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ABSTRACT
Microtubule-associated protein tau (MAPT) gene is compelling among the 

susceptibility genes of neurodegenerative diseases which include Alzheimer’s disease 
(AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), corticobasal 
degeneration (CBD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis 
(ALS). Our meta-analysis aimed to find the association between MAPT and the risk 
of these diseases. Published literatures were retrieved from MEDLINE and other 
databases, and 82 case-control studies were recruited. Six haplotype tagging single-
nucleotide polymorphisms (rs1467967, rs242557, rs3785883, rs2471738, del-In9 and 
rs7521) and haplotypes (H2 and H1c) were significantly associated with the above 
diseases. The odds ratios (ORs) and 95 % confidence intervals (CIs) were evaluated 
by comparison in minor and major allele frequency using the R software. This study 
demonstrated that different variants in MAPT were associated with AD (rs2471738: 
OR= 1.04, 95%CI = 1.00 - 1.09; H2: OR = 0.94, 95% CI = 0.91 - 0.97), PD (H2: OR 
= 0.76, 95% CI = 0.74 - 0.79), PSP (rs242557: OR = 1. 96, 95% CI = 1. 71 - 2.25; 
rs2471738: OR = 1. 85, 95% CI = 1. 48 - 2.31; H2: OR = 0.20, 95% CI = 0.18 - 0.23), 
CBD (rs242557: OR = 2.51, 95%CI = 1. 66 -3.78; rs2471738: OR = 2.07, 95%CI = 1. 
32 -3.23; H2: OR = OR = 0.30, 95% CI = 0.23 - 0.41) and ALS (H2: OR = 0.92, 95% 
CI = 0.86 - 0.98) instead of FTD (H2: OR = 1.02, 95% CI = 0.78 - 1.32). In conclusion, 
MAPT is associated with risk of neurodegenerative diseases, suggesting crucial roles 
of tau in neurodegenerative processes.

INTRODUCTION

Neurodegenerative diseases are a group of 
disorders with progressive neuronal loss in particular 
regions of brain, including Alzheimer’s disease (AD), 
Parkinson’s disease (PD), progressive supranuclear palsy 
(PSP), corticobasal degeneration (CBD), frontotemporal 
dementia (FTD), amyotrophic lateral sclerosis (ALS) and 
many others. The etiology of neurodegenerative diseases 
is complicated and multifactorial, mainly including 
genetic variants and environmental exposure. However, 
epidemiologic evidence for the association between the 

environmental exposure and neurodegenerative diseases 
is not conclusive [1]. Genetic variant is a crucial factor in 
etiology and pathogenic mechanisms of neurodegenerative 
diseases [2]. Hundreds of genetic variants have been 
confirmed significantly associated with neurodegenerative 
diseases, but the majority of these genes do not overlap 
across diseases [2]. Only several susceptibility genes 
relate to diverse neurodegenerative diseases. Among 
them, microtubule-associated protein tau (MAPT) gene is 
compelling [3]. Mutations in MAPT have been reported to 
participate in AD [4-6], PD [7-9], PSP [10, 11], CBD [12, 
13], FTD [14, 15] and ALS [16, 17].
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MAPT is located on chromosome 17q21.3, and 
encodes six tau isoforms ranging from 352 to 441 amino 
acids in length expressed in neurons [18]. To date, nearly 
60 mutations in MAPT have been proved pathogenic to 
neurodegenerative diseases [3]. Most MAPT variants 
probably cause abnormal structure and function of 
hyperphosphorylated, insoluble and aggregated tau. These 
pathological changes are crucial for the pathogenesis 
of tau-related neurodegenerative diseases, which are 
called tauopathies [19]. As known to all, there are two 
main haplotypes in MAPT, H1 and H2. Several single-
nucleotide polymorphisms (SNPs) throughout MAPT gene 
are in complete linkage disequilibrium (LD) and largely 
tags the H1 and H2 haplotypes, called haplotype tagging 
SNPs (htSNPs) [20]. Six htSNPs were identified, including 
5 htSNPs that represent the intra-H1 variation (rs1467967, 
rs242557, rs3785883, rs2471738, and rs7521) and a 
238-bp insertion/deletion polymorphism within intron 
9 (del-In9) (Haplotype H1c: rs1467967 = A, rs242557 
= A, rs3785883 = G, rs2471738 = T, del-In9 = ins and 
rs7521 = G) [20, 21]. The insertion of the del-In9 tags 
H1 haplotype and the deletion tags H2 haplotype. So, the 
available data of del-In9 were included into the H2 group 
to be further analyzed. Two htSNPs were the promoter 

