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ABSTRACT
Chronic inflammation plays an important role in tumorigenesis of cervical cancer. 

CD200Fc, a CD200R1 agonist, has been found to have anti-inflammatory effects in 
autoimmune diseases and neuro-degeneration. However, the anti-inflammatory effect 
of CD200Fc on cervical cancer has not yet to be completely understood. This study 
investigated the anti-inflammatory effects and mechanisms of CD200Fc in LPS-induced 
human SiHa cells and Caski cells. SiHa cells and Caski cells were stimulated with 40 
μg/ml LPS under different concentrations of CD200Fc for 90 min or 12 hours. The 
mRNA and protein levels of pro-IL-1β, cleaved-IL-1β and NLRP3, as well as the protein 
level of cleaved caspase-1, were significantly increased in LPS-induced SiHa cells 
and Caski cells. LPS stimulation did not change ASC and pro-caspase-1 expression. 
CD200Fc down-regulated protein expression of cleaved caspase-1 and mRNA and 
protein expression of pro-IL-1β, cleaved-IL-1β and NLRP3. In addition, the protein 
levels of TLR4, p-P65 and p-IκB, as well as the translocation of P65 to nucleus, were 
significantly increased in LPS-induced SiHa cells and Caski cells. LPS stimulation did 
not change t-P65 and t-IκB on protein levels, which were components of TLR-NF-κB  
pathway. CD200Fc down-regulated protein expression of TLR4, p-P65 and p-IκB and 
inhibited the translocation of P65 to nucleus in LPS-induced SiHa cells and Caski 
cells. These results indicated that CD200Fc appeared to suppress the inflammatory 
activity of TLR4-NF-κB and NLRP3 inflammasome pathway in LPS-induced SiHa cells 
and Caski cells. It provided novel mechanistic insights into the potential therapeutic 
uses of CD200Fc for cervical cancer.

INTRODUCTION

Cervical cancer (CC) is the second most common 
cancer in females worldwide [1]. Reports have suggested 
that human papillomavirus (HPV), such as HPV 16 and 
18, are well established as an etiological agent for CC 
and have the ability to transform normal cervical cells 
into neoplastic cells [2, 3].  However, infection with HPV 
by itself is thought to be insufficient for the malignant 
transformation of HPV infected normal cervical cells 
[4]. Recently, with the deepening research on CC, it has 
been confirmed that HPV infection along with persistent 
chronic inflammation can induce carcinogenesis [2, 4].

Toll-like receptors (TLRs) are a system of innate 
immune defense. It has been well established that HPV 
induce TLR4 expression and interfere in TLR4-NF-κB 
pathways, leading to persistent chronic inflammation and 
carcinogenesis [5–7]. Our recent study showed that LPS 
induced the activation of TLR4-NF-κB pathway in CC 
SiHa (HPV16+) cells, but not in HeLa (HPV18+) and 
C33A (HPV-) cells [5]. Increasing evidences have shown 
that resistance to chemotherapy is strongly dependent on 
the HPV infection and the activation of TLR4-NF-κB  
pathways in CC [6, 8, 9]. The TLR4-NF-κB pathway and 
its regulation are highly complicated, and may lead to 
cancer invasion and chemoresistance in multiple ways, 
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including modulation of the tumoural microenvironment 
through the production of inflammatory mediators, such 
as IL-1β [8–10]. 

In recent years, the role of NOD-like receptor family, 
pyrin domain containing 3 (NLRP3) inflammasome in 
cancer is now attracting widespread attention [11]. The 
NLRP3 inflammasome is tightly controlled by NF-κB 
[12, 13]. The NLRP3 inflammasome complex mediate 
the maturation of inactive pro-caspase-1 into active 
cleaved-caspase-1, and promote the maturation of pro-
inflammatory cytokines IL-1β from pro-IL-1β to ignite 
inflammation [14, 15]. However, whether HPV infection 
and chronic inflammation in CC require the activation of 
NLRP3 inflammasome remains unclear.

