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ABSTRACT
The enhancer of zeste homolog 2 (EZH2) is a core subunit of the polycomb 

repressor complex 2 (PRC2), which is overexpressed in numerous cancers and 
mutated in several others. Notably, EZH2 acts not only a critical epigenetic repressor 
through its role in histone methylation, it is also an activator of gene expression, 
acting through multiple signaling pathways in distinct cancer types. Increasing 
evidence suggests that EZH2 is an oncogene and is central to initiation, growth and 
progression of urological cancers. In this review, we highlight the critical role of 
EZH2 as a master regulator of tumorigenesis in the prostate, bladder and the kidney 
through epigenetic control of transcription as well as a modulation of various critical 
signaling pathways. We also discuss the promise and challenges for EZH2 inhibitors 
as future anticancer therapeutics, some of which are currently in clinical trials.

INTRODUCTION

Human cancer genome sequencing has revealed that 
various histone modifying genes that encode chromatin 
regulators are frequently mutated in a wide variety 
of cancers [1-3]. Covalent epigenetic modifications 
at enhancers and promoters of genes regulate critical 
genomic and biological processes like gene expression 
and cell fate specification [3-9]. There is increasing 
evidence that the chromatin modifier EZH2 is associated 
with cancer [10-21]. EZH2 is one of the core enzymatic 
subunits of PRC2, a highly conserved protein complex that 
methylates lysine27 of histone H3 (H3K27) to promote 
transcriptional silencing of many genes [22-25]. EZH2 is 
overexpressed in many cancers. Also, many gain or loss 
of function EZH2 mutations have been discovered in 
distinct cancer types. Notably, EZH2 is not only a critical 
epigenetic repressor through histone methylation, but also 
an activator of gene expression through different pathways 
[26].It is also clinically relevant in epigenetic cancer 
therapy and therefore many small molecule inhibitors 
have been developed that can specifically suppress the 
enzymatic activity of EZH2[27-29]. Notably, a phase ½ 
clinical trial of EPZ-6438 in patients with advanced solid 
tumors was launched.

Urological cancers of the prostate, bladder and the 
kidney are among the 10 most frequent cancers in Chinese 
men [30]. Prostate cancer is a major health concern in the 
older male populations all over the world and is the sixth 
most common cause of cancer related deaths in the world 
[31]. Androgen receptor (AR) plays a critical role in the 
development of prostate cancer and androgen deprivation 
therapy (ADT) is the first line therapy for newly diagnosed 
prostate cancer patients [32]. Nevertheless, most patients 
progress to castration-resistant prostate cancer (CRPC) 
and even metastatic prostate cancer [33]. 

Bladder cancer incidence is 3 times higher among 
males than females [34]. Nearly 386000 newly diagnosed 
cases and about 150000 deaths are reported annually 
worldwide [31]. Also, 75% to 80% of new patients are 
diagnosed with superficial non-muscle invasive bladder 
cancer (NMIBC) [35] Renal cell carcinoma is the eighth 
most common cancer in the United States [36] and its 
incidence is steadily rising in most areas of the world[37]. 
Total or partial nephrectomy is the optimal primary 
treatment. Nevertheless, renal cell carcinoma recurs in 20-
40% of patients after resection, which is associated with 
tumor stage and grade [38].

In this review, we highlight the transcriptional 
function of EZH2 in cancer and the current insights into 
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the role of EZH2 in prostate, bladder and kidney cancer. 
Finally, we will review the development, translation and 
early clinical findings of therapeutics targeting EZH2 in 
cancer.

THE FUNCTIONAL ROLE OF EZH2 

Human EZH2 gene is located on the long arm of 
chromosome 7 at 7q35 and encodes a 746 amino acid 
protein that is part of the PRC2 complex, which also 
includes SUZ12, EED, RbAp46 and RbAp48 as shown 
in Figure 1a [30]. PRC2 is a methyltransferase that 
methylates lysine 27 of histone H3 (H3K27me3) [39]. 
Many studies have implicated EZH2 as a key player 
in tumorigenesis. The role of EZH2 in cancer was 
first observed when it was identified as one of the top 
upregulated genes in aggressive prostate cancer [10]. Since 
then, similar findings have been reported in other human 

cancers including breast cancer, bladder cancer, renal 
cell carcinoma, etc [40-42]. In most cases, high EZH2 
expression is associated with metastasis and advanced 
disease in each of these cancer types. Collectively, the 
biological function of EZH2 includes canonical H3K27 
methylation, transactivation of gene expression and 
methylation of non-histone targets. 