polymorphisms (rs1467967 and rs242557) and three 
were intronic (rs3785883, rs2471738, and rs7521) [22]. 
Additionally, the Q7R (rs62063857) polymorphism of 
the Saitohin gene (STH), nested in intron 9 of the MAPT, 
is in complete LD with the extended H1/H2 haplotype 
[23, 24]. The Q and R alleles were in LD with H1 and 
H2 haplotypes, respectively [23, 24]. Unfortunately, some 
studies showed obvious association of MAPT variants with 
neurodegenerative diseases, while others showed none. 
The results of the related studies were inconsistent.

Therefore, we performed a meta-analysis by pooling 
the whole related data from previously studies to reach a 
more precise estimate of the relationship between variants 
in MAPT and their risk on neurodegenerative diseases.

RESULTS

5357 studies were retrieved through the literature 
search, and 1226 papers of these were identified as 
potentially meeting the inclusion criteria after reviewing 
the titles and abstracts. Besides, we included 148 studies 
by manual searching. After further reviewing the full text, 
82 studies were identified eligible (Figure 1). The results 
of meta-analysis on the association between variants in 

Figure 1: Flow diagram of the study selection process. Abbreviations: OR, odds ratio; CI, confidence interval; HWE, Hardy-
Weinberg equilibrium.
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MAPT and neurodegenerative diseases were shown in 
Figure 2-5.

Alzheimer’s disease

A total of 37 studies were included in the meta-
analysis of MAPT polymorphism in AD [4-6, 20, 25-57] 
(Supplementary Table 2). Among them, 34 studies were 
conducted in Caucasian populations, and 3 studies were 
performed in Asian populations. Two studies did not state 
the diagnostic criteria of AD, and 15 studies did not state 
whether the polymorphisms were in Hardy-Weinberg 
equilibrium (HWE). AD cases were diagnosed mainly 
using the criteria of the National Institute of Neurological 
and Communication Disorders and Stroke-Alzheimer 
Disease and Related Disorders Association (NINCDS-
ADRDA) [58], or confirmed by autopsy. Notably, our 
meta-analysis showed that the minor allele (T allele) 
within rs2471738 was mildly associated with an increased 
risk of AD (odds ratio (OR) = 1.04, 95% confidence 
interval (CI) = 1.00 - 1.09) and H2 haplotype might be 
a protective factor for AD (OR = 0.94, 95% CI = 0.91 - 
0.97) (Figure 2; Supplementary Table 8). No associations 
were found in rs1467967, rs242557, rs3785883, rs7521 
and H1c for AD (OR = 1.01, 95% CI = 0.97 -1.05; OR 
= 1.02, 95% CI = 0.94 -1.12; OR = 0.89, 95% CI = 0.77 
-1.02; OR = 1.00, 95% CI = 0.97 -1.03; OR = 1.02, 95% 

CI = 0.97 -1.08; respectively) (Figure 2; Supplementary 
Table 8). Due to the ethnic heterogeneity, we performed 
the subgroup analyses by ethnicity. Interestingly, the 
minor allele (A allele) within rs3785883 was a protective 
factor for AD risk in Caucasian (OR = 0.87, 95% CI = 
0.76 -1.00) (Supplementary Table 9). This result was 
calculated by the random-effects model because the 
heterogeneity existed in the included studies of rs3785883 
in Caucasian (I2 = 75.2). The heterogeneity was reduced 
to 56.2% and the pooled effect was changed into negative 
(OR = 0.94, 95% CI = 0.84 - 1.05) when one single study 
was excluded [53]. We speculated that the influence of 
this study maybe result from the origin of the Spanish 
which was different from other Caucasian populations. 
Publication bias was assessed by Egger test, and only the 
subgroup of rs3785883 in Caucasian that showed little 
publication bias (P Egger = 0.0499) (Supplementary Table 
9). Using the trim and fill method to account for the bias 
did not influence the summary estimate for rs3785883 in 
Caucasian [59].