CD200, a membrane glycoprotein of the immune-
globulin superfamily, have been shown strong effect 
on immune suppression via the interaction with its 
receptor CD200R [16, 17]. Experimental studies have 
demonstrated that CD200-CD200R axis plays a key role in 
the modulation of inflammatory responses in autoimmune 
diseases and neuro-degeneration [17, 18]. Soluble CD200 
fusion protein (CD200Fc) is a CD200 fusion protein 
consisting of the extracellular domain of CD200 bound 
to a murine IgG2aFc sequence and modified to eliminate 
Fc receptor and complement binding regions [19, 20]. 
Recent reports have showed that the effects of CD200Fc in 
attenuating the release of pro-inflammatory cytokines and 
glial cell activation [21] in neuro-inflammatory diseases 
[20, 22, 23]. Nevertheless, recent knowledge remains 
limited as to the anti-inflammatory effects of CD200Fc in 
LPS-induced SiHa cells and Caski cells.

Therefore, the goal of our present study was to 
explore whether CD200Fc might regulate LPS-induced 
IL-1β activation in human CC SiHa cells and Caski cells. 
Furthermore, efforts have been taken to identify the TLR4-
NF-κB and NLRP3 inflammasome pathways underlying 
the anti-inflammatory effect of CD200Fc.

RESULTS

CD200Fc down-regulated the production and 
activation of IL-1β in LPS-stimulated SiHa cells 
and Caski cells

Firstly, the effects of CD200Fc on the production 
and activation of IL-1β from LPS-simulated SiHa cells 
and Caski cells were evaluated. Western blot results 
showed that LPS stimulation significantly enhanced the 
pro-IL-1β and cleaved IL-1β level relative to that observed 
in the un-stimulated cells (Figure 1A–1B and 1D–1E). The 
production of pro-IL-1β and cleaved IL-1β in response 
to LPS was significantly inhibited by CD200Fc in a 
dose-dependent manner. In addition, qRT-PCR results 
(Figure 1C and 1F) and ELISA analysis (Figure 1G and 1H)  
showed that CD200Fc inhibited the secretion of pro-IL-1β 
after LPS exposure. However, no apparent change of IL-1β 

production and activation was observed between control 
and 100 μM CD200Fc treatment in normal conditions.

CD200Fc inhibited the expression of NLRP3 
inflammasome components in LPS-stimulated 
SiHa cells and Caski cells

The NLRP3 inflammasome components, such 
as NLRP3 and ASC, are the initiators of inflammatory 
responses[11]. Western blot results showed that the protein 
expression of NLRP3 in SiHa cells and Caski cells was 
significantly increased 3 hours after LPS stimulation 
(Figure 2A–2D). The addition of CD200Fc to the cells 
reduced the protein expression of NLRP3. In addition, 
qRT-PCR results showed that incubation with CD200Fc 
dose-dependently inhibited this LPS-induced mRNA 
expression of NLRP3 (Figure 2E–2F). However,  no 
apparent protein and mRNA change of ASC was observed 
in LPS and/or CD200Fc treatment group (Figure 2A–2F). 

CD200Fc inhibited cleaved caspase-1 production 
in LPS-stimulated SiHa cells and Caski cells

Caspase-1 is a member of a family of caspases with 
large prodomains, and its activation is required to cleave 
pro-IL-1β into IL-1β [15]. Therefore, western blot analysis 
and immunofluorescent staining were used to determine 
whether CD200Fc treatment affected the cleavage of 
caspase-1 in LPS-stimulated SiHa cells and Caski cells. 
As shown in Figure 3, LPS increased the cleavage of 
caspase-1, while treatment with various doses of CD200Fc 
reduced the cleaved forms of caspase-1 in SiHa cells and 
Caski cells. In addition, no apparent protein change of pro-
caspase-1 was observed in LPS and/or CD200Fc treatment 
group (Figure 3). These results suggested involvement of 
the NLRP3 inflammasome during CD200Fc mediated 
anti-inflammatory effects in LPS-stimulated SiHa cells 
and Caski cells.

CD200Fc reduced the activation TLR4-NF-κB 
pathways in LPS-stimulated SiHa cells and 
Caski cells

TLR4 is a key regulators involved in regulating 
the LPS-induced inflammatory mediators expression 
through the activation of NF-κB pathway [8]. As shown in 
Figure 4A–4B and 4E–4F, treatment with CD200Fc reduced 
the protein expression of TLR4, which was induced by LPS 
for 90 min in SiHa cells and Caski cells.

