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ABSTRACT
Poly(ADP-ribose) polymerases are a family of DNA-dependent nuclear enzymes 

catalyzing the transfer of ADP-ribose moieties from cellular nicotinamide-adenine-
dinucleotide to a variety of target proteins. Although they have been considered as 
resident nuclear elements of the DNA repair machinery, recent works revealed a more 
intricate physiologic role of poly(ADP-ribose) polymerases with numerous extranuclear 
activities. Indeed, poly(ADP-ribose) polymerases participate in fundamental cellular 
processes like chromatin remodelling, transcription or regulation of the cell-cycle. 
These new insight into the physiologic roles of poly(ADP-ribose) polymerases widens 
the range of human pathologies in which pharmacologic inhibition of these enzymes 
might have a therapeutic potential. Here, we overview our current knowledge on 
extranuclear functions of poly(ADP-ribose) polymerases with a particular focus on 
the mitochondrial ones and discuss potential fields of future clinical applications.

INTRODUCTION

Basal metabolic activity as well as environmental 
factors lead to more than 20,000 DNA alterations per cell 
every day [1]. Since structural DNA damage may interfere 
with transcription and, consequently, disarray proteome 
homeostasis, maintenance of genomic integrity is critical 
for cellular function. Genomic maintenance primarily 
depends on a network of different repair mechanisms, 
collectively termed DNA damage response (DDR). Decades 
of intense research revealed that one of the DDR pillars is 
the poly-adenosine diphosphate-ribose polymerase (PARP). 
Based on its central role in the nuclear repair machinery, 
PARP has been considered as a potential target in cancer 
cells with compromised repair machinery. According to this 
concept, inhibition of PARP acts as a “second hit” on the 
malfunctioning cellular repair armament of, for instance, 
BRCA1/2-negative cancers resulting in fatal chromosome 
instability, cell cycle arrest and apoptosis. This led to the 
development of therapeutic PARP inhibitors and the idea 
of their use to potentiate antineoplastic alkylating agents.

Although PARP inhibitors, like Olaparib or 
Veliparib, failed to deliver expected results in clinical trials, 

they led to the discovery of a number of PARP-mediated 
extranuclear effects including mitochondrial functions or 
crosstalk with canonical signaling pathways [2–4]. Here, 
we overview our current understanding on the mechanism 
of action of PARP and its pharmacological inhibitors with 
particular attention to their clinical relevance.

PARP

Poly(ADP-ribose) polymerases play pivotal 
role in the intricate network of intracellular processes 
counteracting genetoxic stress in higher eukaryotic cells 
[5]. PARP was first identified in 1963 as a nuclear enzyme 
responsible for the majority of poly(ADP-ribosyl)ation 
activity [6]. Although PARP-1 is the most abundantly 
expressed isoform, multiple PARP-encoding sequences 
have been identified in the human genome [7]. Analyses 
of transcript abudance in epithelial cell lines of various 
tissues revealed that, apart from PARP-15, all PARPs 
are expressed [8]. According to the currently available 
structural data, all 17 known PARP polypeptides, with 
the exception of PARP-4, have a conserved C-terminal 
catalytic domain. In contrast, they display great variability 
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of various domains and functional motifs in their N 
terminus. These include regulatory and binding motifs 
(e.g. the PARP alpha helical motif or PRD), localization 
signals, specific regions responsible for interaction with 
partner molecules (e.g. the WWE domains in PARP-7, 
the Myc-binding region in PARP-10 or the HIF1AN-
binding region in PARP-5b), regions of compositional bias 
(e.g. the poly-Histidine, Proline- or Serine-rich regions 
in PARP-5a) or the zinc finger and ubiquitin-binding 
domains. Although the relevance of the N-terminal domain 
structure variance is still not clear, it suggests differential 
physiologic roles and, potentially, spatio-temporal control 
of the PARP isoforms and represents the basis of their 
classification into one of the five subgroups of the family 
(Figure 1).

Poly(ADP-ribosyl)ation is catalyzed by the DNA-
dependent and tankyrase PARPs as well as the unclassified 
PARP-4. The majority of the other isoforms, however, 
perform mono(ADP-ribosyl)ation with the exceptions 
of PARP-10 which has poly(ADP) transferase activity, 
and PARP-9 and -13 that are believed to be catalytically 
inactive [9, 10]. While intracellular localisation of 
the PARP family members varies during cell cycle,  
PARP-1 was shown to be predominantly nuclear. PARP-1, 
-2 and -3 are ubiquitously expressed in mammalian tissues 
and are the only DNA strand break-activated isoforms 
identified so far [11–13].