Parkinson’s disease

A total of 32 studies were included in the meta-
analysis of MAPT polymorphism in PD [7, 8, 36, 39, 
43, 53, 60-85] (Supplementary Table 3). Among them, 
27 studies were conducted in Caucasian populations, 3 

Figure 2: Results of the meta-analysis for five htSNPs, H2 haplotype and H1c subhaplotype in Alzheimer’s disease. 
Abbreviations: OR, odds ratio; SNP, single nucleotide polymorphism; I2, the heterogeneity calculated by the Cochran Q test; n, the number 
of included studies.
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studies were performed in Asian populations, and one 
study was conducted in African populations. Besides, 
one study included both Caucasian and Asian populations 
[66]. Six studies lacked diagnostic criteria for PD. Seven 
studies did not state whether the polymorphisms were 
within the range of HWE. Most included studies were 
based on the UK Parkinson’s Disease Society Brain Bank 
clinical diagnostic criteria (UKPDBB) or the extended 
[86-88], or autopsy. Remarkable, our meta-analysis found 
that H2 haplotype might be a protective factor for PD (OR 
= 0.76, 95% CI = 0.74 - 0.79) (Figure 3; Supplementary 
Table 11). Then we performed the subgroup analyses by 
ethnicity. Similarly, H2 haplotype showed protective effect 
on PD in Caucasian subgroup (OR = 0.76, 95% CI = 0.74 
- 0.79) (Supplementary Table 12). Additionally, the minor 
allele within rs242557 (A allele) and rs7521 (A allele) 
were mildly associated with an increased risk of PD in 
Caucasians (OR = 1.06, 95% CI = 1.01 - 1.12; OR = 1.11, 
95% CI = 1.00 - 1.23, respectively) (Supplementary Table 
12). No heterogeneity was existed in each subgroup. The 
data above were calculated by the fixed-effects model. In 
addition, based on the results from the Egger test, there 
was no publication bias.

Progressive supranuclear palsy

Twelves studies were included in the meta-analysis 
of MAPT polymorphism in PSP [11, 12, 15, 21, 23, 26, 

45, 85, 89-92] (Supplementary Table 4). All of the studies 
were according to standard diagnostic criteria [93, 94]. 
Five studies did not perform the HWE test. All studies 
were performed in Caucasians. Notably, our results 
showed that the minor allele within rs242557 (A allele) 
and rs2471738 (T allele) may be risk factors for PSP 
(OR = 1. 96, 95% CI = 1. 71 - 2.25; OR = 1. 85, 95% 
CI = 1. 48 - 2.31; respectively) (Figure 4; Supplementary 
Table 14). H2 haplotype showed significantly protective 
effect on PSP risk (OR = 0.20, 95% CI = 0.18 - 0.23). 
Additionally, H1c significantly increased the risk of PSP 
(OR = 2.33, 95% CI = 1.28 - 4.25). The pooled ORs 
and 95%CIs of three subgroups were calculated by the 
random-effects model because the heterogeneity evidently 
existed. For rs242557 subgroup sensitivity analysis, the 
heterogeneity was reduced to 41.1% and the pooled effect 
was mildly increased (OR from 1.96 to 2.09) when the 
stage 2 of the study of Hoglinger et al. was excluded [11]. 
The majority of cases in the stage 2 of this study were 
clinically diagnosed and this diagnostic misclassification 
rate as 12% [11]. Hence, we inferred that the highly 
diagnostic misclassification rate might affect the result. 
In addition, for H1c subgroup sensitivity analysis, the 
heterogeneity was reduced to 28.4% and the pooled effect 
was mildly increased (OR from 2.33 to 3.17) when one 
single study conducted in the Spanish was excluded [12]. 
However, the heterogeneity cannot be further explained 
for the rs3785883 subgroup, maybe due to too few studies 

