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ABSTRACT

To establish a screening strategy for pancreatic cancer (PC) based on new-
onset diabetic mellitus (NO-DM), serum metabolomics analysis and a search for the 
metabolic pathways associated with PC related DM were performed. Serum samples 
from patients with NO-DM (n = 30) and patients with pancreatic cancer and NO-DM 
were examined by liquid chromatography-mass spectrometry. Data were analyzed 
using principal components analysis (PCA) and orthogonal projection to latent 
structures (OPLS) of the most significant metabolites. The diagnostic model was 
constructed using logistic regression analysis. Metabolic pathways were analyzed 
using the web-based tool MetPA. PC patients with NO-DM were older and had a lower 
BMI and shorter duration of DM than those with NO-DM. The metabolomic profiles of 
patients with PC and NO-DM were significantly different from those of patients with 
NO-DM in the PCA and OPLS models. Sixty two differential metabolites were identified 
by the OPLS model. The logistic regression model using a panel of two metabolites 
including N_Succinyl_L_diaminopimelic_acid and PE (18:2) had high sensitivity 
(93.3%) and specificity (93.1%) for PC. The top three metabolic pathways associated 
with PC related DM were valine, leucine and isoleucine biosynthesis and degradation, 
primary bile acid biosynthesis, and sphingolipid metabolism. In conclusion, screening 
for PC based on NO-DM using serum metabolomics in combination with clinic 
characteristics and CA19-9 is a potential useful strategy. Several metabolic pathways 
differed between PC related DM and type 2 DM.

INTRODUCTION

Pancreatic cancer (PC) is characterized by rapid 
tumor progression and early metastasis, and is one of 
the leading causes of cancer-related death. Although the 
only curative treatment for pancreatic cancer is surgical 
resection, more than 80% of patients with pancreatic 
cancer have locally advanced or metastatic tumors that 
are unresectable at the time of diagnosis [1–3]. Because 

of the lack of effective early diagnostic methods, there is 
currently no standard protocol for screening patients at 
risk of pancreatic cancer (e.g., those with a family history 
of PC and chronic pancreatitis) [3, 4]. There is increasing 
evidence that diabetes mellitus (DM) is related to PC [4–
7]. Although long-standing diabetes is an etiological factor 
for PC, new-onset DM (NO-DM) is its manifestation 
[5–7]. Our group and others proposed a NO-DM based 
screening strategy for PC [5, 8].
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In the last decade, metabolomics has been applied to 
identify metabolic alterations in various cancers including 
PC [9]. Diabetes is a complex metabolic disorder. PC 
related NO-DM, also known as a type-3 DM, may have 
different metabolic alterations from type-2 NO-DM. To 
establish a screening strategy for PC based on NO-DM 
and search for the metabolic pathways associated with PC 
related type-3 DM, we compared the serum metabolomic 
profiles of patients with NO-DM and those with PC and 
NO-DM by liquid chromatography-mass spectrometry 
(LC–MS).

RESULTS

The characteristics of the patients included in the 
analysis are provided in Table 1. The gender distribution 
and Fasting Blood Glucose were similar between the two 
groups, whereas the average age differed significantly (P 
= 0.01), as patients in the NO-DM group were younger 
than those in the PC with NODM group. The body mass 
index (BMI) of the PC group was lower than that of the 

NO-DM group, and the duration of DM was also shorter in 
the PC group. All patients in the PC group had pancreatic 
ductal adenocarcinoma (PDAC); however, samples were 
collected before surgery. The rate of insulin or drug 
administration was similar between the two groups.

To determine the analytical robustness of LC-MS-
based methods for global serum metabolic profiling, 
a pooled quality control (QC) sample was repeatedly 
analyzed during sample runs. The overlapped total 
ion current (TIC) chromatograms of the QC sample in 
both negative and positive modes (Figure 1A and 1B) 
demonstrated the strong repeatability/reproducibility 
of our LC-MS system. Typical TIC chromatograms of 
the serum metabolic profiles of the PC with DM and 
DM patients analyzed using LC-MS in the positive or 
negative ion mode are shown in Figure 1C–1F. In the 
LC-MS dataset, 1577 features were obtained in the 
negative mode and 873 features in the positive mode. 
To determine whether the serum metabolic profiles of 
PC with DM patients were different from those of DM 
patients, multivariate statistical analysis using the PCA 