PARP-1, the best characterised member of the PARP 
family, is a 116 kDa protein composed of 6 main domains 
(domain A to F) each with distinct functions (Figure 1) 
[14]. Domain A functions as part of the DNA-binding 
module (DBM) and is responsible for the recognition of 
damaged DNA loci via two zinc-finger motifs. Domain 
B spans a bipartite nuclear localisation signal that directs 
PARP-1 into the nucleus and serves as a caspase-3 cleavage 
site [15]. Similar to domain A, domain C contains a zinc-
binding motif (PADR1) that facilitates formation of the 
DNA-activated conformation of PARP-1 via interdomain 
contacts. Although not required for physical DNA binding, 
its absence compromises the catalytic activity of PARP-
1 upon DNA binding. Domain C together with Domain 
A and B are believed to form the N-terminal DNA-
binding module of PARP-1 [16]. Domain D mediates 
negative auto-regulatory post-translational modifications 
via glutamate, aspartate and lysine residues that reduce 
enzymatic activity leading to relaxed DNA binding [17, 
18]. Another region of Domain D, termed Breast Cancer-
Associated 1 C-terminal domain (BRCT), acts as a binding 
interface for various nuclear partners [19]. Domain E and 
F together form the catalytic site that binds nicotinamide 
adenine dinucleotide (NAD+) and catalyses poly(ADP-
ribosyl)ation also termed as PARylation [20]. In addition, 
the catalytic domain promotes localized compaction 
of chromatin into supranucleosomal structures through 
interaction with the DNA binding domain independently 
of its enzymatic activity [21].

Although DNA single-strand breaks are the primary 
stimuli for PARP-1, its activity has also been reported in 
the absence of DNA lesions. Indeed, PARP-1 recognizes 
unusual DNA conformations including cruciformed or 
supercoiled structures as well as bent or stably un-paired 
DNA regions [22–24]. In support of these observations, 
PARP-1 is activated in response to a wide range of stimuli 
that potentially affect DNA conformation including 
oxidative agents, ethanol, DNA alkylation, excitotoxic 
injury, lipopolysaccharides (LPS), elevated extracellular 
glucose concentration or vitamin A depletion [25–31]. 
Since PARP-2 accounts for approximately 15% of the 
cellular poly(ADP)-ribose only, PARP-1 is believed to 
be responsible for the majority of cellular PARylation. 
Similar distribution of their cellular targets further 
supports the idea that PARP-1 is the primary PARylating 
entity [32].

Upon activation, the DBM scans and directs PARP-1  
to damaged DNA loci by recognizing aberrant DNA 
conformations or disruptions of the sugar-phosphate 
backbone [12]. Activated PARP-1 cleaves NAD+ into 
nicotinamide and ADP-ribose and covalently attaches 
50–200 ADP-ribose units to target molecules through 
glutamate, aspartate or lysine residues [6, 18]. At damaged 
DNA loci, auto-PARylation triggers recruitment of repair 
enzimes and, consequently, initiates DNA repair [33]. 
Being negatively charged, poly(ADP-ribose) alters 
the biochemical properties of the acceptor molecules 
resulting in the modulation of their structure, function or 
localization [34]. Indeed, due to their physico-chemical 
properties, initially synthesized long and branched PAR 
chains repell chromatin from the vicinity of the damaged 
locus preventing accidental homologous recombination 
between the broken backbone and neighbouring chromatin 
sections. These initially formed PAR chains, however, 
are trimmed back to short ones by poly(ADP-ribose) 
glycohydrolase (PARG), that persist on auto-modified 
PARP-1 even after its release from DNA. This persistent 
auto-PARylation prevents PARP-1 to rejoin damaged DNA 
that might inhibit the execution of the repair process [35].

Elevated NAD+ consumption and PAR levels are 
both observed upon treatments with DNA alkylating 
agents or ionizing irradiation supporting the idea that 
PARP-1-mediated PARyaltion is part of the DDR [5]. 
Indeed, a number of repair molecules harbour PAR-
binding motifs including elements of the base-excision 
repair (BER) [36]. The BER acts on single nucleotide 
lesions catalysing excision and replacement of damaged 
or incorrectly incorporated nucleotides [37]. As part of the 
BER, PARP is believed to bind DNA strand-breaks and 
by simultaneous auto- and target PARylation facilitates 
the recognition and repair of affected loci. The nature of 
the interplay between PARP-1 and elements of the BER, 
however, is still obscure due to apparently conflicting 
experimental results. Although PARylation facilitates 
recruitment of XRCC1, the scaffold molecule that 
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Figure 1: Domain structure and classification of the human PARP polypeptides. Figure is based on the Uniprot, RCSB and 
InterPro databases. Members are related on the basis of the presence of the conserved PARP catalytic domain (CATALYTIC) typically 
located at the C-terminus of the polypeptides and is characteristic of all PARP protein family members. Within the catalytic domain, the 
active site is formed by a block of 50 amino acids which is strictly conserved among the vertebrates and highly conserved among all species. 
Proteins are not drawn to scale but typical structural limits and positions are indicated. 1PARP-9 and -13.1 are believed to be catalytically 
inactive. The alternative isoform of PARP-13 (PARP-13.2) is not indicated in the figure due to its complete lack of the PARP catalytic 
domain. Labelled structures are follows: Z, Z1 and Z2: PARP-type zinc finger domains; N: Nuclear localization signal; NES: Nuclear 
export signal; BRCT: breast cancer susceptibility gene associated C-terminal domain; WGR: It is a domain with unspecified functions 
present in a number of PARPs and named after its most conserved central motif.; PRD: PARP regulatory domain, consists of a duplication 
of two helix-loop-helix structural repeats and is typically associated with the C-terminal catalytic domain.; SAM: Sterile Alpha Motif, also 
known as helix-loop-helix domain, exhibits a conserved structure involved in interactions with proteins, DNA and RNA.; WWE: The WWE 
domain is named after three of its conserved residues and believed to serve as an interaction module.; MACRO: The Macro domain is a 
180 amino acids long region that mediate ADP-ribose binding associated with catalytic domains of PARP or sirtuins.; VIT: Vault Protein 
inter-alpha-trypsin domain; VWFA: von Willebrand factor type A domain that mediates metal ion-dependent adhesion of partner proteins.; 
MVP-ID: Major Vault Protein interaction domain; U: ubiquitin-binding motif.
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recruits additional BER enzymes to damaged foci, BER 
remains intact even in PARP-1 negative cells [38–40]. In 
addition, while they show increased sensitivity toward 
PARP inhibitors, XRCC1-depleted cells exhibit intact 
BER activity suggesting a BER-independent role of the 
PARP-1-XRCC1 interaction [41]. To date, the most widely 
accepted scenario is that PARP-1, perhaps via XRCC1, 
contributes to certain types of the BER depending on the 
nature of the insult or intermediates formed but it does 
not play an indispensible role in the process reflecting the 
existing redundancy in the BER system [42].