Figure 3: Results of the meta-analysis for five htSNPs, H2 haplotype and H1c subhaplotype in Parkinson’s disease. 
Abbreviations: OR, odds ratio; SNP, single nucleotide polymorphism; I2, the heterogeneity calculated by the Cochran Q test; n, the number 
of included studies.
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included. In conclusion, heterogeneity and sensitivity 
analyses showed that the exclusion of the related study 
did not influence the statistical significances of factors. In 
addition, no publication bias was found.

Corticobasal degeneration

Six studies were included in the meta-analysis of 
MAPT polymorphism in CBD [12, 13, 15, 21, 85, 95] 
(Supplementary Table 5). Only one study lacked the 
diagnostic criteria for CBD [15], while two studies did 
not analyze the HWE [13, 85]. All of the included studies 
were conducted in Caucasian populations. Remarkably, 
our meta-analysis showed that the minor allele within 
rs242557 (A allele) and rs2471738 (T allele) may increase 
the risk of CBD (OR = 2.51, 95%CI = 1. 66 -3.78; OR 
= 2.07, 95%CI = 1. 32 -3.23; respectively). Notably, H2 
haplotype showed protective effect on CBD (OR = 0.30, 
95% CI = 0.23 - 0.41), whereas H1c may be risk factor 
for CBD (OR = 2.57, 95%CI = 1.51 - 4.40) (Figure 5; 
Supplementary Table 15). The heterogeneity among 
included studies only existed in rs7521 subgroup. For 
rs7521 subgroup sensitivity analysis, the heterogeneity 
was reduced to 0% when one single study which did 
not report the HWE test was excluded [13]. However, 
heterogeneity and sensitivity analyses showed that the 
exclusion of the related study did not influence the 
statistical significances.

Frontotemporal dementia

Seven studies were included in the meta-analysis of 
MAPT polymorphism in FTD [14-16, 20, 35, 43, 96, 97] 
(Supplementary Table 6). All studies were conducted in 
Caucasians. All of the studies were according to the Lund-
Manchester criteria or the extended [98, 99]. Three studies 
did not perform the HWE test [14, 16, 20]. All studies 
included were only explored the association between 
MAPT haplotypes and FTD. However, the results showed 
that H2 haplotype was not associated with FTD risk (OR 
= 1.02, 95% CI = 0.78 - 1.32) (Figure 6; Supplementary 
Table 16). Mild heterogeneity was existed (I2 = 55.5) and 
reduced to 42.5% when the three studies which did not 
report the HWE test was excluded. But the exclusion of the 
related study did not influence the statistical significances.

Amyotrophic lateral sclerosis

Two studies were included in the meta-analysis of 
MAPT polymorphism in ALS [16, 17] (Supplementary 
Table 7). All studies were conducted in Caucasians and 
all cases were diagnosed according to El Escarol criteria 
for ALS. One study had not performed the HWE test [16]. 
Like FTD, the studies included were only restricted to the 
association between MAPT haplotypes and ALS. Notably, 
the H2 haplotype showed mildly protective effect on ALS 

Figure 4: Results of the meta-analysis for five htSNPs, H2 haplotype and H1c subhaplotype in progressive supranuclear 
palsy. Abbreviations: OR, odds ratio; SNP, single nucleotide polymorphism; I2, the heterogeneity calculated by the Cochran Q test; n, the 
number of included studies.
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risk (OR = 0.92, 95% CI = 0.86 - 0.98, I2 = 0) (Figure 6; 
Supplementary Table 17). No heterogeneity was found (I2 
= 0). 

