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ABSTRACT
Prognostic classifiers conceivably comprise biomarker genes that functionally 

contribute to the oncogenic and metastatic properties of cancer, but this has not been 
investigated systematically. The transcription factor Fra-1 not only has an essential 
role in breast cancer, but also drives the expression of a highly prognostic gene set. 
Here, we systematically perturbed the function of 31 individual Fra-1-dependent 
poor-prognosis genes and examined their impact on breast cancer growth in vivo. We 
find that stable shRNA depletion of each of nine individual signature genes strongly 
inhibits breast cancer growth and aggressiveness. Several factors within this nine-
gene set regulate each other’s expression, suggesting that together they form a 
network. The nine-gene set is regulated by estrogen, ERBB2 and EGF signaling, all 
established breast cancer factors. We also uncover three transcription factors, MYC, 
E2F1 and TP53, which act alongside Fra-1 at the core of this network. ChIP-Seq 
analysis reveals that a substantial number of genes are bound, and regulated, by 
all four transcription factors. The nine-gene set retains significant prognostic power 
and includes several potential therapeutic targets, including the bifunctional enzyme 
PAICS, which catalyzes purine biosynthesis. Depletion of PAICS largely cancelled 
breast cancer expansion, exemplifying a prognostic gene with breast cancer activity. 
Our data uncover a core genetic and prognostic network driving human breast cancer. 
We propose that pharmacological inhibition of components within this network, such 
as PAICS, may be used in conjunction with the Fra-1 prognostic classifier towards 
personalized management of poor prognosis breast cancer.

INTRODUCTION

Gene-expression patterns of primary breast cancers 
aid clinicians in predicting the risk of metastatic disease 

[1-6]. Some prognostic signatures have recently been 
prospectively validated, highlighting their clinical value 
[7, 8]. Such classifiers conceivably comprise biomarker 
genes that, in fact, functionally contribute to the oncogenic 
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and metastatic properties of the tumors, but this has not 
been investigated systematically. We recently reported 
that the transcription factor Fra-1 (Fos-related antigen-1, 
a component of AP-1 transcription-regulating complexes) 
is a key promoter of breast cancer cell metastasis [9]. 
Subsequent work suggested a role for Fra-1 in breast 
cancer stem cells [10]. We also showed that the Fra-1 
transcriptome is endowed with high prognostic power 
for clinical outcome of breast cancer patients [9]. It has 
been suggested that in a data-driven approach, targets 
acting downstream of a transcription factor, rather than 
the transcription factor itself, possess better distinguishing 
features, because they reflect the activity of the 
transcription factor [11]. Therefore, we hypothesized that, 
in addition to its prognostic value, the Fra-1 dependent 
transcriptome may harbor one or more genes that drive 
breast cancer. 

RESULTS

To investigate this, we performed a systematic 
functional perturbation of Fra-1 signature genes. First, 
we compared the gene-expression profiles of control and 
Fra-1-depleted MDA-MB-231 cells, a triple-negative 
basal breast cancer cell line, and of its highly metastatic 
derivative LM2 cells [12]. Among the probes that were 
significantly regulated by two independent shRNAs 
targeting Fra-1 (P < 1×10-6) in both cell lines, we selected 
those showing a prognostic value in a cohort of 509 
breast cancer patients. We subsequently generated gene-
expression signatures from both cell lines, comprising 445 
and 447 probes respectively (Figure 1, upper panel; see 
Methods). Among the 158 genes common between the 
Fra-1 signatures in the two cell lines, we selected those 
that were downregulated by both Fra-1 shRNAs. This 
yielded 52 genes (Figure 1, middle panel), from which 
we selected those that were highly expressed specifically 
in poor prognosis breast cancer patients. This selection 
produced a set of 31 genes (Table 1) that were expressed 
at higher levels than the median in the poor prognosis 
patients group, and lower than the median in the good 
prognosis patients group. Using 2317 human breast cancer 
gene-expression profiles encompassing publicly available 
breast cancer datasets, we determined that expression 
of this 31-gene set significantly correlates with clinical 
outcome of breast cancer patients (Figure 1, bottom panel). 