Table 1: Characteristics of the study subjects

PC with new-onset DM New-onset DM P value

N 30 30

Gender 1.0

 male 19 20

 female 11 10

Age, y 62.85±9.86 52.76±9.94 0.001

Stage

 I 3

 II 9

 III 3

 IV 15

Location

 Head 17

 Tail & body 13

Differentiation

 I 0

 II 10

 III 20

BMI (mean± SD) 21.63±3.03 24.77±3.80 0.001

Duration of DM (Mon, mean± SD) 7.2±11.89 16.89±9.65 0.001

CA19-9 (U/L, median, range) 211.5(20-9701) 8.7(0.08-31.5) 0.007

FBG (mmoL/L, mean±SD) 7.65±1.99 7.94±3.92 0.688
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model was performed on the LC-MS spectra of serum 
samples. The score plots derived from the PCA model 
are shown in Figure 2A and 2B. Both in the positive 
mode and negative mode, the R2X values of PCA 
analysis were >0.4, (0.468 and 0.424, respectively). 
This demonstrated a clear discrimination between the 
metabolomes of the PC and DM group and the DM 
group. One case of PC with DM showing an outlier 
degree was excluded from further analyses. To identify 
the metabolites that could discriminate between the two 
groups, a supervised orthogonal projection to latent 
structures (OPLS) model was built. The score plot 
showed an obvious separation of PC patients from the 
DM group (Figure 2C and 2D). The parameters of the 
OPLS model were R2X = 0.172, R2Y = 0.816, and Q2 = 
0.468 in the positive LC-MS mode, and R2X = 0.129, 
R2Y = 0.898, and R2Y =0.556 in the negative mode. 
This indicates that these are reliable and predictable 
models to discriminate between the two groups, as the 
R2Y and R2Y values were >0.4. Based on the following 
two criteria: variable importance in the projection (VIP) 
value in the OPLS model >1 and P value in Student’s 
t test >0.05, 21 variables were identified between the 
two groups in the positive mode and 41 in the negative 
mode. Differential metabolites identified in a search of 
the database (http://metlin.scripps.edu/) are listed in 
Supplementary Table 1 We next used Random Forest 
(RF) to build a classification model based on these 

metabolites. There was a visible separation in the score 
plots from patients with PC and DM (Figure 2E). The 
ROC curve based on the probabilities of the RF model 
resulted in an area under the curve (AUC) of 0.954 [95% 
confidence interval (CI), 0.863–1.0; Figure 2F].

The AUC of the 62 serum metabolites and CA19-9 
were calculated to evaluate their diagnostic performance 
as individual biomarkers of PC. The ROC curve based 
on CA19-9 resulted in an AUC of 0.975 (95% CI, 
0.943–1.0; Figure 3A); at the cutoff value of 35 U/L 
the sensitivity and specificity were 82.8% and 100%, 
respectively. Five metabolites had AUC values of >0.8 
(Figure 3B–3F): dodecanoyl carnitine (AUC = 0.831, P < 
0.001), 3-ketosphingosine (AUC = 0.818), keto palmitic 
acid (AUC = 0.885, P < 0.001), taurocholic acid (AUC = 
0.834, P < 0.001), and tauroursodeoxycholic acid (AUC 
= 0.826, P < 0.001). Because the differences in age, BMI, 
and duration of DM may contribute to the differences 
in the serum profile, we evaluated the correlation 
between the levels of the five serum metabolites and 
three clinical characteristics (Supplementary Table 
2). Dodecanoylcarnitine, keto palmitic acid and 
tauroursodeoxycholic acid showed no relation to age, 
BMI, and duration of DM.

To construct a more effective diagnostic model 
for PC, multivariate logistic regression analysis was 
performed for all the metabolites considering VIP >2.0, 
age, BMI, and duration of DM. Forward stepwise analysis 