In the nucleotide excision repair (NER), PARP-
1 PARylates DDB2, an essential protein for recognition 
and removal of UV-induced DNA lesions. PARylation 
of DDB2 prolongs its chromatin retention time and 
recruitment of the chromatin remodeler ALC1 that 
facilitates nucleosome sliding and recruitment of further 
NER proteins like XPC [43]. Interaction of PARP-1 with 
various elemets of the mismatch repair has also been 
reported. These include replication protein A, replication 
factor C and the proliferating cell nuclear antigen (PCNA) 
as well as the MutSα-exonuclease 1 (EXO1) complex. The 

interplay between PARP-1 and the MutSα-activated EXO1 
complex results in enhanced 5′-directed excision activities 
by, possibly, repressing EXO1-mediated hydrolysis, 
preferentially, on homoduplex DNA [44].

In addition, pharmacological inhibition of  
PARP-1 was found to result aberrant activation of the non-
homologous end joining repair (NHEJ) as well suggesting 
its role in the repair of double-strand breaks. In support 
of this concept, not only DNA-dependent protein kinases 
were identified in the PARP-1 interactome but PARylation 
was also found to increase their kinase activity [36, 45].

A critical prerequisite for the catalytic activity of 
recruited repair enyzmes is termination of PARylation and 
dissociation of PARP-1 from affected loci. In this process 
first, PARP-1 auto-PARylates within domain D that results 
in the release of PARP-1 from target molecule, a critical 
step in the abortion of target PARylation. Apparently, 
one of the critical regulators of this step is the recently 
described Histone PARylation factor 1 (HPF1) that 
controls retention time of PARP-1 via regulation of both 
ADP-ribosylation of histones and auto-modification of 
PARP-1 [46]. Once released, PARP-1 is ubiquitinated 

Figure 2: Schematic figure of the role of PARP-1 in the DNA demage response. PARP contributes to the DDR in three major 
steps upon DNA damage. First, PARP scans and identifies dmaged DNA loci (Recognition). Second, PARP-catalysed PARylation attracts 
repair elements to the damaged DNA locus (Recruitment). Finally, de-PARylation detaches PARP from partner molecules and facilitates its 
proteasomal degradation (Release). Abbreviated elements are: PARP: Poly(adenosine diphosphate-ribose) polymerase-1; HPF1: Histone 
PARylation factor 1; PARG: poly(ADP-ribose) glycohydrolase; RNF146: RING finger protein 146. Green and yellow polymers represent 
PAR and polyubiquitin chains, respectively.
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by the PAR-dependent E3 ubiquitin ligase RING 
finger protein 146 rendering PARP-1 for proteasomal 
degradation [47]. Finally, removal of polymerized PAR 
flags are mediated by dedicated enzymes PARG and 
poly(ADP-ribose) hydrolase 3 that catalyse degradation 
of PAR within minutes [48, 49] (Figure 2).

Intensive research on PARP-1’s mechanism of 
action in DNA repair led to the concept that defective 
PARP-1 functions result in genomic instability and cell 
death fueling the idea of the use of pharmacological 
PARP-1 inhibitors in anti-cancer therapies [50].

PARP inhibition in cancer treatment

The first in vitro experiments with distinct PARP 
inhibitors concluded that these compounds are more potent 
in BRCA-deficient cellular models and exert synergistic 
effects when used in combination with chemotherapeutics 
like the alkylating agent temozolomide or the 
topoisomerase inhibitor topotecan [51–53]. Considering 
the central role of BRCA-1 and -2 in DNA repair, these 
observations underpinned the idea that PARP inhibition 
primarily targets repair capacity. It is noteworthy however, 
that other studies reported no or only cell type-dependent 
effects of PARP inhibitors when tested in combination of 
platinum agents [54, 55]. More interestingly, some studies 
reported that excessive PARylation and sustained existence 
of PARP-DNA complexes are more cytotoxic than genetic 
depletion of PARP suggesting a more versatile role of 
PARP-1-mediated PARylation [56].

