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ABSTRACT
It is widely accepted that cancer is driven by accumulated somatic mutations 

during the lifetime of an individual. Cancer mutations may target relatively small 
number of cell functional modules. The heterogeneity in different cancer patients 
makes it difficult to identify driver mutations or functional modules related to cancer. 
It is biologically desired to be capable of identifying cancer pathway modules through 
coordination between coverage and exclusivity. There have been a few approaches 
developed for this purpose, but they all have limitations in practice due to their 
computational complexity and prediction accuracy. We present a network based 
approach, CovEx, to predict the specific patient oriented modules by 1) discovering 
candidate modules for each considered gene, 2) extracting significant candidates by 
harmonizing coverage and exclusivity and, 3) further selecting the patient oriented 
modules based on a set cover model. Applying CovEx to pan-cancer datasets spanning 
12 cancer types collecting from public database TCGA, it demonstrates significant 
superiority over the current leading competitors in performance. It is published 
under GNU GENERAL PUBLIC LICENSE and the source code is available at: https://
sourceforge.net/projects/cancer-pathway/files/.

INTRODUCTION

With the rapid progress of next generation 
sequencing technologies, a huge amount of mutation data 
of thousands of patients for dozens of cancer types has 
become available [1–5]. The mutational heterogeneity 
in different cancer patients brings challenges in 
distinguishing driver mutations, which contribute to 
tumorigenesis, from sporadic, passenger mutations [6] 
and, in identifying driver pathway modules whose 
behavior perturbation would lead to tumorigenesis [7, 8]. 

There have been a few approaches developed to 
discover driver genes and pathways. For example, some 
of them were designed to identify mutated genes or 
regions of copy number alterations based on empirically 
derived background alteration rates [9]. With the prior 
biological knowledge, such as KEGG pathways [10] 
or GO functional groups [11], significantly mutated 
known pathways and functional modules were identified 

by some statistical methods [12, 13]. However, due to 
the incomplete knowledge of protein interactions and 
pathways in human, these methods have not been able to 
accurately detect novel pathway modules that are targeted 
by cancer mutations.

De novo analysis of driver pathway modules in 
cancer is important to obtain novel biological discoveries. 
According to the existing knowledge, a driver pathway 
module usually exhibits two combinatorial properties: 
high coverage and high exclusivity [1, 2, 14, 15]. High 
coverage means that most patients have at least one 
mutated gene in the module. High exclusivity means 
that most patients have only one mutated gene in that 
module. Some approaches were developed to identify gene 
modules with the two properties. RME [16] calculated 
the exclusivity weight as the percentage of covered 
patients that contain exactly one mutation within a gene 
set. Another exclusive metric, Dendrix weight [17], 
was defined as the difference of coverage and coverage 
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overlap of a gene set (see Methods Section for details). 
Based on Dendrix weight, Vandin et al. proposed a greedy 
algorithm and a Markov chain Monte Carlo (MCMC) 
algorithm [17], and Zhao et al. introduced MDPFinder 
including a binary linear programming (BLP) method and 
a genetic algorithm [18] to identify large weight modules. 
Compared to MCMC algorithm, the BLP method is more 
efficient. A multi-objective optimization model based on a 
Genetic Algorithm (MOGA) was introduced to adjust the 
trade-off between coverage and exclusivity [19]. Multi-
Dendrix [20] designed a new metric as the sum of Dendrix 
weights and adopted a new programming model to identify 
multiple modules simultaneously. CoMDP proposed an 
exact mathematical programming method to identify 
co-occurring mutated driver pathways [21]. However, 
the mutational landscape of cancer usually consists of 
genes of which some are mutated frequently and rarely 
for others, making the exclusive metrics employed in 
these methods unable to handle this broad spectrum of 
mutational frequencies properly. It has been observed 
that genes with high mutation frequencies dominate the 
Dendrix weight and the majority of the coverage comes 
from one gene in the identified modules [22]. Biologically, 
genes in a functional module should be closely correlated 
in pathway or protein-protein interaction (PPI) networks. 
Gene sets identified without consideration of pathways 
or PPI networks may not be correlated and thus not 
necessarily to form a driver module. 

Resorting to the increasing knowledge of pathways 
and PPI networks, the approaches for identification of 
driver genes or pathway modules over PPI networks 
should be developed. To integrate two datasets together, 
one fast and reliable method was presented in [23]. A 
combinatorial model was proposed for global module 
detection in complex networks [24]. HotNet2 [25] is a 
network based method that delves into the long tail of 
rarely mutated genes and finds mutated subnetworks. 
MEMo [26] and MEMCover [27] are both network based 
methods to systematically identify mutually exclusive 
network modules. MEMo outputs the significantly 
exclusive modules evaluated by a random permutation 
testing method. MEMCover evaluates the mutual 
exclusivity degree for gene pairs with random permutation 
testing method. Both MEMo and MEMCover only 
consider those gene pairs representing interactions in a 
PPI network, which restricts the discovered networks to 
existing interaction networks. Furthermore, the random 
permutation testing method is computationally expensive 
for scoring the mutual exclusivity degree of gene sets. 