Figure 1: Typical LC/Q-TOF MS total ion chromatograms (TIC) in positive ion mode from serum samples of the Quality Control 
(QC) sample (A), pancreatic cancer (PC) with diabetes mellitus (DM) patients (C), and a DM control (E). Typical LC/Q-TOF MS TIC 
chromatograms in negative ion mode from serum samples of the QC sample (B), PC with DM patients (D), and a DM control (F).
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Figure 2: Cluster score plots of unsupervised PCA and supervised OPLS of all patients with PC and DM control. DM 
is represented by circles and malignant samples are depicted as squares. Metabolic profiles depicted by PCA score plots of LC-MS spectral 
data in negative mode (A) or positive mode (B). Metabolic profiles depicted by OPLS score plots of LC-MS spectral data in negative mode 
(C) or positive mode (D). Metabolic profiles depicted by RF score plots of LC-MS spectral data (E, 1 PC, 2 DM) and The ROC curves of 
RF model (F).
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Figure 3: The ROC curves of the logistic regression model and five serum metabolites. (A) The ROC curves of CA19-9. 
ROC curves for five metabolites with the highest AUROC: (B) 3-ketosphingosine (AUC=0.818, P<0.001, 95% CI 0.708–0.928), (C) 
dodecanoylcarnitine (AUC=0.831, P<0.001, 95% CI 0.714-0.948), (D) keto_palmitic_acid (AUC=0.885, P<0.001, 95% CI 0.799–0.971), 
(E) tauroursodeoxycholic_acid (AUC=0.826, P<0.001, 95% CI 0.720–0.949), (F) taurocholic_acid (AUC=0.834, P<0.001, 95% CI 0.716–
0.937). (G) ROC curve analysis for the predictive power of combined plasma biomarkers for distinguishing PC from DM controls. The final 
logistic model included 2 plasma biomarkers (shown in Table 2).
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identified two metabolites among the 62 metabolites, 
namely PE(18:2) and N_Succinyl_L_diaminopimelic_
acid. The parameters of this regression model are shown in 
Table 2. Our ROC analyses using the predicted possibility 
of this model revealed an AUC value of 0.951 (95% CI, 
0.894−1.000) (Figure 3G). Using a cutoff value of 1, the 
model’s sensitivity and specificity values were 93.3% and 
93.1%, respectively.

To uncover the metabolic pathways that may 
participate in PC development, we performed pathway 
analysis by searching the differential metabolites in 
the MetPA website. MetPA assigned a total of feature 
compounds in 26 pathways, which were identified as 
important for the host response to PC (Figure 4A and 
Supplementary Table 3). The main metabolic pathways 
associated with PC or type-3 DM included valine, leucine 
and isoleucine biosynthesis and degradation (Figure 4B); 
primary bile acid biosynthesis (Figure 4C); sphingolipid 
metabolism (Figure 4D); D-glutamine and D-glutamate 
metabolism; and citrate cycle, as shown in Figure 4 and 
Supplementary Tables 3 and 4.

DISCUSSION

Because of the low incidence of PDAC in the 
general population, population-based screening is not 
recommended. It is more practical to screen individuals 
at high risk for PDAC. Increasing evidence suggests that 
NO-DM is an early manifestation of PC and could be used 
to improve the detection of asymptomatic, early-stage PC 
[4]. Therefore, to establish a feasible PC screening strategy 
based on NO-DM, we compared the serum metabolomic 
profiles of patients with diabetes and PC with diabetes. 
Our results showed that the serum metabolomic profiles 
differed between the two groups, with 62 differential 
metabolites identified.

PDAC patients with NO-DM were older, and had a 
lower BMI and shorter duration of DM in our study than 
those with NO-DM. This is consistent with the results 
of previous prospective studies. Munigala et al [10]. 
reported that the risk of PC was higher among patients 
with NO-DM who were non-obese (relative risk, RR = 
1.51) and older than 65 years (RR = 2.01). These factors 
were to some extent influenced by certain metabolites, 
as determined by the correlation between the factors and 
the concentrations of the identified metabolites (data 
not shown). Three metabolites (AUC >0.8) were not 

correlated with age, BMI, and duration of DM. This may 
indicate that the differences in age/BMI/duration of DM 
may not contribute to the differences in the concentration 
of these metabolites. Using logistic regression model also 
balanced the effects of age, BMI, and duration of DM.

Serum metabolomics has been used as a diagnostic 
tool for PC in a number of recent studies [11–14]. In 
these studies, three methods have been used, including 
flow-injection Fourier transform ion cyclotron resonance 
mass spectrometry (FI-FTICR-MS), 1H nuclear magnetic 
resonance (NMR), and gas chromatography+ mass 
spectrometry (GC-MS). Compared with the limited 
sensitivity of 1H NMR and extensive sample preparation 
(e.g., derivatization) and the low throughput for GC-
MS, the high sensitivity and ease of sample preparation 
in LC-MS make it one the most widely used platforms 
in metabolomics. Because of the different metabolite 
coverage detected by different methods, the results 
generated by different platforms show wide variation in 
previous studies. By contrast, the metabolic profiles of the 
present study and those of other reports overlapped [15]. 
Ritchie et al. [14] performed FI-FTICR-MS metabolomics 
analysis and showed significant reductions in the serum 
levels of metabolites belonging to five systems in PC 
patients compared with controls. The metabolic systems 
included metabolites belonging to 36-carbon ultra long-
chain fatty acids, multiple choline-related systems 
including phosphatidylcholines, lysophosphatidylcholines, 
and sphingomyelins, as well as vinyl ether-containing 
plasmalogen ethanolamines. In the present study, we used 
a similar system and showed that metabolites belonging 
to primary bile acid biosynthesis and sphingolipid 
metabolism are involved in PC. Amino acid-based 
metabolites including valine, leucine, and isoleucine 
were identified by our study and two others [12, 16] as 
discriminating factors of PC from the control group. Our 
group and that of Bathe et al. [11] showed that the serum 
concentrations of creatine and glutamine in patients with 
PC were significantly different from those of patients 
with benign disease. This indicates that our results are 
reliable. Unlike previous studies using samples from 
healthy volunteers as controls, we used NO-DM patients 
as controls. DM is a possible confounding factor in the PC 
group. Using NO-DM patients as the control may balance 
the impact of DM on PC discrimination. Indeed, we were 
successful in demonstrating a serum metabolomic profile 
that reflects the presence of PC in NO-DM patients.