To further investigate the activation of NF-κB 
pathways involved in the mechanism in LPS-induced SiHa 
cells and Caski cells, we assessed the components the NF-κB  
pathway (P65 and I-κB) in SiHa cells and Caski cells. 
As shown in Figure 4A, 4C–4E and 4G–4H, LPS treated 
for 90 min strongly induced phosphorylation of P65 and 
I-κB. Treatment with CD200Fc reduced expressions of 
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p-P65 and p-I-κB in LPS-induced SiHa cells and Caski 
cells. However, no apparent protein change of t-P65 
and t-I-κB was observed between control and CD200Fc 
treatment. In addition, western blot data showed a marked 
increased translocation of P65 from cytoplasm to nucleus 
after exposure to LPS. However, LPS-induced P65 level in 
the nuclear fractions was reduced by CD200Fc treatment 
(Figure 5A–5C). Taken together, the above findings 
demonstrated involvement of the TLR4-NF-κB pathway in 
the anti-inflammatory effect of CD200Fc in LPS-induced 
SiHa cells and Caski cells.

DISCUSSION

The model of immunological stress provided by LPS 
in vitro or in vivo is generally used to increase the release 
of excessive inflammatory mediators, such as IL-1β,  
and also causes the tumorigenesis of CC [5, 24]. Our 
previous study have shown that LPS stimulation activates 
the TLR4-NF-κB pathway in SiHa cells by acting on 

TLR4 to activate NF-κB, and consequently activates the 
expression of inflammatory mediators, such as IL-1β [5]. 
However, almost no information is available concerning 
whether LPS stimulation could activates the NLRP3 
inflammasome pathway in SiHa cells and Caski cells. 
The present study firstly showed that LPS stimulation 
enhanced the mRNA and protein expression of NLRP3 
inflammasome components NLRP3 and cleaved-caspase-1 
in SiHa cells and Caski cells, which illustrated that 
NLRP3 inflammasome pathway might also play a role in 
the tumorigenesis of CC.

CD200-CD200R axis is a regulatory system of 
inflammation that plays a critical role in various diseases, 
a strengthened inflammatory response was usually 
observed when the CD200-CD200R conjugation was 
impaired [16, 17]. In contrast, enhanced expression of 
CD200R by CD200Fc treatment alleviates pathological 
effects of inflammation [16, 17, 21, 23, 25]. However, 
the anti-inflammatory effects of CD200Fc in CC have not 
heretofore been investigated. The present study provided 

Figure 1: Effects of CD200Fc on production and activation of IL-1β in LPS-stimulated SiHa cells and Caski cells. 
SiHa cells and Caski cells were stimulated with 40 μg/ml LPS under different concentrations of CD200Fc for 12 hours. The protein levels 
of pro-IL-1β and cleaved-IL-1β were measured by western blot analysis in SiHa cells (A) and Caski cells (D). The bar chart showed the 
ratio of pro-IL-1β and cleaved-IL-1β to β-actin at each groups in SiHa cells (B) and Caski cells (E). The mRNA level of pro-IL-1β was 
measured by qRT-PCR analysis. The bar chart showed the ratio of pro-IL-1β to β-actin at each groups in SiHa cells (C) and Caski cells (F). 
The extracellular levels of I IL-1β in culture media were measured using commercial ELISA kits in SiHa cells (G) and Caski cells (H). 
Data are the mean ± S.E.M. of three independent experiments. #P < 0.001 vs. control group (cultured in medium alone); **p < 0.001 vs. 
LPS-induced group.
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the first evidence that CD200Fc attenuated LPS-induced 
production and activation of IL-1β, as well as mechanical 
inhibition of TLR-NF-κB and NLRP3 inflammasome 
pathways.