Canonical H3K27 methylation

As a core subunit of PRC2, EZH2 methylates 
H3K27me3 that leads to transcriptional silencing. The 
SET domain is the catalytic subunit of EZH2 [43]. For 
epigenetic silencing, EZH2 complexes with EED and 
SUZ12, which are the two other subunits of the PRC2 
complex. Given its role as a transcriptional repressor 
(Figure 1b), substantial efforts have been dedicated to 
understand the mechanism by which EZH2 drives tumor 

Figure 1: The PRC2 complex structure and the function of EZH2 in transcriptional regulation. a. The PRC2 complex 
consist of four core subunits, namely, EZH2, EED, SUZ12 and RbAp46/48 and additional proteins like AEBP2, PHF1, and JARID2. b. 
The functional role of EZH2: as a subunit of PRC2, EZH2 methylates H3K27 which contributing transcriptional silencing, EZH2 also have 
a PRC2 independent role in transcriptional activation and can methylate a number of non-histone protein substrates. OFF and ON refer to 
transcriptional silencing and activation, respectively.
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development.
EZH2 and cancer initiation

EZH2 is essential for self renewal in stem 
cells [44]. Analogous to its role in normal stem cells, 
EZH2 suppresses differentiation via canonical H3K27 
methylation to repress lineage specifying factors [45, 
46]. EZH2 is essential survival and proliferation of 
breast tumor initiating cells [44]. High EZH2 levels have 
been observed in cancer stem cell (CSC) populations 
isolated from primary breast cancer cells compared to 
normal breast cell lines [44]. Further, EZH2 activates 
RAF1-β-catenin signaling pathway that promotes 
expansion of breast tumor initiating cells. Therefore, it 

is hypothesized that EZH2 promotes cancer initiation 
by blocking differentiation [47]. However, EZH2 is also 
essential for differentiation programs of several distinct 
cancer types [48]. Therefore, the primary role of EZH2 
is envisaged to include suppression of lineage specifying 
transcription programs in CSC and its effects on stemness 
and differentiation are probably secondary consequences. 
EZH2 and tumor metastasis

EZH2 mediates silencing of FOXC1 and DNA 
damage repair pathways thereby driving oncogenesis 
[44, 49, 50]. Moreover, EZH2 promotes epithelial-
mesenchymal transition (EMT) by epigenetically 
suppressing E-cadherin (also known as CDH1) via 

Table 1: List of downstream targets of EZH2 in urological cancer
Cancer type Target genes Function Contribution to tumorigenesis Reference
Prostate MSMB Inhibits MMP secretion Proliferation and invasion 83

DAB2IP Inhibition of NF-kB/Ras pathway Transformation, proliferation and invasion 75, 76
E-cadherin maintain epithelial cellular adhesion invasion 92
ADRB2 B-adrenergic signaling Transformation and invasion 77
SLIT2 Chemorepellent protein Proliferation and invasion 79
TIMP2/3 ECM degradation Invasion 82
PCAT-1 Transcriptional repressor lincRNA Proliferation 84
RKIP Inhibition of Raf and NF-kB pathways Invasion 85

Bladder APAF-1 apoptosis promoting factor Proliferation and invasion 91
E-cadherin maintain epithelial cellular adhesion Invasion 92