Table 2: Logistic regression analysis of PC-associated plasma metabolite signatures

variables B S.E. Wald Sig. Exp(B)

N_Succinyl_L_diaminopimelic_acid .061 .018 11.434 .001 1.063

PE(18:2) .013 .005 7.169 .007 1.013

Constant -5.838 1.767 10.910 .001 .003
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Alterations in tumor cell and systemic metabolism 
are central to the biology of PC [7]. PC causes changes 
in whole-body metabolism, and results in alterations in 
circulating metabolites. Therefore, investigation of PC 
associated metabolic pathways provides important insight 
into how these tumors develop and grow, and suggests new 
approaches for its detection, prevention, and treatment. 
Our results showed that the altered circulating metabolites 
belonged to the following metabolic pathways: valine, 
leucine, and isoleucine biosynthesis and degradation, 
D-glutamine and D-glutamate metabolism, primary bile 
acid biosynthesis, sphingolipid metabolism, and citrate 
cycle. The analyses of sera from PDAC patients often 

shows disturbed amino acid profiles compared with 
those of healthy individuals [7]. Total serum amino acid 
concentration is reduced in PC patients [17]. Patients 
with PC often show malnutrition because of pancreatic 
endocrine and exocrine insufficiency [13]. Mayers et 
al. [18] showed that elevated plasma levels of all three 
proteinogenic essential branched chain amino acids 
(BCAAs) (isoleucine, leucine, and valine) are associated 
with the diagnosis of PDAC. By contrast, our group 
and others showed that plasma BCAAs are decreased 
in patients with PC compared with controls. This may 
indicate that when cancer has already developed, amino 
acid exhaustion results in the reduction of these amino 

Figure 4: Construction of the altered metabolism pathways in human gastric cancer using MetPA analysis (A). 
Summary of Pathway Analysis. The metabolome view shows all matched pathways according to the P values from pathway enrichment 
analysis and pathway impact values from pathway topology analysis. Pathway view of involved pathways with the highest original P value 
calculated from the enrichment analysis: (B) valine, leucine, and isoleucine degradation (metabolites marked with red color are C00164/
acetoacetic acid, C00123/leucine, C00407/isoleucine, C00183/valine); (C) sphingolipid metabolism (metabolites marked with red color are 
C01921/glycocholic acid, C00695/cholic acid, C05466/chenodeoxycholic acid glycine conjugate, C05122/taurocholic acid); (D) primary 
bile acid biosynthesis (metabolites marked with red color are C02934/3-keto-sphingosine, C06124/C16 sphingosine-1-phosphate, C01120/
sphingosine-1-phosphate).
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acids. Glucose and glutamine metabolism is one of the 
most disturbed pathways in PC and has been intensively 
investigated for its potential therapeutic value [7, 19, 20]. 
Glutamine-dependent metabolism is critical for PC cell 
growth [21]. However, whether the metabolic rewiring 
of PDAC is attributed to changes of serum metabolite 
levels in PDAC is unknown. It is well recognized that bile 
secretion and cholic acid biosynthesis are disturbed in PC. 
However, whether the increase of serum bile acids or their 
derivatives is one of the causes of PC remains unclear. The 
value of serum bile acids or their derivatives as biomarkers 
of PDAC may be limited because they may be increased in 
hepatic diseases and could be influenced by dietary intake. 
Our results showed that cholic acid and deoxycholic acid 
were decreased in PDAC, whereas taurocholic acid and 
glycocholic acid were increased. Therefore, the ratio 
of different components of cholic acid is an important 
consideration.