IL-1β is considered to be an endogenous pyrogen 
and also plays a vital role in promoting a variety of 
innate immune processes associated with infection, 
inflammation and autoimmunity [14, 15]. It appears that 
IL-1β can contribute to the pathogenesis of HPV-infected 
cervical carcinoma. Recent studies have shown that IL-1β  
is associated with development of cervical carcinoma 
with persistent HPV16/18 infection [26]. Recently, a 

meta-analysis suggested that the IL-1β polymorphisms 
may contribute to genetic susceptibility of CC [27, 28]. 
In addition, Niebler et al. found that attenuation of IL-1β 
by the HPV16 E6 oncoprotein in HPV-positive cervical 
carcinoma immortalized cells is apparently a crucial step 
in viral immune evasion and initiation of malignancy of 
CC [29]. Moreover, recent studies showed that CD200Fc 
suppressed the LPS-induced release of IL-1β in rat 
primary microglial cells [21] and human renal proximal 
tubular epithelial cells [23]. The present study showed, 
for the first time, that the addition of CD200Fc could 
significantly reduce the LPS-induced production and 

Figure 2: Effects of CD200Fc on the expression of NLRP3 inflammasome components in LPS-stimulated SiHa cells 
and Caski cells. SiHa cells and Caski cells were stimulated with 40 μg/ml LPS under different concentrations of CD200Fc for 90 min. 
The protein levels of NLRP3 and ASC were measured by western blot analysis in SiHa cells (A) and Caski cells (B). The bar chart showed 
the ratio of NLRP3 and ASC to β-actin at each groups in SiHa cells (C) and Caski cells (D). The mRNA levels of NLRP3 and ASC were 
measured by qRT-PCR analysis. The bar chart showed the ratio of NLRP3 and ASC to β-actin at each groups in SiHa cells (E) and Caski 
cells (F). Data are the mean ± S.E.M. of three independent experiments. #P < 0.001 vs. control group (cultured in medium alone); *p < 0.01, 
**p < 0.001 vs. LPS-induced group.
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activation of pro-IL-1β and cleaved-IL-1β in SiHa cells 
and Caski cells.

The generation of pro-IL-1β and cleaved (mature)-
IL-1β is tightly controlled by the NLRP3 inflammasome, 
which has been intensively studied [15, 30]. Upon 

sensing danger signals such as LPS, NLRP3 proteins 
oligomerize and recruit caspase-1 through ASC [15]. 
Subsequently, pro-caspase-1 undergoes an autocatalytic 
activation. Finally, mature caspase-1 cleaves pro-IL-1β  
to produce cleaved-IL-1β [14, 30, 31]. Pontillo et al. found 

Figure 3: Effects of CD200Fc on cleaved caspase-1 production in LPS-stimulated SiHa cells and Caski cells. SiHa cells 
and Caski cells were stimulated with 40 μg/ml LPS under different concentrations of CD200Fc for 12 hours. The protein levels of cleaved-
caspase-1 and pro-caspase-1 were measured by western blot analysis in SiHa cells (A) and Caski cells (C). The bar chart showed the ratio 
of cleaved-caspase-1 and pro-caspase-1 to β-actin at each groups in SiHa cells (B) and Caski cells (D). The expression level of cleaved-
caspase-1 in SiHa cells and Caski cells was measured by immunofluorescent staining (E). Meanwhile, the phenotype of nuclei was also 
investigated via DAPI staining. Scale Bar = 50 μm. Data are the mean ± S.E.M. of three independent experiments. #P < 0.001 vs. control 
group (cultured in medium alone); *p < 0.01, **p < 0.001 vs. LPS-induced group.
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Figure 4: Effects of CD200Fc on the protein levels of TLR4, p-P65, t-P65, p-I-κB and t-I-κB in LPS-induced SiHa cells 
and Caski cells. SiHa cells and Caski cells were stimulated with 40 μg/ml LPS under different concentrations of CD200Fc for 90 min. 
The protein levels of TLR4, p-P65, t-P65, p-I-κB and t-I-κB were measured by western blot analysis in SiHa cells (A) and Caski cells (E). 
The bar chart showed the ratio of TLR4 to β-actin at each groups in SiHa cells (B) and Caski cells (F). The bar chart showed the ratio of 
p-P65 and t-P65 to β-actin at each groups in SiHa cells (C) and Caski cells (G). The bar chart showed the ratio of p-I-κB and t-I-κB to 
β-actin at each groups in SiHa cells (D) and Caski cells (H). Data are the mean ± S.E.M. of three independent experiments. #P < 0.001 vs. 
control group (cultured in medium alone); *p < 0.01, **p < 0.001 vs. LPS-induced group.
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that NLRP3 inflammasome pathway could affect HPV 
virus/persistence and cervical cancer progression [32]. 
Moreover, the findings of Abdul-Sater et al. demonstrated 
that NLRP3-dependent caspase-1 activation in cervical 
epithelial cells contributes to development of the chlamydial 
inclusion and cervical cancer progression [33]. For the 
first time, our findings demonstrated that the addition of 
CD200Fc could inhibit the mRNA and protein expression of 
NLRP3, and reduce cleaved caspase-1 production in a dose-
dependent manner. This result indicated that the regulatory 