In vivo studies using PARP inhibiting compounds 
in combination with chemotherapeutics led to similar 
conclusions. Using the PARP inhibitor compound AG14361 
in a human colon tumor xenograft model, improved 
therapeutic index was reported when used in combination 
with temozolomide, irinotecan or irradiation [57]. Veliparib, 
also known as ABT-888, was found to enhance the effect 
of temozolomide in various xenograft models in a dose-
dependent manner leading to increased survival rates [58]. 
Similarly, Olaparib, also known as compound AZD2281, 
showed synergistic effects with cisplatin and carboplatin 
in a BRCA1-deficient mammary tumor model resulting 
in prolonged survival [59, 60]. In the theet of encouraging 
preliminary experimental data on pharmacological inhibition 
of PARP-1, clinical trials delivered rather inconsistent 
results. While a phase I trial reported significant antitumor 
activity in Olaparib-treated patients suffering from BRCA 
mutation-harbouring breast, ovarian and prostate cancers, 
another study found no synergistic effect between Olaparib 
and dacarbazine in chemonaive melanoma patients [61, 62]. 
Similarly, while Olaparib was reported effective in ovarian 
cancer patients in a phase II trial, the same study declared it 
inefficient in breast cancer patients independently of their 
BRCA status [63].

Controversal clinical results raised the question 
whether the capacity of PARP inhibitors to sensitize 

cells to chemotherapeutic agents is dependent on the 
therapeutic context and restricted to certain cell types 
or chemotherapeutic compounds. Indeed, to date, PARP 
inhibition has only been approved for monotherapy of 
BRCA mutation-harbouring neoplasms [64]. Contradicting 
data on the use of PARP inhibitors, however, raised the 
possiblity of more intricate underlying functions of PARP 
that might influence cellular physiology beyond repair.

PARP-1 as a mitochondrial regulator

While the role of PARP-1 in various repair 
machineries is established, only 60% of PARP-1 
complexes are detected on DNA breaks suggesting the 
existence of repair-independent PARP-1 functions [65]. 
Indeed, PARylation-mediated regulation of chromatin 
remodeling and transcription has been demonstrated in 
Drosophila representing a PARP-1-mediated epigenetic 
regulatory system [66]. In human models, this involves 
histone H3 and H4 that both bind PARP-1 physically. 
In addition to their co-localization, Histone H4 has also 
been shown to enhance PARP-1 activity [67]. DDR-
independent recruitment of PARP-1 to chromatin and 
the post-translational modification of histones and DNA 
have been shown to induce various genes highlighting the 
complexity of PARP-1-mediated functions. Indeed, NAD-
consuming PARP-1 contributes to the trans-activation of 
nuclear-encoded mitochondrial genes like the cytochrome 
c oxidase COX1, COX2 and complex I subunit ND2, 
critical components of the mitochondrial electron transport 
chain. Moreover, pharmacological inhibition of PARP-1 
leads to repression of the nuclear-encoded mitochondrial 
DNA repair factors UNG1, MYH1 and APE1 as well as 
mitochondrial transcription factors TFB1M and TFB2M 
[68]. Thus, by epigenetic marking, PARP-1 controls 
integrity and function of mitochondria, a critical source of 
PARP-1’s co-enzyme NAD+ (Figure 3).

Besides histones, a growing number of additional 
molecules have also been recognized as potential targets 
for PARylation [69]. Systemic analysis of the PARylated 
proteome revealed links between PARylation and 
fundamental cellular processes including DNA and RNA 
metabolism, cell-cycle regulation, apoptosis or canonical 
cell signaling pathways (Supplementary Table 1). These 
findings suggest that the overall therapeutic effect of the 
pharmacological inhibition of PARP-1 may be dependent 
on the cellular context and further insight of PARP-1-
mediated functions, in particular those affecting cellular 
viability, is critical for the development of safe and 
efficient therapeutic modalities.

PARP-1 as a regulator of cell death

Increased PARP-1 activity leads to elevated 
consumption of cellular NAD+ that may accompanied 
by increased ATP consumption and, consequently, 
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compromised energy balance, a known factor that may 
facilitate cell death [70, 71]. Depleted intracellular 
ATP pools are direct results of increased AMP levels 
generated by the hydrolysis of poly(ADP-ribose) which 
is accompanied by inhibition of the mitochondrial 
adenine nucleotide translocator (ANT) and reduction of 
mitochondrial ADP uptake and ATP release (Figure 3) 
[72]. Consequently, the adenylate kinase bypass, 
which recharges ATP from ADP, is also limited due to 
depleted ADP resources upon PARP-1 up-regulation 
[73]. Accordingly, it was hypothesized that, upon 
persistent PARP-1 activation, decreased mitochondrial 
ATP production inhibits NAD+ re-synthesis forming a 
feed-forward loop in ATP-consuming processes that, 
eventually, results in metabolic catastrophy and cell death. 
The relevance of the relationship between intracellular 
metabolism and PARP-1 activaton is endorsed by reports 
that PARP-1 activation down-regulates Hexokinase II 
contributing to metabolic imbalance and consequent 
cellular demise [74, 75].

