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ABSTRACT
Gastric carcinoma (GC) is a leading cause of mortality. 10% of GC cases are 

related with EBV (Epstein-Barr virus) infection. The detailed mechanistic roles 
EBV genes play and especially the interaction between the viral genes and human 
genes in GC remain unclear. In this study, raw fastq data from 285 GC samples were 
downloaded from TCGA (The Cancer Genome Atlas), including 25 EBV positive (EBV+) 
GC samples and 260 EBV negative (EBV−) GC samples. RNA-seq based expression data 
were generated for both human genes (among all the samples) and for the EBV genes 
(among the 25 EBV+ samples). Bioinformatics analyses were performed to identify 
differentially expressed (DEx) human genes and DEx KEGG pathways in EBV+ vs. 
EBV− samples and co-expressed human gene modules and hub genes among the DEx 
genes. Within the EBV+ samples, analyses were conducted to find correlation between 
EBV gene expression and the human gene expression modules, between EBV gene 
expression and the human hub genes, and between EBV gene expression and the DEx 
human pathways. EBV genes LMP-1, BALF1 and BALF2 were found to have significant 
correlation with human hub genes, CNTD2 and VANGL2. EBV genes BALF4 and BALF5 
were found to correlate with human pathways, including Jak-STAT signaling and 
Phosphatidylinositol Signaling System. Our study has revealed the coordinated 
expression patterns between EBV and human GC transcriptome and identified several 
key EBV genes that may play an important role in EBV+ GC pathogenesis through 
their interactions with human genes and pathways.

INTRODUCTION

Gastric carcinoma (GC) is the fifth most common 
cancer and the third leading cause of mortality from cancers 
in the world [1]. Infections and other environmental agents, 
e.g., tobacco and alcohol and salted preserved food intake, 
were found to contribute to GC pathogenesis [2, 3]. In 
particular, EBV (Epstein–Barr virus) infection is one of the 
most important factors that cause GC [2, 4]. 

EBV is a cancer-related virus, which was observed 
to cause various human cancers in epithelial cells, 

lymphocytes and mesenchymal cells [5–7] and was found 
to account for 10% of all cases of GC [2, 4]. GC that 
was related to EBV infection shows a distinct molecular 
character compared to GC caused by other factors [4]. A 
recent study [4] in TCGA (The Cancer Genome Atlas) 
characterized GC into 4 subtypes: EBV−positive (EBV+), 
Microsatellite instability (MSI), genomically stable, and 
chromosomal instable. The EBV+ subtype was shown to 
have extensive DNA promoter hypermethylation [4]. 

Previous studies revealed that EBV+ GC was shown 
to lose expression of three critical tumor suppressor 
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gene products, CDH1 (E-cadherin), p73, and CDKN2A 
(p16) [8–11]. Other studies found that EBV−related GC 
is a subset of CpG island methylator phenotype (CIMP) 
cancers [10, 12–14]. However, the specific roles EBV 
plays at the genomic and molecular level and particularly 
the interaction between the viral genes and human genes in 
GC pathogenesis remain unclear. Our study is aimed to fill 
this gap of knowledge by correlating EBV gene expression 
with human gene expression in GC cells and identify those 
EBV genes that may account for human gene expression 
variation at the whole transcriptome scale. 

Our analysis started with differential expression 
(DEx) analysis that identified differentially expressed 
(DEx) genes (DEGs) and DEx pathways in EBV infected 
(EBV+) vs. EBV free (EBV−) human GC samples. Those 
identified DEGs and DEx pathways represent a subset of the 
human GC transcriptome that is relevant to EBV infection. 
Therefore, we focused on these DEGs and DEx pathways 
to find those human genes/pathways that interact with EBV. 

Due to the large number of genes/pathways involved, 
to avoid false positives due to multiple testing, we used a 
number of dimension reduction tools, including MEGENA 
[15] to extract hub genes and gene modules from the DEGs, 
and PCA (principal component analysis) to extract the first PC 
(principal components) of gene modules and DEx pathways. 
We then correlated the EBV genes with these extracted 
features through both a univariate (Pearson correlation) and a 
multivariate approach (sparse canonical correlation analysis, 
abbreviated as sCCA). Our analysis narrowed down the EBV 
gene list to a few EBV genes paired with a limited number 
of human genes/pathways with significant correlation. These 
identified EBV genes and their “partners” of human genes/
pathways may represent key interactive players in EBV−
related GC pathogenesis, whose importance is supported by 
some previous research evidences.

RESULTS

Sample selection

A total of 20 EBV− samples were selected. In 
Supplementary Table 11, we list the selected EBV− 
samples and their distance to the EBV+ samples. As 
shown in Supplementary Table 11, for each EBV+ sample, 
the distance to the selected EBV− sample is much smaller 
than its average distance to all the 260 EBV− samples. 
Also shown is the fact that several EBV+ samples share 
a same EBV− sample as their closest EBV− counterpart, 
thus the number of EBV− samples is only 20 while the 
number of the EBV+ samples is 25.

