0.999
Risk genotypes
 1–4 vs. 0 1.84 (1.25–2.69) 0.002 0.165 0.035 0.099 0.546 0.924 0.992
 >18 months 2.70 (1.58–4.62) 0.0003 0.008 0.107 0.264 0.798 0.976 0.998
 Females 2.65 (1.46–4.80) 0.001 0.015 0.164 0.371 0.867 0.985 0.998
 Stage III+IV 2.16 (1.31–3.54) 0.002 0.038 0.138 0.324 0.841 0.982 0.998
Haplotypes
 GGAG vs. GGAA 3.23 (1.26–8.26) 0.014 0.065 0.400 0.667 0.957 0.996 1.000
 GGGA vs. GGAA 3.46 (1.46–8.18) 0.005 0.036 0.284 0.543 0.929 0.992 0.999

aA χ2 test was used to calculate the genotype frequency distributions.
bStatistical power was calculated from the number of observations in the subgroup and the ORs and P values in this table.
OR, odds ratio. CI, confidence interval.
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were used to genotype the LMO1 SNPs, as described 
thoroughly elsewhere [44, 45]. To obtain convincing 
results, we performed the genotyping blindly, not 
knowing whether each subject was a case or control. We 
also randomly selected 10% of the samples for repeated 
genotyping, and the genotype concordance was 100%.

Statistical analysis

Hardy-Weinberg equilibrium was calculated with a 
goodness-of-fit χ2 test for the genotype frequencies in controls. 
A two-sided χ2 test was used to evaluate the differences in 
demographic variables and genotype frequencies between 
cases and controls. To estimate the associations between LMO1 
polymorphisms and Wilms’ tumor susceptibility, we calculated 
ORs and 95% CIs using unconditional logistic regression 
with adjustment for age and gender. We also assessed the 
associations of the various haplotypes with Wilms’ tumor 
susceptibility [46]. FPRP analysis was performed as described 
previously [47, 48]. P < 0.05 was considered statistically 
significant. All statistical analyses were performed with SAS 
software (Version 9.4; SAS Institute, Cary, NC). 
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