Kidney E-cadherin maintain epithelial cellular adhesion Invasion 53

Figure 2: EZH2 regulation and function in prostate cancer. EZH2 is the enzymatic subunit of PRC2, which catalyzes H3K23me3. 
EZH2 induces transcriptional silencing of tumor suppressor genes, which subsequently cause tumor initiation, growth and progression. 
EZH2 is regulated by E2F, p53, MYC, AKT, miR101, miR26a, miR26b and Let-7.
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canonical H3K27me3 modification of its promoter [50-
53], facilitated by MEK/ERK signaling [54]. Further, 
EZH2 interacts with HDAC1/HDAC2 and Snail to form 
a co-repressor complex that contributes to E-cadherin 
promoter repression [55]. EZH2 is also required to recruit 
Snail-Ring1A/B complex to the E-cadherin promoter [56]. 
Consequently, E-cadherin inhibition is correlated with 
advanced stage cancer with poor clinical outcomes [56]. 
EZH2 and tumor progression

There is increasing evidence that EZH2 promotes 
angiogenesis in clear renal cell carcinoma, inflammatory 
breast cancer, nasopharyngeal carcinoma (NPC) and 
glioblastomas (GBM) [13, 40, 57]. High expression levels 
of EZH2 and VEGF correlate with TMN stage and distant 
metastasis in advanced clear renal cell carcinoma [13]. 
In nasopharyngeal carcinoma (NPC), elevated EZH2 
levels were associated with an aggressive phenotype 
with poor prognosis and enhanced microvessel density 
[18]. EZH2 also promotes angiogenesis by inhibiting 
miR-1/Endothelin-1, which is an autocrine regulator of 
endothelial cells during neovascularization. Conversely, 
EZH2 represses angiogenesis during hypoxia and ischemia 
through its hypoxia response element (HRE) [58]. In 
endothelial cells, hypoxia results in EZH2 overexpression 
that regulates two pro-angiogenic genes, eNOS and 
BDNF, by augmenting the abundance of H3K27me3 at 
their promoters. However, from a therapeutic perspective, 
it is not clear if the EZH2 targets are essential for all 
cancer types.

Transactivating role of EZH2

Several studies have also identified a PRC2-
independent role of transcriptional activation for EZH2 
(Figure 1b) [59-62]. In a castration-resistant prostate 
cancer model, EZH2 acted as a co-activator for critical 
transcription factors including the androgen receptor 
(AR) that was independent of its transcriptional repressor 
function [63]. Further, EZH2 physically bridged the 
estrogen receptor (ER) and components of Wnt signaling 
to induce the gene expression in breast cancer cells [59]. 
EZH2 also activated NF-κB targets of NOTCH1 in breast 
cancer cells [61, 62]. 

Methylation of non-histone targets

Another PRC2-independent role of EZH2 is 
methylation of non-histone targets (Figure 1b). In 
a castration-resistant prostate cancer model, EZH2 
methylated AR and modulated AR recruitment to its 
target sites [63]. Further, EZH2 promoted tumorigenicity 
of glioblastoma stem-like cells by methylating STAT3 
[64]. EZH2 also methylates non-histone substrates 
that are recognized by the ubiquitination machinery for 
degradation [65]. 

Therefore, the biological functions of EZH2 include 
epigenetic repression through histone methylation as 
well as transcriptional activation of genes by modulating 
activity of various transcription factors and other 
associated proteins. However, the functional significance 
of the non-canonical functions of EZH2 to tumorigenesis 
is unclear at the present. 

DYSREGULATION AND FUNCTIONAL 
ROLES OF EZH2 IN UROLOGY CANCER

EZH2 and prostate cancer

Varambally et al first demonstrated a positive 
association between EZH2 protein levels and prostate 
cancer aggressiveness [10]. Since then, many studies have 
highlighted the association between EZH2 expression 
and prostate cancer development [66-68]. Notably, EZH2 
overexpression is not only associated with metastasis, 
but also with higher risk of recurrence after radical 
prostatectomy [10]. Hence, EZH2 is considered a potential 
diagnostic and prognostic biomarker in prostate cancer 
(Figure 2). 