Data cleaning

Nineteen out of 88 EBV genes remained after 
data cleaning, where the genes that have a 0-count in 

greater than 5 EBV+ samples were removed. These 19 
EBV genes are: A73, BALF1, BALF2, BALF3, BALF4, 
BALF5, BARF0, BARF1, BNRF1, BRLF1, BZLF1, LF1, 
LF2, LF3, LMP-1, LMP-2A, LMP-2B, Qp-EBNA1, and 
RPMS1. The raw counts for these 19 EBV genes across 
the 25 EBV+ samples are shown in Figure 1. 

Differential expression analysis in EBV+ vs. 
EBV− samples

A total of 939 genes were found to be differentially 
expressed at a significance level of Bonferroni corrected 
p value < 0.05, including 189 genes upregulated and 750 
downregulated in EBV+ vs. EBV− samples. The gene 
symbols and direction of regulation (up or downregulation) 
for these genes is included in Supplementary Table 2.

Pathway analysis

At the significance level of FDR adjusted p < 0.05, 
we identified 29 KEGG pathways that are DEx in EBV+ 
vs. EBV− samples (Table 1). All of the 29 DEx pathways 
are upregulated in EBV+ vs. EBV− samples.

Gene co-expression analysis

MEGENA identified 27 modules and 91 hub genes 
in the 939 DEx human genes. Note that since one gene 
may be included in different modules, the total number of 
genes in modules may be greater than 939. Supplementary 
Table 3 shows the modules and the number of genes 
contained in each module. Supplementary Table 4 shows 
the name of the 91 hub genes.

PCA of modules and pathways

We used first PC (PC1) of each module’s expression 
data to represent the module. The percent of variation 
explained by the PC1 of each module ranges from 44.5% 
to 74.5% with a mean of 54.8% and a standard deviation 
of 7.8%. The detailed percentage of variation explained by 
PC1 of each module is listed in Supplementary Table 5. 

PCA of the 29 significant pathways (Table 1) was 
also performed and the variation explained by the PC1 
ranges from 18.4% to 63.4%, with a mean of 32.6% and 
a standard deviation of 8.6%. The detailed percentage of 
variation explained by PC1 of each pathway is listed in 
Supplementary Table 6.

Pearson correlation analysis of DEx human 
genes with EBV genes

Seven EBV genes showed significant correlation 
with the PC1s of 12 modules at the significant level 
of FDR adjusted p value < 0.1. The result is shown in 
Table 2. Among all the significant EBV−module pairs, the 
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strongest correlation was observed for BALF1 vs. module 
12 with a correlation coefficient of 0.662. The two EBV 
genes, LMP-1 and BALF2, appeared to be correlated with 
most of the modules. LMP-1 was correlated with six and 
BALF2 with four modules.

Three EBV genes showed significant correlation (FDR 
< 0.1) with 4 hub genes (Table 3). The strongest correlation 
was observed between the EBV gene LMP-1 and the human 
gene C1orf115, with a correlation coefficient of 0.754.

Two EBV genes showed significant correlation with 
PC1 of four pathways at the significance level of FDR-
adjusted p value < 0.1 (Table 4). The EBV gene, BALF4, 
showed significant correlation with 4 pathways. The 
strongest correlation was for BALF4 with the pathway 
“Phosphatidylinositol signaling system (HSA04070)” with 
a correlation coefficient of 0.709. 

sCCA of human genes with EBV genes

Twenty-two human gene modules achieved 
significant correlation with the count matrix for 19 EBV 
genes at the significance level of FDR < 0.1 (Table 5). 
The essential EBV genes that were accountable for the 
canonical correlation are LMP-1, BALF1, BALF2, 
BARF1, BNRF1, LF1, and BZLF1. 

The canonical correlation between the human hub 
gene count matrix and the EBV gene count matrix is 
0.806 (p = 0.010). The essential EBV genes accountable 
for the canonical correlation are LMP-1, BALF1, BALF2, 
BNRF1, and BRLF1, and the essential human genes 
accountable for the sCCA correlation are VANGL2, 
C1orf115, CNTD2, KCNJ12, NDNF, SYT1, AGAP11, 
OCA2, UPK1B, WASF3, TMEM220, KCNK15, 
MAPK8IP1, RP11-78F17.1, SRPX, and PLA2R1. 

All DEx pathways achieved significant canonical 
correlation with the EBV gene count matrix (FDR < 0.1). 
The top significant ones (with an FDR of < 0.001) are 
shown in Table 6, which involve 14 pathways. As shown 
in the table, BALF4 (appearing 13 times) and BALF5 
(appearing 14 times) are the essential EBV genes for 
canonical correlation with most of the pathways. 

Result summary for EBV genes 

An overall summarization of important EBV genes 
is presented in Table 7.