Considering the limitation of current combinatorial 
evaluation metric and random permutation testing method, 
a couple of novel probabilistic models evaluating mutual 
exclusivity for gene modules have been developed, such 
as muex [28], mutex [29], CoMEt [22], WeSME [30], 
WExT [31], etc. Those methods overcome some of the 
drawbacks of previous exclusivity evaluation method. 

However, compared to the combinatorial evaluation 
metric, the probabilistic methods are too complicated to 
efficiently calculate the exclusive scores for gene modules. 
For example, to reduce the computational complexity, the 
mutex algorithm limited the search space to genes having 
a common downstream signaling target only [29]. A 
combinatorial evaluation metric overcoming the limitation 
of current combinatorial metrics would be desirable and 
may be applied to search for mutually exclusive modules 
to a much larger scale. 

A few methods for predicting driver genes/pathways 
through integrating expression data, sequence information, 
structural information, functional annotation and biomedical 
literature, aiming at improving their prediction accuracy, have 
also been developed [32–36]. Furthermore, the commonalities 
and specificities of driver gene sets among multiple cancer 
types have been systematically investigated in [37]. More 
comprehensive reviews can be referred to [38–41].

Our extensive studies have revealed that all the 
existing tools developed for identification of cancer 
genes/pathways perform poorly with low accuracies and 
highly inconsistent solutions. In this paper, we present a 
network-based algorithm to identify exclusive network 
modules. The algorithm consists of three phases. In the 
first phase, we exhaustively enumerate gene sets for each 
considered gene in a local constructed influence network. 
To be specific, we search for the candidate modules by 
optimizing Dendrix weight on local networks each roots 
at a node across an influence network which measures the 
topological relationships between genes in the dataset. As 
we previously mentioned, the candidate modules identified 
in the first phase may not be exclusive at all. In the second 
phase, by a new designed combinatorial coverage and 
exclusivity evaluation metric, CovEx, which overcomes 
the limitation of Dendrix weight (see Methods Section 
for details), we filter out those candidate modules with 
poor coverage and exclusivity property. After the first 
two phases, only significant candidate modules were left. 
Biologically, each patient should have at least one driver 
module, and the driver module for different patients may 
be different. To identify the specific driver module for 
each patient, we employ a minimum set cover model to 
select the specific patient oriented driver module in the 
third phase. Obviously, the modules selected in the third 
phase may be critical and are most likely to be the desired 
pathway modules. The flowchart of our method, CovEx, is 
plotted in Figure 1. We applied CovEx to three annotated 
PPI networks which are the same as used in [25]. We ran 
CovEx on each of the three PPI networks to get eight 
solutions by resetting parameter eight times, and therefore 
getting 24 predictions in total on the three networks. To 
further refine the CovEx’s predictions and elucidate the 
crosstalk of identified modules, we applied a new designed 
consensus method to the 24 CovEx predictions. 

We tested the CovEx by comparing it with other 
competitors based on the refined predictions. The 
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comparison results demonstrate that it outperforms 
other competitors in terms of annotated cancer genes. 
In addition, CovEx is flexible for users to control the 
number of genes to be output against others. For example, 
CovEx outputs consensus modules containing 88 genes 
with 66 being annotated NCG cancer genes, denoted by 
“88 with 66” for short, 140 with 90, and 236 with 124, 
respectively, v.s. 138 with 60 by HotNet2, a state-of-the-
art tool, and 82 with 46 by MSEA [33], a tool developed 
by incorporating different biological knowledge, e.g. 

annotations of protein domain structures. Therefore, 
the accuracy has been improved from 43% of HotNet2 
to 75% of CovEx, and even for MSEA, only 56% can 
be reached, while the sensitivity has also been improved 
to some extent. One more ingredient for CovEx lies in 
the new effective combinatorial metric which subtly 
harmonizes coverage and exclusivity. The functional 
analysis of the refined network modules has also brought 
some new insights into the cancer related pathways and 
other functional modules. 

Figure 1: Flowchart of CovEx. In the first phase, a binary mutation matrix is built according to the mutation data; an influence network 
containing the mutated genes only is constructed based on an annotated PPI network; each candidate module is identified within a local 
influence network rooted at a node. In the second phase, the CovEx value for each candidate module is calculated and modules with small 
CovEx values are filtered. In the third phase, a minimum set cover model is applied to identify those patient specific crucial modules.
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RESULTS