EZH2 is regulated transcriptionally, post-
transcriptionally, and translationally (Figure 2). It also 
integrates and modulates many signaling pathways (Table 
2). The E2F transcriptional factors bind to EZH2 and 
EED promoters and regulate their expression during E2F 
mediated cell proliferation via EZH2 [69]. In contrast, 
activated p53 suppresses EZH2 gene expression by 
repressing the EZH2 promoter via p21 that inactivates 
pRB/E2F transcriptionally [70]. Further, SKP2-
TRAF6 pathway tightly regulates EZH2 expression 
by ubiquitination [71]. A recent study showed that a 
transcriptional repressor, ZFN217 interacted with EZH2 

Table 2: List of upstream targeting EZH2 in urological cancer
Cancer type Upstream modulator Reference
prostate AKT, p53, E2F, Myc, miR-101,miR-26a/b, Let-7 66,77,78,86
bladder Myc, E2F, miR-144, miR-101, miR-26a 81,82,84,87
kidney YB-1, LncRNA MALAT1 97,98
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to enhance H3K23me3 levels of FPN promoter to promote 
prostate cancer growth [72]. The splicing factor SF3B3 
stimulates inclusion of exon 14 of EZH2 that promotes 
proliferation [73]. The lncRNA MALAT1 interacts with 
the N-terminal of EZH2 to enhance migration and invasion 
in castration-resistant prostate cancer [74].

As a histone trimethyltransferase, EZH2 represses 
transcription of a number of tumorigenesis and metastasis 
suppressor genes thereby regulating prostate cancer 
development. A list of direct targets of EZH2 is shown 
in Table 1, which indicates that EZH2 is a bonafide 
oncogene. Enhanced EZH2 expression suppresses 
DABI2P expression that is part of the Ras-NFkB 
signaling pathway resulting in initiation and metastasis 
of prostatic tumors [75, 76] . Moreover, EZH2 represses 
the expression of adrenergic receptor beta 2 (ADRB2), 
which is a critical mediator of β-adrenergic signaling that 
ultimately leads to cell transformation and invasion [77]. 
E-cadherin is another EZH2 target that mediates epithelial 
to mesenchymal transition [50]. Also, PSP94, SLIT2 and 
CDKN2A are downstream targets of EZH2 in prostate 
cancer that mediates tumorigenesis and metastasis. PSP94 
is a suppressor of tumor growth and metastasis; SLIT2 
inhibits prostate cancer cell proliferation and invasion; 
and CDKN2A is a critical tumor suppressor gene [78-
80]. Moreover, a direct relationship between EZH2 and 
TIMP2/3-tissue inhibitors of metalloproteinase-results in 
enhanced proteolytic activity of MMP-9 in prostate cancer 
cells [81]. The lncRNA, DANCER represses TIMP2/3 
expression by mediating the binding of EZH2 on their 
promoters thereby promoting prostate cancer invasiveness 
[82]. High expression of the EZH2 gene is also associated 
with low MSMB levels in metastasizing prostate cancer 
[83]. Meanwhile, EZH2 can repress long non-coding 
RNA, PCAT-1, which is a prostate specific regulator of 
cell proliferation [84]. In addition, Raf-1 kinase inhibitor 
protein (RKIP), a tumor and metastasis suppressor is 
repressed by EZH2. Lack of RKIP disrupts major cellular 
signaling pathways like Raf-1/MEK/ERK, NFkβ, and 
GPCR resulting in prostate cancer development and 
metastasis [85]. Furthermore, RNNX1, a direct target of 
AR is repressed by H2K27me3 and is negatively regulated 
by EZH2 [86]. Notably, miR-26a and miR-138a block the 
G1/S-phase transition in prostate cancer, independent of 
EZH2, via a concerted inhibition of crucial cell cycle 
regulators [87].