DISCUSSION

Our findings provide confirmatory evidence 
that multiple variants in distinct regions in MAPT are 
associated with different neurodegenerative diseases. The 
minor alleles within rs1467967 and rs242557 are not all 
the same in different populations (Supplementary Table 1). 
For uniformity, we all choose the same allele (the minor 
allele in Caucasians) in subgroups divided by populations 
for accuracy.

AD is histopathologically characterized by two 
neuropathological hallmarks: neuritic plaques primarily 
composed of extracellular Amyloid-β (Aβ) deposits and 
intracellular neurofibrillary tangles (NFTs) composed of 
hyper-phosphorylated tau protein [100]. Obviously, tau 
protein, the MAPT gene encoded, plays an essential role 
in the pathogenesis of AD. It participates in the forming of 
NFTs. However, the genetic association between MAPT 
variants and AD risk has been inconsistent. Our results 
showed that rs2471738, rs3785883 and H2 haplotype 
were associated with AD. Several studies found that the 
pathogenesis of AD conferred by MAPT variants might be 
increasing levels of total or/and 4-repeat (4R) tau [6, 48, 

101]. The T allele at rs2471738 has been associated with 
increased AD risk. But this SNP lies within a region of 
intron 9, and does not appear to interrupt the splice sites. 
This suggests that perhaps rs2471738 is not functional, but 
is in LD with other functional variants [4, 50]. Notably, the 
A allele at rs3785883 was found with a decreased risk of 
AD only in Caucasians. However, after the heterogeneity 
and sensitivity analysis, the association changed into 
negative when one study was excluded [53]. Hence, 
the protective effect of the A allele at rs3785883 on AD 
development in Caucasians is unreliable and awaits further 
investigation. Remarkably, both the two included studies 
showed that the A allele at rs242557 was associated with 
a decreased risk of AD in Asian [55, 56]. When pooling 
together, our result showed no association. So further 
studies are needed to verify this association since our 
result was only based on two studies.

PD is the second most common neurodegenerative 
disease following AD. Recently, some genome-wide 
association studies (GWAS) have provided robust evidence 
for the genetic association of MAPT with PD [7, 8, 73]. 
Likewise, our pooled analysis showed a robust association 
between MAPT and PD. We found that rs242557, rs7521 
and H2 haplotype were associated with PD in Caucasian. 
Besides, MAPT variants influence the susceptibility 
of PD risk mainly by affecting the levels of total or 4R 
tau [8]. Then the tau would interact with α-synuclein, 

Figure 5: Results of the meta-analysis for five htSNPs, H2 haplotype and H1c subhaplotype in corticobasal degeneration. 
Abbreviations: OR, odds ratio; SNP, single nucleotide polymorphism; I2, the heterogeneity calculated by the Cochran Q test; n, the number 
of included studies.
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which forms the Lewy body in PD [102]. This process 
can promote the fibrillization of both tau and α-synuclein, 
and drive the formation of pathological inclusions in 
PD [103]. Rs242557 in the promoter of MAPT has been 
identified as a functional variant, which could affect the 
expression or splicing of MAPT, acting as cis-factors [83, 
104]. Therefore, we speculate that rs242557-A allele can 
increase the brain tau levels in PD patients and thus raise 
the risk of PD susceptibility in Caucasians. For rs7521, 
the A allele could lower the age at onset (AAO) of PD and 
in reverse the G allele delays the AAO [70]. This finding 
is identical to our result that the A allele at rs7521 could 
increase the risk of PD in Caucasians. The mechanism 
may be that rs7521 is in LD with other risky SNPs [70]. 
We confirmed that H2 haplotype could decrease the risk 
of PD in Caucasians. However, only one study in Asian 
and one in African were included, and so the association 
of MAPT haplotype with PD in non-Caucasians awaits 
further investigation.