Alternatively, PARP-1 may also reduce cellular 
viability via parthanatos. The term parthanatos 
originates from the abbreviation of poly(ADP-ribose) 
and Thanatos, the name of the God of Death in Greek 
mythology, and is used for a process accompanied by 
the loss of cell membrane integrity, large scale DNA 
fragmentation, phosphatidylserine externalization, 
dissipation of mitochondrial membrane potential, 
chromatin condensation and shrinkage, characteristics 
of a cell dying in consequence of excessive PARP-1 
activation. One of the key mediators of parthanatos is the 
Apoptosis Inducing Factor (AIF), a caspase-independent 
mitochondrial death effector protein that has three 
putative PAR binding domains. In normal mitochondria, 
it shows oxido-reductase activity and functions as an 
anti-apoptotic factor [76]. Although the majority of 
AIF is anchored to the inner mitochondrial membrane, 
an estimated 30% is associated with the cytosolic side 
of the outer mitochondrial membrane [77, 78]. Upon  
PARP-1 activation, PAR polymers activate calpain I 

Figure 3: Schematic summary of PARP-1’s mitochondrial functions. PARP has multiple connections to the mitochondrial 
network affecting both mitochondrial function and morphology. Abbreviated elements are: HPF1: Histone PARylation factor 1; M: 
Mitofusins; H: Hexokinase II; ANT: mitochondrial adenine nucleotide translocator; H3: Histone H3; AMP, ADP and ATP: adenosine 
mono-, di- and triphosphate, respectively; AIF: Apoptosis Inducing Factor. Green and purple arrows represent catalysis and overall effects, 
respectively. Red connectors represent inhibitory interactions.
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through mitochondrial Ca2+ dysregulation which leads to 
truncation of AIF, a critical step of its mitochondrial release 
and nuclear translocation. In the nucleus, PARylated AIF 
facilitates caspase-independent parthanatos via chromatin 
condensation and DNA fragmentation (Figure 3) [78–82]. 
Insights of the potential role of PARylation in processes 
like parthanatos, however, placed PARP-1, which was 
previously considered as a nuclear element of the DNA 
repair systems, into a wider cellular context and fueled 
further investigations on PARP-1’s effects in the context of 
complex extranuclear systems like mitochondria.

PARP-1 as a regulator of mitochondrial 
functions

PARP-1 hyperactivation is characterized by 
excessive nuclear NAD+ consumption and accompanied 
cytosolic NAD+ depletion compromising NAD+-dependent 
metabolic pathways including the glycolysis and TCA 
cycle that may culminate in respiratory chain malfunctions 
and accumulation of reactive oxygen species (ROS) [83]. It 
has also been documented that ROS-induced mitochondrial 
permeability transition may lead to intra-mitochondrial 
loss of NAD+ [84]. Thus, hyperactivation of PARP may 
initiates events that not only aggravates mitochondrial 
damage but also contribute to the ROS-mediated 
generation of additional single-strand DNA breaks [85]. 
These findings inspired the idea that PARP inhibitors might 
exert their cytoprotective effects by limiting the PARP-1-
induced depletion of cellular NAD+ and, consequently, 
preserving mitochondrial bioenergetics. This hypothesis is 
underpinned by the beneficial effects of these compounds 
in various ischemia-reperfusion injury models, where the 
protective effects of PARP inhibitors are not mediated by 
direct antioxidant properties of the compounds used [86]. 
In support of this concept, PARP inhibitors were found 
to be effective in multiple pathophysiologic conditions 
including myocardial or neuronal ischemia, inflammation, 
oxidative stress-related cellular injury, Diabetes mellitus or 
traumatic brain injury [87–92].

Follow-up studies on PARP inhibitors using 
isolated mitochondria, however, suggested the existence 
of additional mitochondrial-resident targets with capacity 
to regulate mitochondrial homeostasis [93]. A potential 
candidate emerged from studies investigating benefits 
of the use of PARP inhibitor PJ-34 in septic mouse 
models. Using lipopolysaccharide (LPS) on PJ-34 pre-
treated animals, activating phosphorylation of AKT/PKB 
was detected, raising the possibility that the protective 
effects of PARP inhibition are mediated by the AKT/
PKB pathway [94]. Although the relationship between 
metabolism and AKT/PKB pathway has been known 
for decades, the mitochondrial-resident fraction of AKT/
PKB was first described in 2003 [95]. Cytosolic AKT/
PKB, a critical element of a highly conserved pathway 
activated by various stimuli in a phosphatidylinositol 3 

kinase (PI3K)-dependent manner, phosphorylates a wide 
range of substrates including signaling pathways elements, 
apoptosis regulators and transcription factors involved in 
the regulation of cellular metabolism [96–98]. Indeed, 
activation of the AKT/PKB pathway leads to the induction 
of a number of genes involved in the glucose metabolsm 
including glucose transporters or the hexokinase while, 
directly, AKT/PKB catalyses post-translational activating 
phosphorylation of the phosphofructokinase [99–101]. 
The AKT/PKB pathway also regulates lipogenic genes by 
the induction of the transcription factor SREBP1c [102]. 
Accordingly, AKT/PKB-mediated biological responses 
are pleiotropic, ranging from cell survival to proliferation, 
intracellular trafficking or complex processes like 
angiogenesis [103, 104].