We downloaded the aberration datasets as well 
as the influence matrix files for the three PPI networks: 
HINT+HI2012, iRefIndex and Multinet from HotNet2 
website (http://compbio-research.cs.brown.edu/
pancancer/hotnet2/). The pan-cancer datasets span 12 
cancer types [25] which consist of bladder urothelial 
carcinoma (BLCA), breast invasive carcinoma (BRCA), 
colon adenocarcinoma and rectum adenocarcinoma 
(COADREAD, COAD and READ are combined into one 
type), glioblastoma multiforme (GBM), head and neck 
squamous cell carcinoma (HNSC), kidney renal clear cell 
carcinoma (KIRC), acute myeloid leukemia (LAML), 
lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), ovarian serous cystadenocarcinoma 
(OV), uterine corpus endometrioid carcinoma (UCEC). 
The somatic single nucleotide variants (SNVs), small 
indels and copy number aberrations (CNAs) data were 
combined together to be considered simultaneously. One 
pan-cancer dataset contains 3,110 patients including 
19,457 genes. The dataset after filtration with RNA-seq 
expression data includes 11,565 genes. The datasets after 
and before filtrating are denoted by pan-cancer datasets 
A and B, respectively. Another pan-cancer dataset with 
potential germline mutations removed including 11533 
genes is denoted as pan-cancer dataset C. To evaluate 
our results, we collected annotated cancer genes as 
comparison benchmarks from different publicly available 
sources where 1,571 protein-coding cancer genes 
were downloaded from NCG 5.0 [42], 571 genes were 
downloaded from Cancer Gene Census [43], and finally 
138 cancer genes were downloaded from [44]. The three 
benchmarks of cancer genes are referred to as NCG, CGC 
and 20/20 rule cancer genes, respectively.

For each pan-cancer dataset, we applied CovEx 
with parameters (λ, k), λ = 0, 1; k = 2, 3, 4, 5 to each 
of the three PPI networks, HINT+HI2012, iRefIndex and 
Multinet, and obtained 24 predictions each consists of 
exclusive network modules. The parameter λ controls the 
exclusivity degree in Dendrix weight and k corresponds 
to the identified module size (see Methods Section for 
details). If no otherwise specified, the pan-cancer dataset 
A and the NCG cancer genes are selected as the dataset 
and the cancer gene benchmark in the following. For 
convenience, we refer to the number of identified cancer 
genes as sensitivity and the ratio of number of identified 
cancer genes to that of the predicted as accuracy.

Results from single solutions

The number of modules identified by the CovEx 
ranges from 70 to 129 of the 24 predictions (Supplementary 
Section 1, Supplementary Tables 1, 2). Especially, we 
analyzed the sensitivity and accuracy of each prediction. 
Considering the 8 predictions for each PPI network, 

we found their minimum sensitivities of 88, 92 and 92 
with the corresponding accuracies of 44.4%, 46.0% and 
52.6%, and their maximum sensitivities of 106, 129 and 
123 with the corresponding accuracies of 44.2%, 44.5% 
and 44.9% on HINT+HI2012, iRefIndex and Multinet, 
respectively. We further observed that the minimum and 
maximum accuracies in all the 24 predictions are 41.9% 
and 52.8%, respectively, against 8.0% in the original 
dataset. Combining all the 24 predictions, we obtained 
1110 genes with 288 cancer genes, and thus the accuracy 
of 25.9% smaller than that of each single prediction 
because the false positives identified in the 24 respective 
predictions are highly inconsistent. Furthermore, we found 
much higher accuracies for the case where s-modules 
are filtered for s = 1, 2, 3, respectively (Supplementary  
Section 2, Supplementary Tables 3–6, Supplementary 
Figure 1). The comparison results from Figure 2 
demonstrate that CovEx substantially outperforms HotNet2 
no matter which parameter pair is used (Supplementary 
Sections 3, 4).

Results from consensus solution

As we see in the last section, the accuracies of 
the 24 single predictions are similar, but the accuracy 
of the combined prediction is much smaller because the 
false positives across the different predictions are highly 
inconsistent. To get a more accurate prediction, we applied 
the consensus method described in Methods Section to the 
24 individual predictions. We obtained 15 sub-network 
modules of type 1 and 32 of type 2, containing 236 genes 
totally with 124 cancer genes (Supplementary Tables 7, 8). 
We compared all the sub-network modules with KEGG 
pathway and GO database in STRING v10 [45]. 

The type 1 sub-networks

The largest type 1 sub-network (network index 1, 
Supplementary Table 7) contains 121 genes with 78 cancer 
genes. After functional enrichment analysis, we found 
that 88 KEGG pathways, 946 biological process GO-
terms, 90 molecular function GO-terms and 75 cellular 
component GO-terms are significantly enriched. The 
most significantly enriched KEGG pathway is the cancer 
pathway (pathway ID 05200) with the false discovery rate 
of 1.32e-26. The functional enrichment analysis identifies 
the critical pathways and GO terms related to cancer. The 
large number of significantly enriched functional modules 
exhibits the crosstalk between different functional 
modules. The second largest type 1 sub-network (network 
index 5, Supplementary Table 7) contains 11 genes with 
6 cancer genes. We found that 38 KEGG pathways, 156 
biological process GO-terms, 1 molecular function GO-
terms and 7 cellular component GO-terms are significantly 
enriched. The most significantly enriched KEGG pathway 
is MicroRNAs in cancer (pathway ID 05206). Comparing 
CovEx predictions to HotNet2 predictions, we found that 
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some of the annotated cancer genes, e.g. BAP1, EGFR, 
ERBB4, KRAS, NRAS, WT1, etc. were identified by both 
CovEx and HotNet2 in the largest type 1 sub-network, 
while some of them, e.g. ABL1, AKT1, APC, RB1, etc. 
were identified only by CovEx. These cancer genes have 
been known playing important roles in many types of 
process. For example, mutations in EGFR are associated 
with lung cancer. ABL1 plays a role in many key processes 
linked to cell growth and survival such as cytoskeleton 
remodeling in response to extracellular stimuli, cell 
motility and adhesion, receptor endocytosis, autophagy, 
DNA damage response and apoptosis. AKT1 is one of 3 
closely related serine/threonine-protein kinases (AKT1, 
AKT2 and AKT3) called the AKT kinase which regulates 
many processes including metabolism, proliferation, 
cell survival, growth and angiogenesis. APC is a tumor 
suppressor which promotes rapid degradation of CTNNB1 
and participates in Wnt signaling as a negative regulator. 
APC activity is correlated with its phosphorylation state, 
activates the GEF activity of SPATA13 and ARHGEF4, 
plays a role in hepatocyte growth factor (HGF)-induced 
cell migration, etc. We also identified genes which do 
not belong to any of the cancer gene benchmarks, such 
as CRIPAK, INTS4, PARP10, etc. It has been suggested 
that the loss of CRIPAK in breast tumors might contribute 
to hormonal independence. INTS4 is a component of 
the Integrator complex, a complex involved in the small 
nuclear RNAs (snRNA) U1 and U2 transcription and 
in their 3’-box-dependent processing. PARP10 may 
play a role in cell proliferation and be required for the 