PSP and CBD are two parkinsonian syndromes 
characterized by deposits of neurofibrillary tangles in the 
brain, which are mainly composed of 4R MAPT protein 
isoforms [105]. In healthy adult brain, the levels of 3R-tau 
and 4R-tau are approximately equal. 4R-tau were nearly 
three times faster than 3R-tau for the rates of promoting 
to microtubule assemble to form the NTFs [3]. Probably, 
the two disorders are genetically related diseases and share 
a similar cause that involves tau dysfunction [12, 95]. 
However, PSP and CBD are usually considered sporadic 
disorders, so the genetics of the two disorders has been 
seldom researched [89, 95]. Hence, our meta-analysis is 

essential for identifying the genetics of PSP and CBD by 
pooling the limited studies. We confirmed that rs242557, 
rs2471738 and H1c subhaplotype could increase the risk of 
PSP and CBD, while H2 haplotype decrease. What’s more, 
these results were further confirmed that PSP and CBD 
might share a similar genetic background. Similarly, the 
mechanisms for the associations of rs242557, rs2471738, 
H2 and H1c with PSP and CBD may be due to influence 
the levels of tau, especially the 4R tau. However, only 
two studies were included in the subgroup of rs242557, 
rs2471738 and H1c in CBD. So, these results should be 
treated with cautious and more related studies are needed 
in the further.

FTD is a form of presenile dementia characterized 
clinically by behavioral and personality changes, mutism 
and decline of memory later in the disease [96], which 
neuropathologically affecting the frontal and/or temporal 
lobes. Many studies confirmed that mutations in the MAPT 
gene had been detected in autosomal dominant FTD with 
parkinsonism (FTDP). In addition, the accumulation of 
aberrant tau protein was found in FTD. These findings 
suggested that MAPT may be a genetic risk factor for FTD. 
However, our meta-analysis was failed to find the MAPT 
haplotypes had been associated with FTD. We suggest 
that more studies on other variants in MAPT are needed to 
probe the association and also in other populations.

ALS is a rarely progressive neurodegenerative 
disorder, but is the most common motor neuron 
disease in adult-onset. ALS is characterized by the 
simultaneous deficits of upper and lower motor neurons, 
which lead to muscle atrophy and paralysis [106]. The 

Figure 6: Results of the meta-analysis for H2 haplotype in FTD and ALS. Abbreviations: OR, odds ratio; FTD, frontotemporal 
dementia; ALS, amyotrophic lateral sclerosis; I2, the heterogeneity calculated by the Cochran Q test; n, the number of included studies.
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hyperphosphorylated and aggregated tau have been found 
in ALS, while the association was uncertain. We pooled 
that presently limited studies and found that H2 haplotype 
may be a mildly protective factor for ALS.

Our meta-analyses provide confirmatory evidence 
that multiple variants in MAPT are associated with 
neurodegenerative diseases risk. But there are several 
limits in our study. One limitation of our study is that the 
present studies were only limited to Caucasian populations 
in PSP, CBD, FTD and ALS, to our knowledge. What is 
more, in FTD and ALS, the studies were only limited to 
H1/H2 haplotype. Therefore, more studies are needed in 
the future, particularly those which performed in different 
populations and SNPs. Another limitation is different 
diagnostic criteria across studies. The accuracy of clinical 
diagnostic criteria is lower than pathological diagnostic 
criteria. For example, we assumed that about 6% of the 
patients had PSP but might be clinically diagnosed as PD 
by mistake [88]. Furthermore, we divided the data into 
subgroups by different criteria. But there was no difference 
across the pathological and clinical diagnostic subgroups.

In conclusion, this is the first comprehensive 
meta-analysis and systematic review which focused 
on the association between MAPT polymorphisms 
and neurodegenerative diseases so far. Our results 
robustly confirm the susceptibility role of MAPT in 
neurodegenerative diseases in a large meta-analysis, 
using highly informative htSNPs which capture 
95% of MAPT haplotype diversity. Here we analyze 
these variants in MAPT and their association with 
neurodegenerative diseases as a step toward determining 
the precise mechanisms of genetic susceptibility for these 
group diseases. Significantly, this will have important 
implications for identifying potential therapeutic targets.

