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The heme oxygenase-1 and c-FLIP in acute myeloid leukemias: 
two non-redundant but mutually exclusive cellular safeguards 
protecting cells against TNF-induced cell death?
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TNF-induced apoptosis is tightly regulated by the 
NF-κB pathway. Under physiologic conditions, TNFα 
stimulation induces NF-κB activation and cell survival, 
due to the regulation of anti-apoptotic genes, including 
c-FLIP, a caspase-8 inhibitor, whose expression is 
sufficient to protect cells against TNF-induced apoptosis. 
TNF triggers cell death only in circumstances where the 
NF-κB pathway is defective. Rushworth and collaborators 
have recently demonstrated, however, that the heme 
oxygenase-1 (HO-1), also known as Heat shock protein 

32 (Hsp32) [1], like c-FLIP, can afford protection against 
TNF-induced cell death in AML cells, despite NF-κB 
inactivation [2]. They now provide evidence that TNF 
mediated HO-1 up-regulation, is negatively regulated by 
c-FLIP, revealing a novel negative regulatory feedback 
loop controlling apoptosis induced by TNRI (Figure 1).

In contrast to Fas or TRAIL receptor-mediated cell 
death, apoptosis induced by TNFRI is a two-step process 
that requires the formation of two sequential signalling 
complexes [3].  The plasma membrane-bound complex 
I, including TNFR1, TRADD, RIP1 and TRAF2, is 

Figure 1: Contribution of HO-1 and c-FLIPL to the regulation of  TNF signalling in monocytes and acute myeloid leukemia 
cells (AML). (A) In monocytes, engagement of TNFR1 by TNFα induces activation of NF-κB, leading to up-regulation of FLIP and inhibition 
of cell death, however inactivation of NF-κB (B) prevents FLIP neosynthesis, allowing caspase activation and apoptosis. (C) AML cells are 
resistant to TNFα-induced apoptosis, even upon inactivation of NF- κB (D), due to the up-regulation of HO-1. (E) Simultaneous inactivation 
of c-FLIP and HO-1 enhances TNF-induced cell death.
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dedicated to the activation of the survival pathway NF-
κB. FADD and caspase-8 are recruited in the “cytosolic” 
complex, also coined complex II, which is devoid of 
TNFRI, triggering caspase-8 activation and apoptosis [3]. 
In the vast majority of cells, however, activation of NF-
κB induces protection against TNF-induced cell death [4]. 
Several anti-apoptotic genes are regulated by NF-κB [5], 
but so far only c-FLIP has been demonstrated to afford 
full protection when expressed alone [6,7]. Activation of 
complex II and thus triggering of the apoptotic program is 
generally thought to occur in NF-κB defective cells due to 
the lack of c-FLIP supply [8]. 

 HO-1 is a stress-related anti-apoptotic molecule 
that has been implicated in enhanced survival of cancer 
cells and in drug-resistance [1]. Overexpression of HO-1 
protects cells from H2O2-, Fas- or TNF-induced apoptosis 
[9-11].  Unlike HO-2, the second evolutionary conserved 
heme oxygenase isoenzyme, HO-1 is not expressed 
constitutively. HO-1 is generally induced under oxidative 
stress enabling enhanced free heme catabolism and 
inhibition of programmed cell death[1]. HO-1 mediated 
cytoprotection has been assigned to the heme catabolism 
sub-product Fe2+, which triggers reactive oxygen species 
(ROS) production and NF-κB activation [12]. Induced 
expression of HO-1 by IL-1 and TNFα was suggested to 
involve protein kinase c, calcium and phospholipase A2 
[13]. Activation of the PkB/Akt pathway and induction 
of Nrf2 were shown to induce HO-1 up-regulation upon 
H2O2 stimulation[9]. More recently it was shown that 
TNF-mediated ROS production, in NF-κB inactivated 
AML cells, induced the activation of the transcription 
factor Nrf2 leading to HO-1 up-regulation [2]. The 
cytoprotective activity of HO-1 in endothelial cells was 
demonstrated to require NF-κB activation by TNFα [14]. 
Interestingly, HO-1-mediated inhibition of TNFRI-induced 
apoptosis, in NF-κB defective cells, can be restored by the 
ectopic expression of some NF-κB regulated genes such 
as c-IAP2, A1 or A20 [14]. Furthermore, HO-1-mediated 
protection against TNF-induced cell death is not restricted 
to tumour cells, as endothelial cells or human fibroblasts 
induced to express HO-1 fail to undergo apoptosis [14,15].

Remarkably, and in contrast to most studies 
demonstrating that inhibition of the NF-κB pathway 
restores TNF-induced cell death in normal and cancer 
cells, Rushworth et al. demonstrate in this issue that NF-κB 
inhibition only affords partial restoration of apoptosis in 
AML cells, due to the up-regulation of HO-1. Accordingly, 
inactivation of c-FLIPL expression was sufficient to 
trigger the accumulation of HO-1 in the absence of TNF, 
though apoptosis following TNFα stimulation was only 
partially restored. Accordingly, inactivation of c-FLIPL 
expression in these cells, albeit partially restoring TNFα-
induced apoptosis,  in the absence of TNF, triggered 
the accumulation of HO-1. However, simultaneous 
inactivation of c-FLIPL and HO-1 significantly enhanced 
AML cell sensitivity to TNFα. Rushworth et al. make the 

critical observation that induction of HO-1 expression 
is negatively regulated at the steady state by c-FLIPL, 
but not the short forms of c-FLIP, providing a plausible 
explanation for the resistance of AML cells to TNF-
induced apoptosis, despite inactivation of the NF-κB 
pathway.

These results demonstrate that HO-1 exerts 
cytoprotection in AML cells, irrespective of NF-κB 
activation, and suggest in addition that HO-1 and c-FLIPL 
may negatively regulate TNF-induced cell death in a non-
redundant, but exclusive manner. Of particular interest, 
c-FLIPL down-regulation was unable to promote HO-1 
expression in monocytes. Thus the markedly increased 
expression of c-FLIPL and the constitutive activation of 
NF-κB in erythroleukemia cells [16] would support the 
proposal that negative regulation of HO-1 expression by 
c-FLIPL, at the basal level, might require sustained NF-
κB activation. In line with this hypothesis, it has been 
demonstrated in the past that over-expression of c-FLIP, or 
at least its amino acid terminal portion, could induce NF-
κB activation [17-20]. It is not clear, however, whether 
NF-κB activation alone is sufficient to repress HO-1. 
ROS production, through the activation of Nrf2, may 
also induce the restoration of HO-1 expression in cells 
in which c-FLIPL has been inactivated, as c-FLIP down-
regulation was shown to induce ROS production in some 
tumour cells [21], while its over-expression produces the 
opposite effect [22]. 

While it is clear that the molecular mechanisms 
underlying c-FLIPL-mediated HO-1 repression at the basal 
level needs to be explored more precisely, the possibility 
that HO-1 itself may regulate c-FLIP expression, through 
its ability to inhibit NF-κB activation, or to induce ROS 
remains an open question. In line with this hypothesis, 
it has recently been demonstrated that HO-1 was able to 
impair NF-κB nuclear translocation in cardiomyocytes 
[23] and that ROS production can trigger the degradation 
of c-FLIP in an ubiquitylation-dependent manner [24]. 
Mutual regulation of these cellular “safeguards” would 
thus certainly be beneficial for tumour cells to maintain 
a high level of protection against TNF-induced killing. 
Altogether these findings uncover a novel cell-decision 
regulatory mechanism controlling cell death signalling 
induced by TNFRI, which may extend to other death-
inducing ligands of the TNF family.  
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