maintenance of cell cycle progression. More information 
can be referred to Supplementary Section 5.

Among the 11 genes of the second largest type 
1 sub-network, NOTCH1, NOTCH3, NOTCH4, 
SPOP and PTEN were also identified by HotNet2. 
Both NOTCH1 and NOTCH3 function as a receptor 
for membrane-bound ligands Jagged1, Jagged2 and 
Delta1 to regulate cell-fate determination and affect 
the implementation of differentiation, proliferation 
and apoptotic programs. PTEN is a well-known tumor 
suppressor gene. PTEN acts as a dual-specificity protein 
phosphatase, dephosphorylating tyrosine-, serine- and 
threonine-phosphorylated proteins. SPOP is a component 
of a cullin-RING-based BCR (BTB-CUL3-RBX1) 
E3 ubiquitin-protein ligase complex that mediates the 
ubiquitination of target proteins, leading most often to 
their proteasomal degradation. CovEx identified extra 
NCG cancer genes MECOM and NF1 and CGC cancer 
gene IKBKB. MECOM is the complex locus of MDS1 
and EVI1, and NF1 stimulates the GTPase activity 
of Ras. NF1 shows greater affinity for Ras GAP, but 
lower specific activity. Also, NF1 may be a regulator 
of Ras activity. IKBKB plays an essential role in the 
NF- kappa-B signaling pathway which is activated by 
multiple stimuli such as inflammatory cytokines, bacterial 
or viral products, DNA damages or other cellular stresses. 
IKBKB also acts as part of the canonical IKK complex in 
the conventional pathway of NF-kappa-B activation and 
phosphorylates inhibitors of NF-kappa-B on 2 critical 
serine residues. 

Figure 2: Comparison Results of CovEx and HotNet2. The HotNet2 results are obtained based on the mutation frequency score 
on the same dataset and PPI networks. A1, B1 are obtained on HINT+HI2012; A2, B2 on iRefIndex; and A3, B3 on Multinet. A1, A2, A3 
are obtained with λ=0; and B1, B2, B3 with λ = 1. k = 2, k = 3, k = 4, k = 5 correspond to different single CovEx predictions, and k = 2, 3, 
4, 5 corresponds to CovEx predictions which are obtained by combining the four predictions for specific λ and PPI network.
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There are two sub-networks both containing 8 
genes. One sub-network (network index 8, Supplementary 
Table 7) includes two cancer genes PABPC1, GIGYF2. 
We found that 3 KEGG pathways, 2 biological process 
GO-terms, 2 molecular function GO-terms and 1 cellular 
component GO-term are significantly enriched. Especially, 
the significantly enriched cellular component GO-term 
is cytosol (GO:0005829) containing 7 identified genes. 
Among the 8 genes, PABPC1 is a NCG cancer gene which 
may be involved in cytoplasmic regulatory processes 
of mRNA metabolism such as pre-mRNA splicing. Its 
function in translational initiation regulation can either be 
enhanced by PAIP1 or repressed by PAIP2. Another NCG 
cancer gene GIGYF2 may act cooperatively with GRB10 
to regulate tyrosine kinase receptor signaling, including 
IGF1 and insulin receptors. SMG1 which was identified by 
both CovEx and HotNet2 plays a central role in nonsense-
mediated decay (NMD) of mRNAs containing premature 
stop codons by phosphorylating UPF1/RENT1. MAP1A 
encodes a structural protein involved in the filamentous 
cross- bridging between microtubules and other skeletal 
elements. Phosphorylated MAP1B may play a role in the 
cytoskeletal changes that accompany neurite extension. 
The other sub-network (network index 13, Supplementary 
Table 7) includes two NCG genes CDH1 and COL5A1. 
Totally, 14 KEGG pathways, 21 biological process GO-
terms, 6 molecular function GO-terms and 6 cellular 
component GO-terms are significantly enriched. CDH1 
is involved in mechanisms regulating cell-cell adhesions, 
mobility and proliferation of epithelial cells, and 
potentially plays an invasive suppressor role. COL5A1 is 
a NCG cancer gene acting as a minor connective tissue 
component of nearly ubiquitous distribution. ITGA2 
encodes the alpha subunit of a transmembrane receptor for 
collagens and related proteins. ITGB2 encodes an integrin 
beta chain, which combines with multiple different alpha 
chains to form different integrin heterodimers. The top 
significantly enriched KEGG pathways and different 
GO-terms of the above sub-networks can be found in 
Supplementary Table 9. The network images of the four 
largest sub-networks of type 1 constructed by STRING 
v10 can be seen in Supplementary Figures 2–5.