effects of CD200Fc on the activation of pro-IL-1β and 
cleaved-IL-1β might be partly attributable to the regulation 
of caspase-1 activation via NLRP3 inflammasome pathway 
in SiHa cells and Caski cells.

The NLRP3 inflammasome is tightly controlled by 
the TLR4-NF-κB signaling pathway [31]. LPS can activate 
downstream of the TLR-NF-κB signaling pathway [8, 9]. 
The activation of NF-κB leads to activation of the NLRP3 
inflammasome and cytokine secretion, which plays an 
important role in cervical cancer progression [8, 9, 34]. In 

Figure 5: Effects of CD200Fc on the translocation of P65 from cytoplasm to nucleus in LPS-induced SiHa cells and 
Caski cells. SiHa cells and Caski cells were stimulated with 40 μg/ml LPS under different concentrations of CD200Fc for 90 min. Nuclear 
and cytosolic extracts were isolated and the levels of P65 in each fraction were determined by western blot analysis in SiHa cells (A) and 
Caski cells (B). HDAC1 and β-actin were used as internal controls. The bar chart showed the ratio of P65 to HDAC1 in  nuclear at each 
groups in SiHa cells (C) and Caski cells (D). The bar chart showed the ratio of P65 to β-actin in  cytosolic at each groups in SiHa cells  
(E) and Caski cells (F). Data are the mean ± S.E.M. of three independent experiments. #P < 0.001 vs. control group (cultured in medium 
alone); *p < 0.01, **p < 0.001 vs. LPS-induced group.
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addition, recent studies showed that CD200Fc suppressed 
the TLR4-NF-κB signaling pathway-mediated release of 
IL-1β in LPS-induced rat primary microglial cells [21] 
and human renal proximal tubular epithelial cells [23]. The 
present study showed that LPS stimulation significantly 
enhanced the TLR4 expression, the phosphorylation 
of P65 and I-κB, and increased P65 level in the nuclear 
fractions, indicating that LPS promoted activation of 
TLR4-NF-κB pathway in SiHa cells and Caski cells. At 
the same time, CD200Fc treatment could significantly 
inhibit LPS-induced increase in TLR4 expression, the 
phosphorylation of P65 and I-κB, and P65 level in the 
nuclear fractions. We postulated that the anti-inflammatory 
effects of CD200Fc in SiHa cells and Caski cells were 
mediated by inhibition of TLR4-NF-κB signaling pathway.

In conclusion, CD200Fc could inhibit LPS-induced 
production and activation of pro-IL-1β and cleaved-
IL-1β. These effects might appear to be produced by 
the inhibition of LPS-induced activation TLR4-NF-κB 
pathway, the mRNA and protein expression of NLRP3, 
and lead to suppression of the activation of caspase-1 
in SiHa cells and Caski cells (Figure 6). The anti-
inflammatory activities of CD200Fc in SiHa cells and 

Caski cells may be attributed to the regulation of the 
TLR4-NF-κB and NLRP3 inflammasome pathways. It 
may be possible that the drugs act on one or all of the 
above process. Further studies will be carried out to 
determine the likely mechanism.