EZH2 and bladder cancer

Many studies have indicated that there are 
multiple modes of regulating EZH2 that act in concert. 
EZH2 can be transcriptionally induced by E2F family 
transcription factors [69, 88]. Further, it can be regulated 
post-transcriptionally by the interaction with many 
microRNAs and long non-coding RNAs [89]. Moreover, 

its protein level can be modulated by ubiquitination linked 
degradation through PI3K-Akt phosphorylation [90]. 
EZH2 transcriptional activity correlates with methylation 
of the APAF-1 gene, which is associated with superficial 
transitional cell carcinoma of the bladder [91]. Further, 
EZH2 mediates transcriptional silencing of the tumor 
suppressor gene, E-cadherin [50, 92]. In addition, the 
pRB-E2F pathway tightly regulates EZH2 expression 
that promotes bladder cancer development [93]. Further, 
BDR4 regulates EZH2 transcription by upregulating 
c-Myc, thereby suggesting a novel therapeutic target in 
bladder cancer [94].

Several miRNAs are involved in EZH2 regulation. 
The microRNAs are small non-coding transcripts, 20-22 
nucleotides long that participate in many fundamental 
biological processes including development, apoptosis, 
differentiation and proliferation [95]. Some like miR-101, 
miR-144 directly regulate EZH2 post-transcriptionally [96, 
97]. In mouse fibroblasts, histone demethylase KDM2B 
induces expression of miR-101 that targets EZH2 [98]. A 
similar NDY1/KDM2B-miR101-EZH2 axis was identified 
in bladder cancer [99]. Meanwhile, miR144-EZH2 axis 
promotes bladder cell proliferation by regulating the Wnt 
signaling pathway [96]. Conversely, EZH2 also regulates 
a wide variety of miRNAs like the miR200 family and 
miR143 through epigenetic repression. These miRNAs 
regulate tumor suppressors thereby modulating tumor 
growth, maintain cancer stem phenotype and cancer cell 
invasiveness. 

Several lncRNAs interact with PRC2 and facilitate 
access to the promoter of some target genes. LncRNAs 
act as scaffolds for chromatin modifying factors that alter 
histone markers thereby modifying gene expression [100]. 
The lncRNA UNMIBC physically associates with EZH2 
and is associated with recurrence of primary invasive 
bladder cancer [101]. Further, lncRNA H19 is an enhancer 
that promotes bladder cancer metastasis by inhibiting 
E-cadherin expression through epigenetic silencing [92]. 
Also, the lncRNA UBC1 is physically associated with 
the PRC2 complex and frequently upregulated in bladder 
cancer [102]

EZH2 and renal cell carcinoma

Many studies have demonstrated that EZH2 plays 
crucial roles in the initiation, growth and progression 
of renal cell carcinoma (RCC) [103-106]. Wagener et 
al suggested that EZH2 is an independent prognostic 
marker indicating poor cancer specific survival (CSS) 
in RCC [107] . Hinz et al demonstrated that high EZH2 
levels indicated less aggressive tumor phenotypes with a 
favorable prognosis in RCC [12].

Many factors regulate EZH2 in regard to RCC. YB1 
regulates EZH2 post-transcriptionally [108]. Long non-
coding RNAs, such as HOTAIR and MALAT1, promote 
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aggressive renal cell carcinoma by associating with EZH2 
[109, 110]. MiR101 suppresses EZH2 that results in 
decreased renal cancer cell proliferation [111]. MiR138 
induces RCC senescence by targeting EZH2 [112]. Du 
et al showed that CDH5, a chromatin remodeling factor, 
suppressed the expression of EZH2 [113].

Meanwhile, EZH2 enhanced proliferation and 
invasion of the renal cell carcinoma cell line ACHN via 
Wnt / β-catenin pathway [114]. Also, EZH2 positively 
correlated with VEGF expression [13]. Additionally, high 
EZH2 expression repressed E-cadherin and was associated 
with advanced disease state and poor survival of RCC 
patients [53]. 

EZH2 AS A THERAPEUTIC TARGET

As discussed in previous sections, EZH2 has a 
critical role in tumor initiation, growth and progression 
in urological cancers. Further, downregulation of EZH2 
demonstrates potential benefits for suppressing the 
urological cancers [115-120]. Therefore, there is great 
interest and effort to develop EZH2 specific inhibitors and 
multiple phase I trials are underway to analyze potential 
clinical benefits.