The type 2 sub-networks

We discovered type 2 sub-networks which are 
actually induced by all the nodes of weight 2 in the 
network N. The two genes NLRP1 and NLRP3 which 
are connected by an edge in a type 2 sub-network 
output by CovEx are NCG cancer genes and belong to 
NLR family. They are enriched in 1 KEGG pathway, 3 
biological process and 1 cellular component GO-terms, 
such as NOD-like receptor signaling pathway (pathway 
ID 04621), positive regulation of interleukin-1 beta 
secretion (GO:0050718), inflammasome complex 
(GO:0061702). The two genes CNOT1 and CNOT3 were 

also identified to be involved in a type 2 sub-network, 
and be enriched in RNA degradation (pathway ID 
03018), where CNOT3 is a NCG cancer gene. The pair 
of genes ITPR1 and ITPR2 were also identified in a type 
2 sub-network, and enriched in 24 KEGG pathways, 13 
biological processes, 2 molecular functions and 4 cellular 
component GO-terms. The most significantly enriched 
pathways or GO terms are Phosphatidylinositol signaling 
system (pathway ID 04070), inositol phosphate-mediated 
signaling (GO:0048016), inositol 1,4,5-trisphosphate-
sensitive calcium-release channel activity (GO:0005220) 
and platelet dense tubular network (GO:0031094). It 
was found that some sub-network modules of type 2 
intersected with type 1 sub-networks, such as BACH1 
and BACH2 sub-networks. BACH1 and BACH2 are both 
transcriptional regulators that act as repressor or activator. 

Consensus results comparison of CovEx to 
HotNet2

The comparison results based on single predictions 
have demonstrated that CovEx is significantly superior 
to HotNet2. It has been shown that our consensus 
method itself is also superior to that used in HotNet2 
(Supplementary Section 6, Supplementary Tables 10–12, 
Supplementary Figure 6).

We compared the consensus results of CovEx with 
HotNet2 in terms of sensitivity and accuracy which are 
commonly used as standard criterion for comparison of 
biological tools. When pan-cancer dataset A is considered, 
CovEx predicted 236 genes with 124 cancer genes of 
accuracy 52.5% by applying the consensus method to all 
the 24 individual CovEx predictions. In contrast, HotNet2, 
which is a popular software of same kind, identified 138 
genes with 60 cancer genes of the accuracy of 43.5% 
on pan-cancer dataset A by using the consensus method 
used in HotNet2 [25]. Compared to results of HotNet2, 
CovEx identified much more cancer genes with even 
larger accuracy. For pan-cancer dataset B and C, we also 
applied CovEx with (λ, k), λ = 0, 1; k = 2, 3, 4, 5 to each 
of the three PPI networks, HINT+HI2012, iRefIndex and 
Multinet, and obtained 24 predictions each consists of 
exclusive network modules, respectively. After applying 
the consensus method to the 24 predictions for each pan-
cancer dataset, 234 genes with 113 cancer genes and 
261 genes with 122 cancer genes are predicted for pan-
cancer dataset B and C, with the accuracy of 48.3% and 
46.7%, respectively. In contrast, HotNet2 predicted 147 
genes with 54 cancer genes and 99 genes with 45 cancer 
genes for pan-cancer dataset B and C, with the accuracy 
of 36.7% and 45.5%, respectively. In addition, we 
applied the consensus method to the 24 individual CovEx 
predictions with s-modules filtered for different value of s 
(see Methods Section for details). It was observed that the 
accuracy was improved as the parameter s increases but at 
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cost of decreasing sensitivity to an extent. For example, 
88 genes with 66 cancer genes are predicted by CovEx 
with the accuracy of 75% when s was set to 7. CovEx 
identified more cancer genes with much larger accuracy 
than HotNet2. We had the same observations when CGC 
or 20/20 rule cancer genes were selected as comparison 
benchmarks (Supplementary Section 7, Supplementary 
Figure 7). 

Results for single cancer types

We analyzed each dataset of a single cancer type for 
the pan-cancer dataset A. The numbers of output genes 
and sensitivities and accuracies of CovEx and HotNet2 
for each single cancer type can be referred to Table 1. 
Compared to HotNet2, larger accuracies are obtained 
by CovEx except LAML. However, the sensitivities of 
CovEx are smaller than those of HotNet2 for a few cancer 
types. The relatively small number of patients for each 
cancer type may be the reason why CovEx fails to identify 
more cancer genes. We also analyzed the genes identified 
in multiple cancer types. More detailed information can be 
referred to Supplementary Section 8 and Supplementary 
Tables 13–16.