MATERIALS AND METHODS

Cell culture and treatment

SiHa cells and Caski cells were purchased from 
Chinese Academy of Sciences and cultured in DMEM 
medium (Sigma, USA) supplemented with 10% fetal 
bovine serum (Gibco, USA), 100 units/mL penicillin 
and 100 µg/mL streptomycin (Sigma, USA). Cells were 
incubated in a humidified atmosphere with 5% CO2 at 
37°C. Cells were seeded in 6-well plates (3 × 105 cells/well) 
and grew overnight to approximately 70% confluence and 
followed by stimulating with 40 μg/ml LPS under different 
concentrations (1, 10, 100 μM) of CD200Fc for 90 min or 
12 hours. Untreated medium was used as a negative control 
in this study. CD200Fc was provided by Genentech Inc. 
(San Francisco, USA).

Figure 6: Possible mechanisms by which CD200Fc inhibited production and activation of IL-1β in LPS-stimulated 
SiHa cells and Caski cells. LPS-stimulated activation of TLR4-NF-κB and NLRP3 inflammasome pathways were inhibited by down-
regulation of TLR4, p-P65, and p-I-κB, and NLRP3, cleaved caspase-1 after CD200Fc treatment, and subsequent inhibited production and 
activation of IL-1β.
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Western blot

After washed with pre-chilled phosphate buffered 
solution (PBS), SiHa cells and Caski cells were harvested 
and lysed in cell lysate buffer (1 × RIPA, Cell Signaling 
Technology, USA) for 30 min and centrifuged at 12,000 g  
for 15 min at 4°C to collect the supernatant. The protein 
concentration was determined by Bradford Assay (Bio-
Rad, USA) and 30 µg of protein was subjected to SDS-
polyacrylamide gel electrophoresis (PAGE) and then 
transferred to a polyvinylidene difluoride membrane 
(Millipore, USA). After blocking with 5% nonfat milk 
containing 0.1% Tween 20 at room temperature for 
2 hours, the membranes were incubated with the primary 
antibody at 4°C overnight. The primary antibodies against 
cleaved IL-1β (1:500), pro-IL-1β (1:800), cleaved-
caspase-1 (1:300), pro-caspase-1 (1:500), ASC (1:800) 
were from Cell Signaling Technology (Danvers, MA). 
Primary antibody against NLRP3 (1:1,000) was from 
Novus Biologicals (Littleton, CO). Primary antibodies 
against TLR4 (1:1,000), p-P65 (1:600), t-P65 (1:600), 
p-IκB (1:500), or t-IκB (1:500) were from Sigma (St 
Louis, MO). Primary antibodies against HDAC1 (1:800) 
and β-actin (1:1,000) were purchased from Santa Cruz 
Biotechnology (Inc. USA). After incubating with 
horseradish peroxidase-conjugated secondary antibody 
(1:5000), protein was visualized using an enhanced 
chemiluminescence reagent (Thermo Pierce, USA). The 
levels of target protein bands were densitometrically 
determined using Quantity Ones 4.4.1 (Bio-Rad 
Laboratories, Berkeley, CA). The variation in the density 
of bands was expressed as fold changes compared with the 
control in the blot after normalized to β-actin.

ELISA analysis

IL-1β production in SiHa cells and Caski cells 
was measured by a commercially available ELISA kit 
(R&D System, Minneapolis, MN), according to the 
manufacturer’s instructions. Briefly, 200 µL of supernatant 
was added to each well and incubated at room temperature 
for 2 hours. All the liquid in the well was removed and 
the plate was washed three times, 200 µL of conjugate 
was added to each well and incubated at room temperature 
for 1 hour. After washing three times, 200 µL substrate 
solution was added in to each well and incubated for 
another 20 min in the dark. The absorbance was read at 
450 nm within 30 min after 50 µL of stop solution was 
added. The concentrations of IL-1β in the supernatants 
were calculated from a standard curve.