LMP-1: It achieved significant correlation with 6 
human gene modules (modules 5, 12, 15, 17, 20, 24) by 
Pearson correlation analysis (FDR < 0.1). It also achieved 
significant correlation with 2 human hub genes, C1orf115 

Figure 1: Read counts of 5 EBV genes.
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(correlation coefficient = 0.754, FDR < 1e-6) and 
VANGL2 (correlation coefficient = 0.705, FDR = 0.043). 

BALF2: It significantly correlates with 4 human 
modules (modules 2, 8, 18 and 21) from Pearson correlation 
analysis (FDR < 0.1). It is the essential gene in canonical 
correlation with 11 human gene modules, including modules 
2, 5, 7, 8, 9, 11, 18, 20, 21, 25, 27. It was also the essential 
EBV gene in canonical correlation with human hub genes. 

BALF1: It achieved significant correlation with one 
human hub gene, CNTD2, in Pearson correlation analysis 
with a correlation coefficient of 0.729 (FDR = 0.046). It is the 
essential EBV gene in canonical correlation with 6 human gene 
modules, including module 5, 7, 9, 11, 12 and 20. It is essential 
gene in the canonical correlation with the human hub genes.

BALF4: It achieved significant correlation with 4 
human pathways (Lysosome, Jak-STAT signaling pathway, 

Apoptosis, Phosphatidylinositol signaling system) from 
Pearson correlation analysis, with FDR values of 0.072, 
0.008, 0.017 and 0.006, respectively. It is the essential EBV 
gene in canonical correlation with human gene module 10. 
It is the essential EBV gene in the canonical correlation 
with almost all (12 of) the 14 pathways shown in Table 6. 

BALF5: It is the essential EBV gene in canonical 
correlation with 3 human gene modules (14, 23 and 26). 
It is the essential EBV gene in sCCA correlation with 9 
human gene pathways. 

Important human gene modules

Shown in Table 8 are human gene modules that were 
significantly correlated with EBV genes in both Pearson 
correlation analysis and sCCA.

Table 1: Differentially expressed pathways in EBV+ vs. EBV− samples
Pathways P value FDR

hsa04612 Antigen processing and presentation < 0.001 < 0.001
hsa04650 Natural killer cell mediated cytotoxicity < 0.001 < 0.001
hsa03040 Spliceosome < 0.001 < 0.001
hsa04380 Osteoclast differentiation < 0.001 < 0.001
hsa04120 Ubiquitin mediated proteolysis < 0.001 0.001
hsa04110 Cell cycle < 0.001 0.001
hsa04620 Toll-like receptor signaling pathway < 0.001 0.001
hsa03030 DNA replication < 0.001 0.001
hsa04660 T cell receptor signaling pathway < 0.001 0.001
hsa03010 Ribosome < 0.001 0.001
hsa04142 Lysosome < 0.001 0.001
hsa03420 Nucleotide excision repair < 0.001 0.002
hsa04141 Protein processing in endoplasmic reticulum < 0.001 0.002
hsa04630 Jak-STAT signaling pathway 0.001 0.008
hsa03013 RNA transport 0.001 0.008
hsa03050 Proteasome 0.001 0.008
hsa04210 Apoptosis 0.001 0.01
hsa04672 Intestinal immune network for IgA production 0.001 0.01
hsa03008 Ribosome biogenesis in eukaryotes 0.001 0.011
hsa04623 Cytosolic DNA-sensing pathway 0.001 0.011
hsa04666 Fc gamma R-mediated phagocytosis 0.001 0.011
hsa03430 Mismatch repair 0.001 0.011
hsa00240 Pyrimidine metabolism 0.002 0.014
hsa04062 Chemokine signaling pathway 0.002 0.014
hsa00970 Aminoacyl-tRNA biosynthesis 0.002 0.014
hsa04622 RIG-I-like receptor signaling pathway 0.003 0.02
hsa04115 p53 signaling pathway 0.004 0.024
hsa04070 Phosphatidylinositol signaling system 0.005 0.028
hsa03018 RNA degradation 0.006 0.035
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These gene modules were annotated in DAVID [16, 
17]. The significant annotation results, including those 
for module 5 and 12, are shown in Supplementary Tables 
7, 8. Module 5 contains terms related to membrane, 
transmembrane and ion channel. Module 12 contains 
terms related to calcium ion binding (GO:0005509) 
and Ghrelin Pathway. Interestingly the latter pathway 
was found to promote gastrointestinal and pancreatic 
malignancy [18–20]. 

As an example, Figure 2 shows the interaction 
network between module 5 and EBV genes. As shown 
in the figure, LMP-1, BALF1, BALF2 are located in the 
center, suggesting that they have high correlation with 
most of the human genes in these modules. 

Important human hub genes 

These genes are C1orf115, CNTD2, and VANGL2. 
They achieved significant correlation with EBV genes 
BALF1 and LMP-1 in Pearson correlation analysis, and 
were also identified as essential genes in sCCA with 
EBV genes. Figure 3 shows the gene interaction network 
between EBV genes and human hub genes.