DISCUSSION

Cancer genomes exhibit largely different mutation 
profiles. The long-tail distribution of the frequency cancer 
mutations arises from tumor heterogeneity. A major 
challenge in analyzing large-scale genomic profiles of 
tumor types is to identify the functional driver genes or 
modules. We presented a novel approach called CovEx 
for integrative analysis of genomic data of tumors and PPI 
networks for identifying patient specific driver modules. 
The approach is based on three basic understandings of 
driver modules. First, genes in a driver module should 
be topologically related in a PPI network. Second, most 
patients should have at least one mutated gene in a driver 
module (high coverage). Third, most patients have only 
one mutated gene in that module (high exclusivity). The 
new approach substantially outperforms some excellent 
existing approaches. Our approach is based on the 
following three innovative ideas we developed in this 
article. (1) CovEx identifies small modules of fixed size 
k belonging to {2, 3, 4, 5} each roots at a node based on 
Dendrix weight in a constructed influence network which 
measures the topological relationships between genes 
in the dataset. Genes in each identified small module 
would be of close topological relationship. Therefore, 
these modules are qualified to be the candidates of the 
oncogenic driver modules to be identified. (2) Although 
modules of high coverage and exclusivity can be identified 
in the previous step, some modules with poor exclusivity 
property may also be identified due to the limitation of 
the evaluation function. For example, a module of poor 

exclusivity containing a gene with a significant larger 
mutation frequency than others may also be identified. We 
proposed a new exclusivity evaluation metric considering 
each gene in a module equally which makes up the 
inherent deficiencies of the previous metric. We further 
designed a new metric CovEx which can better affect the 
harmonious property between coverage and exclusivity in 
the identified modules. We evaluate each module with the 
new measure and filter those modules with poor exclusivity 
properties and non-significant CovEx values. Our newly 
proposed evaluation methodology can be applied to large 
datasets effectively and efficiently which are superior to 
the previous ones from the point of view of computational 
complexity. (3) In the third phase, a minimum set cover 
model is applied to subsets of patients to identify specific 
driver modules for each patient. The basic idea comes from 
the perspective that the solution should satisfy 1) each 
patient has at least one mutated gene belonging to at least 
one module to be identified; 2) the number of identified 
modules is as small as possible. A greedy algorithm was 
designed to solve the set cover model. 

We applied CovEx to three annotated PPI networks, 
HINT+HI2012, iRefIndex and Multinet for each parameter 
pairs (λ, k), where λ = 0, 1 and k = 2, 3, 4, 5. We obtained 
24 different solutions each consists of critical modules 
with 8 on each of the three networks. We proposed a 
consensus method to extract most possible driver genes 
and constructed new modules based on all the modules 
identified by CovEx in each of the 24 single solutions. 
The consensus method distinguishes all the genes in the 24 
single solutions as weight 3, weight 2 and weight 1 genes. 
All modules in the 24 single solutions are corrected by 
removing the weight 1 genes. The new consensus modules 
which are constructed based on the corrected modules 
exhibited the crosstalk of different functional modules. 

In fact, we can also design other consensus 
methods to extract possible cancer genes or functional 
modules from different single CovEx predictions. For 
example, another consensus method was designed 
by defining a new weight for genes (Supplementary 
Section 9, Supplementary Tables 17–20, Supplementary  
Figure 8). The two consensus methods have comparative 
performance from the perspective of sensitivities and 
accuracies of predicted genes. Furthermore, by extracting 
the common genes predicted by the two consensus 
methods, we identified a new gene set with much higher 
accuracy. Comprehensive analysis of the two consensus 
methods gives us much more understanding of the 
predicted genes and help to identify the most possible 
cancer genes or functional modules with fewer false 
positives (Supplementary Section 10, Supplementary 
Tables 21–23, Supplementary Figure 9).

The combinatorial exclusivity evaluation metric 
CovEx overcomes to some extent the deficiency of other 
evaluation measures, such as Dendrix weight. Compared 
to the probabilistic measures, such as mutex, CoMEt, the 
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combinatorial measure is much easier to calculate and 
enables to identify exclusive modules in a much larger 
scale. The more comparison results between CovEx and 
others can be referred to Supplementary Section 11 and 
Supplementary Figure 10. Results of different CovEx 
runs demonstrated the stability of CovEx (Supplementary 
Section 12, Supplementary Table 24). 

CovEx is capable of integrating tumor mutation data 
and PPI networks to reveal infrequent, but functionally 
important genes and novel functional modules in cancer. 
We expect that CovEx will be applicable to predict patient-
specific driver genes and pathways in future personalized 
cancer care.

MATERIALS AND METHODS

Mathematical model

We denote the mutation data by a matrix A = (aij) 
with m rows (patients) and n columns (tested genes), 
where aij belongs to {0, 1} indicating whether gene j is 
mutated in patient i, i.e. aij = 1 if gene j is mutated in 
patient i, and aij = 0 otherwise. For each gene g, Γ(g) = 
{i : Aig = 1} represents the set of patients in which gene g is 
mutated. For a gene set M, Γ Γ( ) ( )M gg M= ∈  measures 

the coverage of M. ω ( ) ( ) ( )M g M
g M

= −
∈∑ Γ Γ  

measures the coverage overlap of M. The Dendrix weight 
introduced by Vandin et al. [17] is employed to discover 
modules with high coverage and exclusivity:
W M M M M g

g M
( ) ( ) ( ) ( ) ( ) ( )= − = + −

∈∑Γ Γ Γλω λ λ1

where λ is a constant parameter controlling the trade-
off between coverage and exclusivity of the gene set M. 