3-deazaadenosine (DZNep) has been widely 
used to inhibit EZH2. However, DZNep is not specific 
to EZH2[27]. It depletes PRC2 proteins and inhibits 
histone H3K27 methylation in various cancer types [121-
126]. Among the drawbacks, DZNep has a very short 
plasma half-life and mediates non-specific inhibition 
of histone methylation and is toxic in animal models 
[127]. Therefore, currently efforts have been directed 
towards developing inhibitors that are potent and specific 
to EZH2 to reduce toxicity and improve antitumor 
activities. EPZ005687 is a potent inhibitor of EZH2 
that demonstrates 500 fold greater selectivity compared 
to other human protein methyl transferases and 50 fold 
more selective than EZH1[28, 128]. GSK126 is another 
inhibitor with a 1000 fold more selective compared to 
20 other human methyl transferases and 150 fold more 
selective over EZH1 [129]. And GSK343 is inhibitor with 
a 1000 fold over other human methyl transferases and 
60 fold over EZH1[130]. EI1 is another EZH1 inhibitor 
that shows >10000-fold selectivity over other methyl 
transferases and 90 fold more selectivity over EZH1 
[131]. In all these cases, there is increased expression of 
PRC2 targets. Notably, many of these compounds require 
frequent injection. Hence, UNC1999, the first orally 
available inhibitor with high in vitro potency for wild-
type and mutant EZH2 as well as EZH1 is preferred [132]. 
Currently, another EZH2 inhibitor, EPZ-6438 has been 
developed that has better pharmacokinetic properties than 
EPZ005687 and better oral bioavailability [133]. In June 
2013, a phase 1/2 clinical trial of EPZ7438 was launched 
in patients with either advanced solid tumor or B cell 
lymphomas (NCT01897571). In addition, a biologically 
active biphenolic compound, honokiol was isolated from 

Magnolia officinalis that inhibited human urinary bladder 
cancer (UBC) cell proliferation, migration and invasion by 
downregulating EZH2[117]. EZH2 can also be inhibited 
by disrupting PRC2 stability through the use of a peptide 
known as stabilized alpha-helix of EZH2(SAH-EZH2) 
that is derived from the domain of EZH2 that interacts 
with EED[134].

Meanwhile, reports of therapy resistance to EZH2 
inhibitors have also been reported. In a cell line model 
of acquired resistance to EZH2 inhibitor EPZ-6438, two 
novel secondary mutations of EZH2 (Y111L and Y661D) 
were identified following prolonged exposure to EZH2 
inhibitors that were associated with therapy resistance 
[135]. A combination of GSK126 and DZNep significantly 
increased cell death in vitro in murine and human prostate 
cancer cell lines [136]. Recent data also suggests that 
concomitant administration of small molecule inhibitors 
of EZH2 significantly increases the antitumor efficacy of 
conventional chemo-and radiotherapies in CRPC [115]. 

In summary, the development of EZH2 inhibitors 
for cancer therapy is in early stages and there have been 
reports of resistance that need to be addressed. Further 
studies are ongoing for potential combination therapy that 
includes use of EZH2 inhibitors. 

CONCLUSIONS, QUESTIONS AND 
FUTURE DIRECTIONS

In conclusion, we have reviewed both clinical 
and basic studies that clearly indicate that EZH2 is an 
oncogene in urological cancers. Whole genome analysis 
has indicated that the downstream targets of EZH2 
are cancer specific [137]. Since EZH2 has a dual role 
in epigenetic repression and signaling activation, it is 
interesting to investigate the consequence of gain of 
function EZH2 mutations towards cancer development in 
terms of PRC2 dependency. Compared to its epigenetic 
role, the signaling pathways involving EZH2 need to be 
further studied in detail. 

EZH2 was originally discovered as a regulator 
of body patterning in fruit flies.[138] As of now, it is 
recognized as a critical driver of cancer initiation, growth 
and progression through transcriptional regulation of 
chromatin structure. Future investigations into the role of 
EZH2 in urological cancers would require application of 
advanced techniques including microarrays and RNAseq. 
Newer technological advances will potentially pave the 
way for novel EZH2 inhibitors for therapeutic use in near 
future. 
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