Important human gene pathways

Apoptosis, Lysosome, Jak-STAT signaling pathway, 
and Phosphatidylinositol signaling system are significant 
human gene pathways. Those four pathways achieved 

Table 2: Human gene modules that correlate with EBV genes in Pearson correlation analysis
EBV genes Human gene modules Correlation coefficients

BALF1 12 0.662
BALF2 2 −0.587
BALF2 21 −0.575
BALF2 8 0.595
BALF2 18 0.584
BALF5 26 0.532
BARF1 17 −0.608
BNRF1 12 0.640
BRLF1 1 0.607
LMP-1 15 −0.633
LMP-1 12 0.615
LMP-1 24 0.607
LMP-1 5 0.602
LMP-1 20 0.592
LMP-1 17 −0.569

Table 3: Human hub genes that correlate with EBV in Pearson correlation analysis
EBV genes Hub genes Modules the hub gene belongs to Correlation coefficients

BALF1 CNTD2 12 0.729
LMP-1 VANGL2 12 0.705
LMP-1 C1orf115 5, 20 0.754

LMP-2B CISD1 6 0.675

Table 4: Human gene pathways that correlate with EBV in Pearson correlation analysis
EBV genes Pathway names Correlation coefficient

BALF4 Apoptosis (HSA04210) 0.702
BALF4 Jak-STAT signaling pathway (HSA04630) 0.690
BALF4 Lysosome (HAS04142) −0.618
BALF4 Phosphatidylinositol signaling system (HSA04070) 0.709
BALF5 Apoptosis (HSA04210 0.564
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significant correlation with BALF4 and/or BALF5 in both 
Pearson correlation analysis and sCCA. 

In particular, BALF4 achieved positive correlation with 
the majority of the individual genes in Jak-STAT signaling 
pathway (Supplementary Table 9) and Phosphatidylinositol 
signaling system (Supplementary Table 10). 

DISCUSSION

In this study, we used a series of biostatistics and 
bioinformatics tools and methods (e.g., DESeq2 gene 
differential expression analysis, MEGENA gene co-expression 
analysis, GAGE pathway analysis, principle component 
analysis, Pearson correlation analysis, and sCCA analysis) 
to reveal the relationship of EBV and human GC gene 
expression. The aim of our study is to dissect this relationship 
at the single EBV gene level. This task was challenging as we 
tried to correlate two transcriptomes, one from EBV and one 
from human, and hence the potential data space (number of 
potentially correlative pairs) runs hundreds of thousands of 
dimensions. Therefore, we used several tools to try to reduce 
the dimensionality so that the problem of multiple testing 
can be alleviated. For example, we used MEGENA gene co-
expression analysis and PCA, to extract the most essential 
information from genome-wide gene expression data. 

We then applied both Pearson correlation and 
sCCA to find the relationship of EBV gene expression 
with human GC gene modules, hub genes and pathways. 
For correlation analysis, sCCA was more sensitive than 

Pearson correlation analysis and identified more significant 
results. However, the results from Pearson correlation 
analysis are easier to interpret as it was performed 
pairwise so that the intensity of correlation between 
an EBV gene and a human gene can be conveniently 
measured by the correlation coefficient and the statistical 
significance by the p value. Overall, most human gene 
modules and pathways as identified/extracted from our 
first phase differential expression analysis (Figure 4A) 
were found to be significantly correlated with EBV genes 
at the significance level of FDR < 0.1, which, as expected, 
suggested that EBV genes did have a strong relationship 
with human GC cell gene expression. 

More importantly, LMP-1, BALF2 and BALF1 
are the most significant EBV genes correlating with 
human gene modules and hub genes. LMP-1 encodes 
the latent membrane protein-1, which is an oncoprotein 
and can lead to deregulation of cell growth. Several 
studies showed that its expression was related with many 
cancers such as nasopharyngeal carcinoma and Hodgkin’s 
Lymphoma [21–24]. BALF1 encodes anti-apoptotic 
cellular Bcl2 homologs that can suppress cell apoptosis. 
Its expression was also found to be related with cancers 
such as nasopharyngeal carcinoma [25, 26]. For BALF2, 
its relationship with cancers was not reported before and 
our study is the first one to show its potential association 
with gastric carcinoma.