Similar to its cytoplasmic counterpart, the 
mitochondrial AKT/PKB generally exerts pro-survival 
effects. Indeed, translocation and activation of AKT/PKB 
to myocardial mitochondria enhances cardiac bioenergetics 
by influencing mitochondrial oxidative phosphorylation, 
preserves mitochondrial integrity and prevents cytochrome 
c release upon induction of the intrinsic apoptotic pathway 
[105–107]. Interestingly, however, unlike the BCL family 
members-mediated canonical mitochondrial pro-survival 
mechanisms, the anti-apoptotic function of mitochondrial 
AKT/PKB is glucose-dependent [108, 109]. AKT/PKB 
mediates its mitochondrial effects through phosphorylation 
of Hexokinase II, the same target that is down-regulated 
by PARP-1 activation. Hexokinase II phosphorylation 
promotes its recruitment to the mitochondrial outer 
membrane voltage-dependent anion channel (VDAC)  
[75, 108]. Upon binding to VDAC, Hexokinase II converts 
glucose to glucose-6-phosphate consuming mitochondrial 
ATP thus facilitating the carbon supply of both glycolysis 
and the pentose phosphate pathway [110, 111]. AKT/PKB-
mediated phosphorylation of Hexokinase II also counteracts 
oxidant or Ca2+-stimulated opening of mitochondrial 
permeability transition pore (PTP) (Figure 3) [112].

Although detailed mechanisms are yet to be 
determined, observations that the angiotensin II-induced 
PARP-1 activation is Ca2+-mediated in primary culture 
of newborn cardiomyocytes and that PARP-1 activation 
follows Ca2+ release from perinuclear stores in depolarized 
primary culture of rat brain cortical neurons suggest that, 
at least in certain cellular contexts, Ca2+ may be one of the 
candidate mediators of PARP-1-activating stimuli [113, 
114]. Thus, one might speculate that PARP inhibitors also 
reduce intracellular Ca2+ levels, possibly by utilizing or 
mimicking the effects of the AKT/PKB pathway thereby 
contributing to mitochondrial integrity and cell survival.

PARP-1 as a regulator of mitochondrial 
morphology

Mitochondrial function and morphology are 
intimately linked. Indeed, over-expression of the 
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mitochondrial fission proteins DRP1 or hFIS1 increases 
susceptibility to Ca2+-induced PTP opening [115]. 
Conversely, over-expression of the mitochondrial fusion 
GTP-ase Mitofusin-2 (MFN2) inhibits PTP opening [116]. 
Intriguingly, AKT/PKB also promotes mitochondrial 
fusion by activating phosphorylation of Mitofusin-1, a 
mitochondrial fusion-mediator transmembrane GTPase, 
leading to delayed onset of PTP opening and reduced cell 
death following ischaemia-reperfusion injury [117, 118]. 
OPA1, a nuclear-encoded mitochondrial dynamin-related 
GTPase that controls mitochondrial morphology and 
ultrastructure, might also be a downstream mediator of the 
AKT/PKB pathway [119, 120]. OPA1 is reduced under 
conditions associated with mitochondrial fragmentation 
in myocardiocytes while, upon insulin stimulation which 
is a known activator of the AKT/PKB pathway in the 
myocardium, mitochondrial fusion and OPA1 levels appear 
to be increased [121, 122]. The concept that AKT/PKB  
controls mitochondrial morphology via OPA1 is also 
supported by the observations that expression of both 
MFN2 and PARL, a protease involved in the anti-
apoptotic function of OPA1, is decreased in obese and 
insulin-resistant patients [123, 124]. Moreover, this effect 
does not seem to be restricted to the myocardium since 
coronary endothelial cells also show reduced OPA1 levels 
and elevated mitochondrial fragmentation in diabetic 
murine models [125].

The complex effects of the AKT/PKB pathway 
on mitochondria is further illustrated by recent findings 
that AKT/PKB induces trafficking of energetically active 
mitochondria to the cortical cytoskeleton of tumor cells 
leading to lamellipodia formation, supports turnover 
of fatty acid complexes and random cell migration 
[126]. Intriguingly, this phenomenon is similar to the 
accumulation of mitochondria at synapses, active growth 
cones and branches in neuronal cells [127]. In both cases, 
mitochondria might provide a “regional” ATP source to 
fuel energy-demanding processes [126]. In support of this 
concept, inhibition of cellular respiration by mitochondrial 
DNA depletion or direct blockage of the respiratory 
chain prevents mitochondrial trafficking to the cortical 
cytoskeleton, abolishes membrane dynamics of cell 
motility and suppresses cell invasion [126]. Interference 
with MFNs suppresses mitochondrial repositioning to the 
cortical cytoskeleton and tumor cell invasion mediated by 
PI3K inhibitor therapy indicating the interplay between 
the AKT/PKB and MFN pathways [126]. Hence, one can 
speculate that alterations in mitochondrial morphology and 
function promoted by the AKT/PKB pathway represent 
another mechanism of the observed mitoprotective effects 
of PARP inhibitors.