Influence graph

The PPI networks are integrated to identify 
topologically related functional modules. The direct 
topological relationship between genes or proteins can be 
reflected in the PPI network. However, due to the existence 
of hub genes and the large difference of gene degrees, 
uninteresting modules would be identified if we consider 
the PPI network directly [46]. Based on an annotated PPI 
network, an insulated heat diffusion process is employed 
to capture the local topology of the interaction network 
surrounding a protein (see [25]). An influence matrix F is 
obtained from the process. Elements in the matrix measure 
the topological relationships between pairs of nodes in 
the PPI network. Compared to the adjacent matrix, the 
influence matrix reflects more comprehensive topological 
relationship information between gene pairs. The influence 
matrix is not symmetric. A weighted undirected influence 
graph GI is defined based on the influence matrix F where 
F (i, j) is defined as the element of matrix F in row i and 
column j. The set of nodes of GI corresponds to the set of 
tested proteins or their associated genes. The weight of an 
edge (gi, gj) is defined as w(gi, gj) = min{F (i, j), F (j, i)}. 
The corresponding genes of the nodes incident with a small 
weighted edge usually have weak topology relationship. A 
reduced influence graph GI(δ) is derived by removing all 
edges with weights smaller than a fixed threshold δ [46]. 
The reduced influence graph can be considered as an 
approximate PPI network. In our current application, we 
select δ such that the average degree of the nodes in the 
reduced influence graph is 15 which is approximately the 
average degree of a real PPI network. For example, the 
iRefIndex network [47] consists of 91,872 interactions 
among 12,338 proteins and the MultiNet network [48] 
consists of 109,597 interactions among 14,445 proteins [25].

Table 1: Comparison results of CovEx and HotNet2 for single cancer types
NC SC AC NH SH AH

BLCA 30 16 53.3% 147 42 28.6%
BRCA 116 53 45.7% 50 18 36.0%

COADREAD 19 13 68.4% 76 19 25.0%
GBM 43 24 55.8% 25 11 44.0%
HNSC 66 30 45.5% 93 23 24.7%
KIRC 76 32 42.1% 23 8 34.8%
LAML 73 38 52.1% 42 28 66.7%
LUAD 52 28 53.8% 240 50 20.8%
LUSC 27 18 66.7% 103 27 26.2%

OV 28 15 53.5% 25 7 28.0%
UCEC 20 15 75.0% 73 27 37.0%

*The first column corresponds to all the analyzed cancer types. For each cancer type, the columns NC, SC, AC and NH, SH, 
AH correspond to the number of output genes, sensitivities and accuracies of CovEx and HotNet2, respectively.
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Discovery of network module candidates

The reduced influence graph captures the topological 
information for each pair of considered genes. The module 
candidates each roots at a node in the reduced influence 
graph are calculated by solving a series of binary linear 
programming (BLP) below. 
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 where

m, n represent the numbers of patients and mutated genes, 
respectively; k is an upper bound of the size of the to-
be-identified candidate module; xi indicates whether some 
gene in the candidate module is mutated in patient i, and yj 
indicates whether the candidate module contains gene j; aij 
indicates whether gene j is mutated in patient i, i.e. aij = 1 
if gene j is mutated in patient i, and aij = 0 otherwise. λ 
is a parameter pre-specified by users. The first constraint 
ensures that if genes in the candidate modules are not 
mutated in patient i, then xi = 0; otherwise xi = 1. 

The BLP problem is NP hard [18]. To solve the 
BLP efficiently and identify topologically related gene 
modules, the BLP is restricted to local networks each roots 
at a node. The local network rooted at a node is extracted 
by breadth-first search, starting at the node and gradually 
exploring neighbor nodes until reaching the proper radius 

or the maximum size which is less than a specified number. 
The pre-specified number controlling the size of each 
extracted local network is set to 300 for the dataset in our 
real application. In our procedure, we first consider λ = 0 
which means that the gene set with maximum coverage 
will be identified. We also consider λ = 1 which means that 
the exclusive property is considered for identification of 
gene sets. For both λ = 0 and λ = 1, k = 2, 3, 4, 5 are taken 
to generate candidates, respectively. Other values of λ and 
k can be tested as well. However, the exclusivity property 
of a module usually tends to get worse as the module size k 
increases. This BLP model is solved by employing the open 
source software gurobi 6.5.0 (http://www.gurobi.com/).