At the human gene side, the hub gene CNTD2 was 
correlated with the EBV gene BALF1. CNTD2 encodes 

Table 5: Human gene modules that correlate with EBV genes in sCCA
Human gene 

modules
sCCA correlation 

coefficients FDR Essential EBV genes

1 0.836 0.078 BRLF1, LMP-1, 
2 0.808 0.022 BALF2, LMP-1 LF1, 
5 0.828 0.008 LMP-1, BALF1, BALF2, BARF1, 
6 0.936 0 LF2
7 0.743 0.012 BALF1, BALF2, BNRF1, LMP-1, , LMP-2B
8 0.742 0.050 BALF2
9 0.739 0.058 LMP-1, BALF2, BALF1, BNRF1, BARF0, BZLF1, LF1, BARF1 LMP-2A
10 0.712 0.079 BALF4, 
11 0.749 0.078 BALF1, BALF2
12 0.821 0.079 BALF1, BNRF1
14 0.782 0.032 BALF5 
15 0.774 0.012 LMP-1 
17 0.837 0.078 BARF1
18 0.847 0.012 BALF2, LMP-1, LF1
20 0.869 0.003 LMP-1, BALF1, BARF1, BALF2, BNRF1, BZLF1, BRLF1, LF1, 
21 0.742 0.032 BALF2, LMP-1
23 0.782 0.008 BALF5
24 0.762 0.050 LMP-1 
25 0.759 0.012 LF1, BALF2, 
26 0.782 0.012 BALF5
27 0.706 0.068 BALF2, LMP-2B
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cyclin N-terminal domain containing 2 and was shown to 
be associated with methylation by nicotine exposure [27]. 
It was also involved in 84 cancer networks (The Cancer 
Network Galaxy/TCNG, http://tcng.hgc.jp/). Another 
human hub gene, VANGL2, which was correlated with the 
EBV gene LMP-1, encodes a membrane protein involved 
in the regulation of planar cell polarity and its expression 
was shown to be related to breast cancer [28–30].

Two EBV genes, BALF4 and BALF5, achieved 
significant correlation with four human gene pathways, i.e., 
Lysosome, Jak-STAT signaling pathway, Phosphatidylinositol 

signaling system, and Apoptosis. Studies showed that 
BALF4 and BALF5 were essential to EBV’s replication and 
infection to human cells. BALF4 encodes a protein, gp110, 
which can dramatically enhance the ability of EBV to infect 
human cells [31]. BALF5 encodes the DNA polymerase that 
is essential to the virus’ replication [31].

Lysosome regulates cell death and is related to 
cell canceration [32]. Apoptosis is a very important 
process and needs to be regulated precisely. Both up- 
and down regulation of this pathway may contribute 
to carcinogenesis [33]. Another pathway, Jak-STAT 

Table 6: Human gene pathways that correlate with EBV genes in sCCA

Pathways KEGG ID Canonical correlation 
coefficients FDR Essential EBV genes

Natural killer cell mediated cytotoxicity hsa04650 0.86 3e-4 BALF4

Spliceosome hsa03040 0.87 8e-4 BALF4

Osteoclast differentiation hsa04380 0.95 3e-4 BALF4 

Ubiquitin mediated proteolysis hsa04120 0.88 8e-4 BALF4, BALF5

Cell cycle hsa04110 0.91 < 3e-4 BALF5

Toll-like receptor signaling pathway hsa04620 0.95 < 3e-4 BALF5, LF2, BALF4, A73 

Lysosome hsa04142 0.90 6e-4 BALF4, BALF5

Jak-STAT signaling pathway hsa04630 0.86 < 3e-4 BALF4

RNA transport hsa03013 0.93 < 3e-4 BALF5, BALF4
Apoptosis hsa04210 0.94 < 3e-4 BALF5

Cytosolic DNA-sensing pathway hsa04623 0.89 8e-4 BALF4, BALF5

Fc gamma R-mediated phagocytosis hsa04666 0.93 8e-4 BALF5, BALF4, A73

Chemokine signaling pathway hsa04062 0.94 3e-4 BALF5, BALF4

Phosphatidylinositol signaling system hsa04070 0.89 3e-4 BALF4

Table 7: Summary of important EBV genes

Important 
EBV genes

Correlated with human genes in Pearson 
correlation analysis Correlated with human genes in sCCA

Number of 
modules Hub genes Number of 

pathways
Number of 

modules Hub genes Number of pathways

LMP-1 5 modules C1orf115, 
VANGL2 - 10 modules Yes -

BALF2 4 modules - - 10 modules Yes -

BALF1 - CNTD2 - 6 modules Yes -

BALF4 - - 4 pathways 1 module - 12 pathways

BALF5 1 module - 1 pathway 3 module - 9 pathways
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Table 8: Human gene modules that correlate with EBV genes

Human gene modules Pearson correlation coefficient sCCA correlation coefficient

12 0.662 0.821

15 0.633 0.774

17 0.608 0.837

1 0.607 0.836

24 0.607 0.762

5 0.602 0.828

8 0.595 0.742

20 0.592 0.869

2 0.587 0.808

18 0.584 0.847

21 0.575 0.742

26 0.532 0.782

Figure 2: Interaction network between EBV genes and human module 5.
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signaling pathway, has been shown to be essential 
in gastric carcinoma and other cancers [34, 35]. 
Interestingly, we found a positive correlation between the 
BALF4 gene and the majority of individual genes in the 
Jak-STAT signaling pathway (Supplementary Table 9), 
which suggests that the EBV gene BALF4 alone may play 
an important role in the upregulation of this pathway in 
EBV+ vs. EBV− subjects. 