RNA extraction and quantitative  
real time- (qRT-) PCR

Total mRNA was extracted from SiHa cells and 
Caski cells using the Trizol reagent (Life Technologies), 

and reverse transcripted with reverse transcription Kit 
(Takara Biotechnology Co., Ltd., Dalian, China) according 
to the manufacturer’s instructions. Briefly, amplifications of 
50 ng cDNA were performed with an ABI7900HT machine 
(Applied Biosystems, Carlsbad, CA, USA) in 10 μl 
reaction mixtures containing 1× TaqMan Universal PCR 
Master Mix (Applied Biosystems), 200 nM of primers, 
and 0.125 μl of dual-labeled UPL probe (Roche Applied 
Science, Basel, Switzerland). The cycling programs were 
as follows: 95°C for 10 min, followed by 40 cycles of 
95°C for 15 s and 60°C for 1 min. The fluorescence signal 
was detected during the extension step in each cycle. 
Normalized to β-actin, 22DDCT method was used in the 
calculation of target gene expression. The primers are as 
follows: 5′- AGG CTG CTC TGG GAT TC -3′ (forward) 
and 5′- GCC ACA ACA ACT GAC GC -3′ (reverse) for 
pro-IL-1β; 5′- GAT CTT CGC TGC GAT CAA CAG-3′ 
(forward) and 5′- CGT GCA TTA TCT GAA CCC CAC-3′  
(reverse) for NLRP3; 5′- TGG GCC TGC AGG AGA TG -3′ 
(forward) and 5′- ATT TGG TGG GAT TGC CAG -3′ 
(reverse) for ASC; 5′- GTC GAC AAC GGC TCC GGC -3′  
(forward) and 5′- GGT GTG GTG CCA GAT TTT CT′ 
(reverse) for β-actin. Primers were synthesized by Sangon 
Biotech (Shanghai, China). The relative of expression 
levels of IL-1β, NLRP3 and ASC were determined using 
the 2-ΔΔCt method and shown as fold change over 
controls. The specificity of amplification was assessed by 
melting curve analysis and gel electrophoresis.

Immunofluorescent staining

After stimulation, SiHa cells and Caski cells was 
washed with PBS and fixed by 4% paraformaldehyde at 
room temperature for 1 hour. After washing, cells were 
blocked with 3% bovine serum albumin (BSA) containing 
0.1% Triton X-100, 0.05% Tween-20 and 10% donkey 
serum for 2 hours at room temperature to avoid unspecific 
staining. Then, the cells were incubated with the primary 
antibody for cleaved- caspase-1 (1:100) for 24 hours at 4°C. 
After washing by PBS for three times (5 min for each), 
TRITC-conjugated secondary antibody and DAPI was 
added to cells and incubated for 2 hours at room temperature 
in the dark. After washing with PBS, the cells were analyzed 
with fluorescence microscopy (Leica, Germany).

Nuclear and cytoplasmic protein extraction

Cytoplasmic and nuclear protein of SiHa cells and 
Caski cells were extracted using Nuclear and Cytoplasmic 
Extraction Reagents purchased from Thermo Fisher strictly 
according to the manufacturer’s instructions. Briefly, cells 
were harvested and washed with PBS after treatment, and 
100 μL of ice-cold CER I was added in to fully suspend 
the cell pellet. After 10 min incubation on ice, 5.5 μL of 
ice-cold CER II was added to the tube and vortexed for 
5 seconds on the highest setting and vortexed for another 
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5 seconds after 1 min incubation on ice. The tube was 
centrifuged at maximum speed in a micro centrifuge 
(16,000 × g) for 5 minutes at 4°C and the supernatant 
(cytoplasmic extract) was moved to a clean pre-chilled 
tube and stored at –80°C until use. The insoluble (pellet) 
fraction which contains nuclei was suspended by 100 μL of 
NER and incubated on ice, vortexed on the highest setting 
for 15 seconds every 10 min, for a total of 40 min. Then, 
the tube was centrifuged at maximum speed in a micro-
centrifuge for 10 min at 4°C and the supernatant (Nuclear 
extract) was collected to a clean pre-chilled tube and stored 
at –80°C until use. The distribution of P65 in cytoplasm 
and nuclear was further determined by western blot.

Data analysis

Data represent the mean and standard error of the 
mean (S.E.M). Student’s t-test was performed for all 
statistical significance analysis using GraphPad Prism 
software (Version 5, GraphPad Software, Inc., La Jolla, 
CA). P values < 0.05 was considered statistically significant.
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