Filtration of candidate modules

A few genes with high mutation frequency may 
dominate the value of the Dendrix weight. Some identified 
modules contain genes which are not exclusive to the rest. 
We define a new metric which can coordinate very well 
between coverage and exclusivity. To do so, we introduce 
some new terminologies. Patients with only one mutated 
gene in a module are referred to as module exclusive 
patients. For each gene in a candidate module, we calculate 
the ratio between the number of the module exclusive 
patients mutated in that gene and the number of all patients 
mutated in that gene. The exclusivity metric for a module, 
denoted as Ex, is defined as the ratio on average of genes in 
that module. Modules with exclusivity value Ex less than 
0.8 are filtered in our experiment. Biologically, a driver 
module should not only exhibit higher exclusivity but also 
larger coverage. The coverage metric for a module, Cov, is 
defined as the ratio between the number of patients mutated 
in the module and the number of all patients in the dataset. 
Then the new metric of a module, denoted by CovEx, is 

Figure 3: A candidate module mutation matrix. In the matrix, 8 patients which have exactly one mutated gene are module exclusive 
patients. To calculate the exclusivity value Ex of the module, we first calculate the ratio between number of mutated module exclusive 
patients and number of all mutated patients for each gene. We get 1/4 = 0.25 for the first and the fourth gene, 3/4 = 0.75 for the second and 
the third gene. The exclusivity value Ex of the module is (0.25 + 0.75 + 0.75 + 0.25)/4 = 0.5. While the coverage value Cov of the module 
is 11/11 = 1, the CovEx value of the module is 1*0.5 = 0.5.
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defined as the product of the Cov and Ex of the module 
(see description of Figure 3). Obviously, the bigger the 
CovEx of a module, the more significant the module is. We 
randomly select 100,000 connected sub-networks of size 
k = 2, 3, 4, 5, respectively, in the reduced influence graph 
and calculate their respective CovEx values. We then obtain 
4 distributions of CovEx values for different values of k 
(= 2, 3, 4, 5). We select those significant candidate modules 
of size k by removing from the candidates all those with 
their p-value greater than 0.05 based on the CovEx value 
distribution for the value of k. 

Discovery of crucial candidate modules

To identify the most possible driver module for each 
specific patient, a minimum set cover model is applied to 
the set of previous significant candidate modules. The 
minimum set cover problem can be described as follows:

Given a set I of elements and a collection S of 
sets whose union equals the set I, it is required to find a 
smallest subset of S whose union equals the set I.

In our situation, the set I is the set of patients 
covered by all the significant modules, and S the collection 
of patient sets which are 1–1 corresponding to candidate 
modules obtained after the filtration step, where each 
patient set in S is exactly covered by a module obtained 
after the filtration step.

The set cover problem is also NP hard. A greedy 
strategy is adopted to discover the crucial candidate 
modules. The pseudocode is shown in Table 2.

The greedy nature of the algorithm implies that the 
latter a module is selected, the fewer it covers previously 
uncovered patients. Let M be a module output by the 
above greedy algorithm, C (C’) a set of modules obtained 
by the greedy algorithm right before (after) M is added 
to C, and s a positive integer. If the number of patients 
covered by C’ but not by C is no more than s, the module 
M is called as an s-module. 

Consensus method

For a given mutation dataset, after applying 
the CovEx to the three annotated PPI networks, 

HINT+HI2012, iRefIndex and Multinet for each 
parameter pairs (λ, k), where λ = 0, 1 and k = 2, 3, 4, 5, 
we obtained 24 solutions each consists of critical possible 
driver modules output by CovEx with 8 on each of the 
three networks. To elucidate the crosstalk of different 
modules and also refine the identified modules, we then 
modified a consensus method from [25] to construct 
consensus networks. To do so, for each of the three PPI 
networks we assigned to each gene pair a number 1 if 
the pair belongs to a module of any of the 8 solutions to 
the PPI network, and 0 otherwise. Doing so, each pair 
of genes is associated with three numbers of values 0 
or 1 according to the three PPI networks, respectively. 
We then create a double weighted network N with genes 
representing nodes and pairs of genes representing 
edges with their weights defined to be sum of the three 
numbers associated with the corresponding pairs of 
genes. The weight of a node (gene) in N is defined to be 
the maximum weight of the edges incident to the node. 
All the edges of weight 3 in N induce a sub-network 
with its each component being called a core. Then the 
final network modules can be obtained by the two steps 
below: 

Step 1. Extend each core by adding all the edges of 
weight 2, with one end in the core and the other outside the 
core. The modules obtained in this step are said to be of 
type 1 in distinguishing from modules of type 2 obtained in 
Step 2. Especially, if a node of weight 2 connects multiple 
cores, its corresponding gene which is called a linker gene 
belongs to all the corresponding type 1 modules. 

Step 2. By N’ we denote the network obtained 
from N by removing all the weight 3 nodes. Then all the 
network modules of type 2 are those sub-networks induced 
by all the edges of weight 2 in N’.
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Table 2: Pseudocode of the algorithm for discovering crucial candidate modules
Input: a set I of patients, all the significant modules (gene sets).
Output: a set C of modules such that each patient Pi has mutated genes in C. 
*A patient is said to be covered by the current C if the patient has mutated genes in a module of C.*
Initiation Step: Set C ← Ø.
While some patient has not been covered by the current C, do
Choose a module M such that the current C and M cover the largest number of patients in I. 
Reset C = C + M.
Return C.
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