The AKT/PKB pathway, however, is not the only 
signaling mechanism associated with the regulation 
of mitochondrial morphology and PARP-1. Activation 
of JNK and p38 MAP kinases has also been reported 
in response to PARP-1 and both kinases are involved 

in the regulation of mitochondrial dynamics and 
function (Figure 3) [128–130]. The potential mediator 
of this effect is the dual specific protein phosphatase-1  
(DUSP-1). Indeed, PARP-1 inhibition attenuates JNK and 
p38 through the increased expression of DUSP-1 enhancing 
cells survival [131]. JNK phosphorylates BCL-2 and BCL-
XL, attenuating their pro-survival activity that facilitates 
cytochrome c release and collapse of the mitochondrial 
membrane potential [132]. It can also directly trigger the 
intrinsic apoptotic pathway by phosphorylating the pro-
apoptotic BCL-2 family member BAD [133]. Apart from 
the regulation of the canonical intrinsic apoptotic pathway, 
JNK actively contributes to the mitochondrial morphology 
as well. JNK-mediated phosphorylation of MFN2 
promotes its proteasomal degradation by the E3 ubiquitin 
ligase HUWE1 leading to mitochondrial fragmentation 
and enhanced apoptotic cell death [134]. Conversely, 
blockade of the Transferrin Receptor 1 (TFR1)-JNK 
pathway reduces HUWE1-mediated MFN2 ubiquitination 
preserving the fused mitochondrial network and function 
[135]. Similarly, pharmacological inhibition of p38 biases 
mitochondrial dynamics toward fusion and maintains 
mitochondrial functions [136].

Despite the apparent contribution of JNK and 
p38 to the regulatation of mitochondrial morphology 
and functions, both proximal and distal elements of the 
putative PARP-1-JNK/p38 axis remain to be identified. As 
for proximal mediators, RIP and TRAF were suggested 
to convey signals between PARP-1 and JNK while the 
observation that PARP-1-induced JNK activation is 
indispensable for mitochondrial depolarization, AIF 
translocation and subsequent cell death suggests that AIF 
might act as an effector of the PARP-1-TRAF/RIP-JNK/
p38 pathway [128, 137].

This model predicts cytoprotective effects of PARP 
inhibitors in tissues like skeletal muscle or neural ones 
that highly dependent on mitochondrial functions. In 
support of this concept, PARP inhibition is apparently 
beneficial in a number of muscle dysfunction models 
[138, 139]. Moreover, PARP inhibition attenuated the 
mitochondrial toxin cuprizone-induced oligodendrocyte 
depletion and demyelination in experimental models. 
These mitoprotective effects are believed to be mediated 
by suppression of JNK and p38 phosphorylation, increased 
activation of the AKT/PKB pathway and repression of 
apoptosis [140].

PARP-1 as a regulatior of inflammation

Protective effects of PARP inhibitors in disease 
models of acute lung inflammation or septic shock predict 
a role for PARP-1 in inflammation as well [29, 141]. 
Indeed, analysis of PARP-1-/- mice revealed increased 
resistance to LPS-induced endotoxic shock and failed 
induction of NF-κB-regulated inflammatory genes due to 
the missing co-activator function of PARP-1 [142–144]. 
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Interestingly however, although both lung and liver 
equally responsive to LPS-mediated NF-κB activation, 
PARP-1 inhibition disrupts the NF-κB-mediated response 
to LPS in the liver only suggesting the existence of tissue-
specific elements in the PARP-1/NF-κB interactome 
[94]. One of the candidate interactors is Sir2alpha 
(SIR2α) that directly targets NF-κB (Figure 4). SIR2α 
is a primarily nuclear-resident, NAD+-dependent protein 
deacetylase with a wide range of intracellular targets 
including signaling molecules like AKT/PKB, protein 
components of the chromatin or transcription factors and 
their co-regulators. Since the Km of PARP-1 for NAD+ 
falls in the low micromolar range, PARP-1 may influence 
SIR2α activity by reducing NAD+ bioavailability 
[145–147]. Indeed, depletion of cellular NAD+ levels 
upon PARP-1 activation reduces SIR2α deacetylase 
activity. Conversely, reduced PARP-1 activity increases 
intracellular NAD+ levels and enhances SIR2α activity 
leading to SIR2α-mediated deacetylation and induction 
of mitochondrial biogenesis [148, 149]. Intriguingly,  
PARP-2 also interacts with SIR2α directly down-
regulating the SIR2α promoter [150].

Based on the Human Integrated Protein Expression 
Database, the SIR2α polypeptide is most enriched in lung 
tissues. It has also been reported that acetylation reduces 
the DNA-binding affinity of RELA/p65 [151]. Thus, one 
can speculate that elevated SIR2α activity may activate 
NF-κB upon LPS treatment in PARP-inhibited lung tissues 
while, conversely, the low relative abundance of SIR2α 
in hepatocytes leads to disruption of the inflammatory 
responses in the liver. This hypothesis also suggests that 
PARP inhibition-based anti-inflammatory modalities 
may not be efficient in SIR2α over-expressing tissues 
like prostate, fetal heart, testis or lymphocytes but may 
be potent in inflammed organs in which the putative 
SIR2α-mediated bypass mechanism is not present. In 
support of this concept, PARP inhibition was found to 
reduce TNFα induced inflammatory responses of synovial 
fibroblasts suggesting the potential use of PARP inhibitors 
in conditions like rheumatoid arthritis [152]. The idea that 
SIR2α may rescue NF-κB activity upon PARP inhibitions 
also raises the question whether PARP-1 functions as a 
transcriptional co-factor of the inflammatory pathways 
by regulating deacetylation of NF-κB via recruitment 

Figure 4: PARP activity influences the NF-κB-mediated inflammatory signaling. The PARP activation-mediated depletion 
of the NAD+ pools attenuates cellular NAD-dependent systems including the sirtuins. This may affect the rate of deacetylation of, among 
others, the NF-κB subunit p65 and, thus, influence the NF-κB-mediated inflammatory gene expression. Abbreviated elements are: Ac: 
Acetyl-group; H3: Histone H3; PAR: poly(ADP-ribose) polymer; SIR2α: NAD-dependent protein deacetylase Sirtuin-1.
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of deacetylases or preventing the interaction between 
acetylases and NF-κB.