The pathway Phosphatidylinositol signaling system 
is an intricate network of enzymes and phospholipid 
messengers, and is a crucial regulator of most cellular 
processes. Upregulation of this pathway may lead to 
cancers [36, 37]. Interestingly, upregulation of this 
pathway may be caused by the mutation of PIK3CA (the 
alpha-isoform of the regulatory subunit of PI3K) [37], 
which is an important molecular character of EBV+ human 
GC [4]. In our study, the BALF4 gene also achieved a 
positive correlation with most of individual genes in this 
pathway (Supplementary Table 10). Therefore, BALF4 
may be the key responsible EBV gene for upregulation 
of this pathway in EBV+ vs. EBV− samples in our study. 

In summary, we performed a study to analyze the 
interaction between EBV genes and human GC gene 
expression. Our results indicated that several EBV genes, 
LMP-1, BALF1, BALF2, BALF4 and BALF5, may interact 

with the expression of human GC genes, e.g., the CNTD2 
and VANGL2, and the gastric cancer-related pathways, 
e.g., Jak-STAT signaling and phosphatidylinositol 
signaling system. Our study, by determining the above 
key interactions, provided new mechanistic insights into 
the EBV−related GC from the perspective of cross-talk 
between individual EBV genes and the specific human 
genes/pathways. Treatment schemes, e.g., new vaccines, 
medicines and screening kits, targeted at these important 
EBV genes’ products and their interactive partners at the 
human gene side may be developed to more effectively 
prevent EBV−related gastric cancer.

MATERIALS AND METHODS

Overall workflow

The overall workflow of the study is shown in 
Figure 4. The workflow is broken down into three 
parts, feature extraction (Figure 4A, the left panel of the 
figure), univariate correlation analysis (Figure 4B, the 
middle panel of the figure) and multivariate correlation 
analysis (Figure 4C, the right panel of the figure). In 
feature extraction (Figure 4A), we quantified EBV gene 
expression and identified those human genes/pathways 

Figure 3: Interaction network between EBV genes and human hub genes.
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differentially expressed in EBV+ vs. EBV− samples. Using 
the expression data of the DEGs, we also extracted the hub 
genes and gene modules through MEGENA (Multiscale 
Embedded Gene Co-expression Network Analysis) analysis. 

As shown in Figure 4B, we then correlated EBV 
gene expression data with the human GC expression 
features extracted in the feature selection step. EBV gene 
expression was correlated with the hub genes directly. 
For correlating with the human gene modules and human 
DEx pathways, we first used PCA (Principle Component 
Analysis) to extract the first PC of each module and the first 
PC of each DEx pathway and then correlate the EBV genes 
with the first PC (Figure 4B). The PCA analysis served to 
reduce the dimensionality of the human gene expression 
data and alleviate the problem of multiple testing. 

The above correlation was further performed using 
multivariate correlation approach, i.e., the sparse canonical 
correlation (sCCA) (Figure 4C), where the whole expression 
matrix of hub genes, gene modules and DEx pathways were 
correlated with EBV gene expression matrix directly. Through 
this analysis, we also selected essential EBV genes that explained 
the major fraction of the canonical correlation (Figure 4C). 

We extracted hub genes and modules to capture the key 
features that explain the major variation of the genes under EBV 
regulation. A module is a group of genes who have similar behaviors 
(or strong cross-gene correlations). A hub gene is a gene that has 
high connections (strong overall correlations) with other genes. 
Through modules and hub genes, we essentially took advantage 
of the inter-correlation information between genes and used that 
information to effectively reduce the dimensionality of our data.

Gene expression count generation 

Raw fastq data for 285 GC (including 260 EBV− 
GC and 25 EBV+ GC) samples was downloaded from 

TCGA (The Cancer Genome Atlas). The downloaded 
samples’ sample IDs are shown in Supplementary Table 1. 

The raw fastq data were adaptor-trimmed and 
mapped to hg19 human reference genome using the 
TopHat Alignment Tool [38] to generate BAM files. We 
then used a number of Bioconductor packages to process 
the BAM files into gene count matrix following the 
procedures listed under http://www.bioconductor.org/help/
workflows/rnaseqGene/. 

EBV transcript quantification was generated 
following the pipeline as described in Strong et al. [39]. 
Briefly, alignment was carried out using Novoalign [-o 
SAM, paired-end, default options] against the EBV B95-8 
genome, followed by EBV transcript quantification using 
the software SAMMate [40].

Sample selection

In our dataset, we have 25 EBV+ GC samples 
and 260 EBV− GC samples. To alleviate confounding 
effects during the process of comparing EBV+ and EBV− 
samples, we selected EBV− GC samples that are most 
similar to the 25 EBV+ GC samples in clinical variables. 