Although our approach to diagnosing pancreatic 
cancer is novel and promising, there were some limitations 
to this study. Firstly, the sample size was small and the rate 
of early stage disease was low. Secondly, LC-MS may not 
be suitable for screening large populations because of its 
high cost in developing countries. Further study is needed 
to validate and optimize cost-effective methods for the 
detection of the identified serum metabolic biomarkers. 
Thirdly the difference in age and BMI may also contribute 
to the difference in the serum profile. Fourthly the AUC of 
our regression model was not higher than CA19-9, but the 
sensitivity is higher than CA19-9. Our serum metabolites’ 
regression model could be used as compensation for 
CA19-9.

In summary, we demonstrated that it is possible 
to distinguish the metabolomic profile of PC from that 
of patients with new-onset diabetes in sera. Our future 
work will involve the refinement of the metabolomic 
profile obtained, as well as the identification of a more 
comprehensive profile. Plasma metabolic signatures show 
promise as biomarkers for the early detection of PC, and 
the identification of altered metabolic pathways between 
type-2 diabetes and PC related type-3 diabetes may help 
understand the mechanisms underlying the association 
between PC and diabetes.

MATERIALS AND METHODS

Sample collection

Blood samples from PC with NO-DM (less than 2 
year) patients and 30 NO-DM (less than 2 year) treated 
in our hospital at the same time were collected and stored 
at −80°C until analysis. The patients with NO-DM were 
followed for an additional 2 years or more and none of 
them developed PC. All samples were collected before 
surgery. The study was approved by the ethics committee 
of Ruijin Hospital, Shanghai Jiaotong University School 

of Medicine and all subjects signed informed consent 
forms.

LC-MS

Serum samples were thawed and proteins were 
precipitated by adding 300 mL of cold methanol to 100 
mL of serum. The mixture was then centrifuged at 12,000 
g for 30 min and the supernatant was stored for further 
analysis. LC-MS analysis was performed using an Agilent 
LC-Q/TOF-MS system (Agilent Technologies, Santa 
Clara, CA, USA) consisting of an Agilent 1290 liquid 
chromatography system coupled online with an Agilent 
6530 time-of-flight mass spectrometer. A 4 μL aliquot of 
each sample was injected onto a 2.1 × 100 mm Agilent 
C18 1.8 μm particle column, heated to 40°C, gradient-
eluted at 0.4 mL/min using mobile phase A (0.1% acetic 
acid in water) and mobile phase B (0.1% acetic acid in 
acetonitrile). The gradient of the mobile phase is shown 
in Supplementary Table 5. Electrospray ionization was 
used in both negative mode and positive mode. The 
following parameters were used for the negative mode: 
capillary voltage; 3.5 kV, sampling cone, 50 kV; source 
temperature, 100°C; desolvation temperature 300°C, cone 
gas flow, 50 L/h; desolvation gas flow, 700 L/h; extraction 
cone, 4 V; scan time, 0.03 s; inter scan time, 0.02 s; 
data acquisition region, 50–1000 m/z. The following 
parameters were used for the positive mode: capillary 
voltage, 4 kV; sampling cone, 35 kV; source temperature, 
100°C; desolvation temperature, 350°C; cone gas flow, 50 
L/h; desolvation gas flow, 600 L/h; extraction cone, 4 V. 
To ensure accuracy and repeatability, leucine encephalin 
was used as lock mass, which generated a 556.2771 Da 
[M+H]+ ion in positive mode and a 554.2615 Da [M-H]-

ion in negative mode.

Statistical analysis

MS data were processed using Mass Profiler 
software (Agilent), and further subjected to PCA, 
OPLS, and RF using the SIMCA-P1 11 software 
package (Umetrics, Umeå, Sweden) for multivariate 
pattern recognition analysis. OPLS-DA was performed 
to discriminate between PC and DM patients and 
DM controls. Metabolites with VIP >1 and p <0.05 
were considered to be potential markers capable of 
differentiating PC from NO-DM controls. Calculation 
of AUROC and logistic regression was performed using 
SPSS20 software (IBM SPSS Inc., Chicago, IL, USA). 
Altered metabolic pathways in PC were analyzed by 
MetPA, a web-based metabolomics tool for pathway 
analysis and visualization [22].

Abbreviations

new-onset diabetic mellitus (NO-DM), pancreatic 
cancer (PC), liquid chromatography-mass spectrometry 
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(LC–MS), orthogonal projection to latent structures 
(OPLS), total ion current (TIC), Random Forest (RF), 
importance in the projection (VIP), principal component 
analysis (PCA).
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