MATERIALS AND METHODS

Identification and selection of relevant studies

In order to identify the association between the 
MAPT polymorphism with neurodegenerative diseases, 
we conducted a literature search in MEDLINE, EMBASE 
and the Cochrane library up to September 2016. We 
used the key search terms including “microtubule-
associated protein tau”, “MAPT”, “saitohin”, “STH”, 
“polymorphism”, “Alzheimer’s disease”, “Parkinson’s 
disease”, “progressive supranuclear palsy”, “corticobasal 
degeneration”, “frontotemporal dementia”, “amyotrophic 
lateral sclerosis” and “neurodegenerative disease”, 
combined with Boolean operators as appropriate. 
Additional studies were obtained from the reference lists 
of relevant original studies or review articles.

We assessed all studies if they meet the following 
criteria: (1) Evaluation of an association between MAPT 

polymorphisms and neurodegenerative diseases; (2) Case-
control studies design; (3) Available allelic frequency 
for MAPT rs1467967, rs242557, rs3785883, rs2471738, 
rs7521, H2 and H1c haplotypes; Data of allelic frequency 
for estimating the OR with corresponding 95% CI were 
available in the report or could be calculated. We exclude 
the study, which the genotype frequency in the control 
group was not in HWE. Additionally, when two or more 
studies had overlapping participants, only the one with 
larger sample size was included.

Data extraction and quality assessment

Two reviewers independently read the studies and 
extracted data according to predefined criteria. Data of 
allelic frequency and its OR with corresponding 95% 
CI were extracted. Besides, the following information 
was extracted: author, publication year, state, ethnicity, 
diagnostic criteria, type of neurodegenerative diseases, 
sample size, mean age, the percentage of female, minor 
allele frequency, and the HWE test in each control group. 
The quality of studies was assessed with the Newcastle-
Ottawa quality Scale (NOS): 1) the Selection; 2) the 
Comparability; 3) the Exposure [107]. Studies with a score 
of at least seven points were considered to be high quality.

Statistical analysis

To determine the strength of associations between 
individual MAPT polymorphism and neurodegenerative 
disease, we calculated a pooled OR and 95 % CI using 
R software. The OR and 95 % CI were evaluated by 
comparison in minor and major allele frequency using 
the Pearson χ2 test or Fisher’s exact test. We used the 
random-effects and fixed-effects model to calculate the 
subgroup and pooled ORs with 95% CIs in the presence 
and absence of heterogeneity, respectively. We assessed 
the heterogeneity by the Cochran Q and I2 (P > 0.10 or 
I2 < 50%, mean a lack of heterogeneity). Publication 
bias was detected by Egger’s test (P > 0.05, mean no 
publication bias) [108]. When k ≥ 10, we calculate the 
P value of Egger’s test using R software (k, means the 
number of studies). We used the trim and fill method to 
adjust the statistically significant publication bias [59]. In 
addition, as ethnic-specific susceptibility variants exist, we 
reanalyzed the data according to different races (Caucasian 
and Asian).

Abbreviations

MAPT = microtubule-associated protein tau; AD 
= Alzheimer’s disease; PD = Parkinson’s disease; PSP 
= progressive supranuclear palsy; CBD = corticobasal 
degeneration; FTD = frontotemporal dementia; ALS = 
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amyotrophic lateral sclerosis; SNPs = single-nucleotide 
polymorphisms; htSNPs = haplotype tagging SNPs; LD 
= complete linkage disequilibrium; del-In9 = a 238-bp 
insertion/deletion polymorphism within intron 9; STH 
= Saitohin gene; HWE = Hardy-Weinberg equilibrium; 
NINCDS-ADRDA = the diagnostic criteria of the National 
Institute of Neurological and Communication Disorders 
and Stroke-Alzheimer Disease and Related Disorders 
Association; OR = odds ratio; CI = confidence interval; 
UKPDBB = the UK Parkinson’s Disease Society Brain 
Bank clinical diagnostic criteria; Aβ = Amyloid-β; 4R = 
4-repeat; GWAS = genome-wide association studies; AAO 
= age at onset; FTDP = FTD with parkinsonism; NOS = 
Newcastle-Ottawa quality Scale.
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