We first constructed a design matrix based on 
the clinical variables, which included gender, age at 
initial pathological diagnosis, race, anatomic neoplasm 
subdivision (e.g., fundus/body, antrum/distal, cardia/
proximal, etc.), histologic diagnosis (e.g., stomach 
adenocarcinoma diffuse type, stomach adenocarcinoma 
tubular type, stomach adenocarcinoma not otherwise 
specified, etc.), adjacent PT staging, adjacent PN staging, 
adjacent PM staging, adjacent tumor stage, tumor 
grade, history of other malignancy, presence of Barrett’s 
esophagus, and family history of gastric carcinoma. The 
design matrix was built with 285 samples arranged in rows 

Figure 4: Data analysis workflow.
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and the above variables arranged in columns. Except for 
age at diagnosis, all the variables were coded as categorical 
data (i.e., 0, 1, 2, etc.). Missing values were coded as NA.

We then used the R function, “dist()”, to develop 
a distance matrix using the design matrix. The distance 
between two samples (x, y) was calculated based on 

Euclidean distance, d (x, y) = ( )xi ii

n
y−

=∑ 2
1

, where

xi and yi are the values for the ith clinical parameter for the 
two samples. 

For each of the 25 EBV+ samples, we selected 
an EBV− sample that has the shortest distance from the 
former. As some of the EBV− samples so selected (that 
are paired with an EBV+ sample) are the same, the total 
number of selected EBV− samples is 20. 

Data cleaning and normalization

Those EBV genes (transcripts identified and 
quantified using EBV B95-8 genome as mentioned above) 
that have 0-count in more than 5 samples were removed 
from further analysis. 

We applied a library size based method for data 
normalization, as recommended by a Bioconductor 
package, GAGE (Generally Applicable Gene-set 
Enrichment for Pathway Analysis) [41]. The library 
size of each sample is first calculated by adding all 
the read counts of genes in that sample using R code 
libsizes=colSums(Expr), where the dataset Expr is 
the original count matrix with columns corresponding 
to samples and rows representing genes. Then 
we calculated the size factor using this formula: 

sfi = libsize expi
libsizei
n

/ log10∑







 , where sfi is the size

factor of the ith sample, libsizei is the library size of the 
ith sample, and n is the number of samples. It can be 
done using the following R code: size.factor=libsizes/
exp(mean(log(libsizes))). Then we divided all gene counts 
by the size factor of the corresponding sample to make sure 
that the library size are comparable among each sample, 
and then added 8 to each read count to prevent 0 counts 
and make sure all the log2 transformed read counts will be 
greater or equal to 3. Then we applied log2 transformation 
on all the read counts. The process was done in R using 
these codes: expr.norm=t(t(DExExpr)/size.factor); expr.
norm=log2(expr.norm+8). The normalized counts are 
used for constructing gene co-expression network and 
correlation analysis.

Differential expression (DEx) analysis

We use “DEseq2” package [42] in Bioconductor 
to identify differentially expressed genes (DEx genes) 
between EBV+ and EBV− samples. Genes with a raw 
p value less than 1E-6 (so that the Bonferroni corrected 
p value is less than 0.05) were identified as DEx genes. 

Pathway analysis

We used “GAGE” (Generally Applicable Gene-set 
Enrichment for Pathway Analysis) [41] in Bioconductor 
to identify DEx pathways in EBV+ vs. EBV− groups. 
The log2 fold change for all genes from the DEx analysis 
was submitted to GAGE for the analysis. GAGE then 
calculated the mean and variance of the fold change (in 
EBV+ vs. EBV− groups) for gene sets (i.e., the pathways) 
and for the background (i.e., the whole gene list) using 
each gene’s fold change data.  The t test was performed 
to compare the log2 fold change of a gene set and 
the background. The t test statistics for all pairwise 
comparisons between a test group sample and a control 
group sample were summarized into a new statistic. The 
new statistic follows a gamma distribution, based on 
which the overall difference of the gene set between the 
case samples and the control samples was evaluated for 
statistical significance. Since the information of up and 
down regulation could also be obtained from the fold-
change data, GAGE could also identify a pathway to be 
up or down regulated [41]. Those pathways that have a 
p value less than 0.05 after Bonferroni correction were 
treated as significant pathways for further analysis. 

Gene co-expression network analysis of DEx 
genes

We used R package MEGENA to construct gene 
co-expression network of the identified DEx genes [15]. 
The complete workflow of MEGENA contains 4 major 
steps: Fast Planar Filtered Network construction (FPFNC), 
Multiscale Clustering Analysis (MCA), Multiscale Hub 
Analysis (MHA), and Cluster-Trait Association Analysis 
(CTA) [15]. We used the first three steps to find the 
clusters and hub genes in human DEx genes.

PCA (principal component analysis) of gene 
modules and DEx pathways

We used PCA for dimension reduction of the identified 
modules and DEx pathways. PCA performs dimension 
reduction of correlated variables by projecting those 
variables to several principal components without losing their 
variabilities. The first principal component (PC) can explain 
the largest proportion of variability and the second, third and 
other subsequent components can explain remaining smaller 
proportions of variability. One can then use the first PC that 
contains most of the variability to represent the whole dataset 
without losing much information. 