Although these questions need further 
investigations, detailed analysis of the PARP-1/NF-
κB interactome holds out the promise to discover 
novel, potentially tissue-specific targets of future anti-
inflammatory therapies. Indeed, pharmacological 
inhibition of PARP reverted elevated colonic permeability 
and reduced water absorption in a chronic colitis model 
using IL-10-deficient mice [153]. Down-regulation of 
pro-inflammatory gene expression observed in a PARP-
1-depleted mouse enterocolitis model upon exposure 
to Salmonella typhimurium suggests that these effects 
might be related to the NF-κB mediated gene regulatory 
functions of PARP-1 [154]. Reduction of the NF-κB 
activation and pro-inflammatory gene expression observed 
in a PARP-1-/- negative mouse model of contact dermatitis 
further supports this concept [155]. Similarly, repression of 
pro-inflammatory cytokines upon PARP-1 inactivation by 
either genetic ablation or pharmacologic inhibition might 
also explain compromised recruitment of inflammatory 
cells observed in a pulmonary inflammation model. These 
data may also open the door to the use of PARP inhibitors 
in pathophysiologic conditions like Diabetes mellitus. 
Indeed, PARP inhibitors efficiently reduce hyperglycemia-
induced NF-κB activation and in vivo podocyte depletion, 
a hallmark of diabetic glomerulopathy [156].

Conclusions and perspectives

On the ground of discovery of PARP-1 and its role 
in the DNA repair machinery, PARP inhibition emerged 
as a novel therapuetic concept to eradicate cancer cells. 
This concept was further fueled by the discovery of the 
mitoprotective nature of PARP inhibitors, raising the 
possibility of reduced side effects on the non-transformed 
surrounding tissue [86, 157]. What we have learned from 
both in vitro and in vivo studies on PARP inhibition, 
however, revealed a more complex picture and prompts 
reconsideration of the possible and effective use of PARP 
inhibitors in the clinical practice. Indeed, the periodic 
increase of PAR activity during cell cycle highligths 
the importance of PARylation not only in the S-phase 
but also in the M-G1 transition and might serve as one 
of the critical factors in the regulation of migration 
and, potentially, formation of metastases [158, 159]. 
In addition, the typical mitochondrial effects of PARP 
inhibition including membrane potential maintenance, 
reduced oxygen/glucose consumption and lower 
intracellular concentrations of ROS and ATP are similar 
to that of cancer cells raising concerns about the systemic 
use of PARP inhibitors [160].

Data showing activation of the AKT/PKB pathway 
upon PARP inhibition may also be alarming. By 
inactivation of glycogen synthase kinase-3, caspase-9, 
BAD or the forkhead homologue rhabdomyosarcoma 

transcription factor, AKT/PKB has been shown to be a 
critical factor of cytostatic resistance of transformed cells 
[161]. Indeed, AKT/PKB promotes chemo-resistance of 
cells by regulating the ABC transporter BCRP1 activity 
which enhances drug efflux. In addition, in prostate 
cancer cells, AKT/PKB was shown to mediate effects of 
the metastasis-associated gene 1 that promotes cellular 
transformation and metastasis generation via regulation 
of E-cadherin [162–165]. Similar findings have been 
reported in terms of JNK and SIR2α showing their role in 
drug resistance and induction of metastases, respectively  
[166, 167]. Thus, one may be concerned that PARP 
inhibitors may also exert similar effects by activating 
the AKT/PKB, JNK or SIR2α pathways. Indeed, PARP 
inhibition-induced taxol resistance has already been 
reported to be independent of the intracellular NAD+ level 
but mediated by the AKT/PKB pathway [161]. Although 
these findings may be worrying, they also suggest that 
simultaneous pharmacologic inhibition of PARP-1 and 
AKT/PKB may be a more efficient and, more importantly, a 
safer strategy for targeting PARP-1 in future antineoplastic 
chemotherapies. This concept is supported by the recent 
report that the use of pharmacologic inhibitors of the repair 
kinase ATM apparently bypasses chemoresistance for 
PARP-inhibitors in BRCA-ablated cells [168].

Insight into the extranuclear effects of PARP-1 
raised the possibility of the use of PARP inhibitors in a 
wider range of human pathologies as well. Inhibition of 
PARP-1 leads to tyrosine phosphorylation of the vascular 
endothelial growth factor receptor-2 (VEGFR2), activation 
of AKT/PKB and disruption of NF-κB-mediated 
inflammation adding new aspects to the therapeutic use of 
these compounds in chronic inflammatory conditions like 
vascular disease or Diabetes mellitus [143, 169].

The unexpectedly tangled cellular effects of PARP 
clearly call for further investigations. These efforts not only 
hold out the promise of enhancement of the therapeutic 
concept of PARP inhibition but a better understanding of 
the complex PARP-1 interactome as well.
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