We applied PCA to the expression data of the 
individual modules constructed by MEGENA and the 
expression data of the DEx pathways. We used R function 
“prcomp()” to implement PCA. The input datasets of 
“prcomp()” are the normalized count data of modules and 
pathways. We used the first PC extracted from the data for 
further downstream analyses. 
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Pearson correlation analysis

We performed pairwise Pearson correlation analysis 
1) between first PC of modules and EBV gene expression 
data, 2) between first PC of significant pathways and EBV 
gene expression data, and 3) between hub genes and EBV 
gene expression data. We performed permutation test (by 
permuting the sample labels) on the obtained correlation 
coefficients to infer their statistical significance. We did not 
adopt the nominal p value for the Pearson correlation as it 
assumes bivariate normal distribution of the data, which may 
not be true for the RNA-seq data. Those correlative pairs 
that achieved FDR values < 0.1 were selected for further 
comparison with the results from sparse canonical correlation 
analysis. The permutation tests were performed using C++. 

Sparse canonical correlation analysis (sCCA)

We used sCCA to assess the correlation between 
EBV gene expression data and expression data of a 
module, between EBV gene expression and expression 
data of hub genes, and between EBV gene expression data 
and expression data of significant pathways.

CCA (canonical correlation analysis) is a classical 
method to obtain correlation of two data matrices. However, 
classical CCA can only handle the case where sample size 
m1 and m2 is greater than the number of variables m1 and m2 
in both matrices. In our expression data the sample size n 
is normally less than the number of variables (the genes). 
Therefore we use sparse CCA instead. Sparse CCA, 
by adding a penalty on canonical variants before CCA 
calculation, can handle the situation, when m1 and m2 >> n. 

We used the R package PMA (Penalized 
Multivariate Analysis) [43] to perform sparse CCA on our 
datasets and perform permutation test on the calculated 
canonical correlation coefficients to test their significance. 
Those that achieved a p value of less than 0.1 after FDR 
correction were treated as significant. We used the function 
“CCA.permute()” in PMA to select the tuning parameters 
of sparse CCA and then used the function “CCA()” in 
PMA to perform sCCA using the parameters selected. 
“CCA.permute()” and “CCA()” require the input of two 
matrices to be correlated, with samples in rows and genes 
in columns. We submitted the normalized count matrices 
of EBV genes and human gene modules, EBV genes and 
human hub genes, EBV genes and human gene pathways 
to the two functions separately for sCCA analysis. 

The canonical coefficient of each element feature (e.g., 
an EBV gene) can be obtained from the result of “CCA()”, 
which can measure the contribution of an element feature 
(e.g., a specific EBV gene) to the overall canonical correlation. 
For example, a feature with a non-zero canonical coefficient 
means that it contributes substantially to the overall correlation 
between two matrices. Thus, we selected the genes with non-
zero canonical coefficients as “essential” genes. 

To make the selection of essential genes robust, 
we adopted a method from a study by Lin et al [44]. We 
randomly sampled 23 out of all the 25 EBV+ samples for 
100 times. It is expected that if a gene has a significant 
contribution to the overall canonical correlation, it would 
achieve a non-zero canonical coefficient in most of 
samplings. This means that the contribution of one gene 
to the overall canonical correlation can be quantified by 
the frequency of times of achieving a non-zero canonical 
coefficient in the 100 samplings. So the contribution 
of one gene to the overall canonical correlation can be 
calculated using this formula [44]. 

g
N n

N

i i nI u= ≠
=

1

1
∑ ( ), 0

where gi is the importance of gene i, ui,n is the 
canonical coefficient of gene i in nth sampling, N is the 
total number of sampling, and I (ui, n≠ 0) is an indicator 
function, which is equal to 1 if ui, n ≠ 0, otherwise 0. We 
set a stringent threshold that a gene with gi > 0.9 will be 
selected as the essential gene (as indicated in Figure 4C).

Comparison of analytical results between 
univariate pearson correlation analysis and 
sCCA

We compared univariate Pearson correlation analysis 
and sCCA analysis results. Those that achieved significant 
results in both analyses were summarized or annotated 
using DAVID (Database for Annotation, Visualization 
and Integrated Discovery) [16, 17], which can annotate 
the genes at the levels of Gene Ontology (GO), KEGG 
(Kyoto Encyclopedia of Genes and Genomes), SP-PIR 
(protein information resource) and other functional terms. 
We also drew the graphs to show the interactions between 
significant EBV genes and human module/hub/pathway 
genes by their cross-correlation. For that purpose, we used 
the R function network() in R package MixOmics [45]. 
The function network() requires a correlation matrix (in 
our case the Pearson correlation matrix) between two 
sets of features and can show correlations with different 
magnitude in different color [45]. 
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