Next, we investigated the individual contribution of 
these poor prognosis genes to outgrowth and metastasis 
of human breast cancer cells. We systematically depleted 
each of the 31 genes in LM2 cells using lentiviral 
transduction of shRNAs (Figure 1, bottom panel). 
Silencing of seven of these genes (AURKB, FOXM1, 
MCM2, MCM10, PCOLN3, SCD and SMTN) had a strong 
cytotoxic or cytostatic effect in vitro. Although possibly 
of interest, we decided not to pursue these genes in in vivo 
analyses to avoid confounding straight lethal effects. 

Successful knockdowns for all 24 remaining 
poor prognosis genes were confirmed prior to in vivo 
inoculation (Supplementary Figure 1). GFP-labeled LM2 
cells expressing either one of several controls or one of 
two independent shRNAs directed against each of the 
remaining 24 genes were inoculated intravenously into 
immunocompromised mice. Five weeks later, mice were 
sacrificed and pulmonary colonization was quantified 
by fluorescence imaging (Figure 2a). Because of the 
considerable number of genes in the Fra-1 classifier, 
we expected that the contribution of single genes would 
be limited. In contrast, whereas 15 genes had no, or 
only a moderate inhibitory effect, we identified nine 
genes whose depletion strongly inhibited experimental 
metastasis, ABHD11, ADORA2B, E2F1, EZH2, IGFBP3, 
PAICS, PTP4A1, SFN and SH3GL1. Their contribution to 
metastasis ranged from one (e.g., EZH2) to three or four 
logs (e.g., PTP4A1 and PAICS; Figure 2b). Consistent with 
this, for ADORA2B (encoding the Adenosine receptor 
A2B), we have previously shown that its inhibition, either 
genetically or pharmacologically, strongly impairs lung 
colonization of breast cancer cells [9]. Notably, these nine 
genes retained prognostic power both in ER+ and ER- 
breast cancer patients (Figure 2c, 2d).

We validated the activity of each of these genes in 
an independent experiment using non-invasive in vivo 
bioluminescence imaging. This confirmed that the Fra-1 
poor prognosis signature harbors nine genes, each of which 
is critically required for the development of pulmonary 
cancer colonization (Figure 3a, 3b). Importantly, 
individual depletion of all of the poor prognosis genes 
significantly prolonged survival of recipient mice (Figure 
3c). 

To examine any contribution of these genes not 
only to experimental metastasis, but also to primary 
breast cancer growth, we inoculated stably depleted 
cells orthotopically into the mammary fat pad of 
immunocompromised mice. This demonstrated that 
several factors encoded by the poor prognosis gene set 
critically contributed to the expansion of primary tumors, 
particularly PAICS and EZH2 (Figure 3d). This was 
associated with the requirement for each of these genes 
to allow breast cancer cells to form colonies in semi-
solid medium, an in vitro hallmark of oncogenic activity 
(Supplementary Figure 2). This was shown also for three 
additional human breast cancer cell lines, excluding a 
cell type-specific effect. The growth-inhibitory effects 
were generally more pronounced in vivo than in vitro 2D 
proliferation (Supplementary Figure 3a). 

To determine whether the observed growth-
inhibitory effects were not solely attributable to 
proliferation effects, we examined the correlation of meta-
gene from the nine-gene signature with a proliferation 
score in the TCGA breast cancer data (Supplementary 
Figure 3b for all breast cancers; Supplementary Figure 3c 
for the TNBC subset). These results showed a moderate 
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association between the nine-gene meta-gene and 
proliferation as one would expect, although not enough to 
explain the entirety of growth inhibition. The expression 
of ABHD11, ADORA2B, E2F1, EZH2, PAICS, SFN and 
SH3GL1 was significantly higher in grade III than in grade 
I breast tumors (Supplementary Figure 4). Thus, the nine-
gene set is not only prognostic but also causally linked to 
the ability of breast cancer cells to form primary tumors 
and metastases in mice. 

Since genes from prognostic gene-expression 
signatures may interconnect [13, 14], we next considered 
the possibility that the proteins encoded by the nine-
gene set, which have seemingly unrelated functions, do 
in fact communicate with one another. Supporting such 
a model was our observation that the average expression 
of these 9 genes considered as a set (i.e., a meta-gene) 
was significantly regulated by estrogen stimulation in 
ER-positive MCF7 breast cancer cells and by ERBB2 

Figure 1: Identification of a Fra-1-dependent prognostic gene set. Outline of the procedure used to generate the 24-gene set 
common between the MDA-MB-231 and LM2 Fra-1-dependent signatures, which is down-regulated by the Fra-1 shRNAs, and highly 
expressed in poor prognosis patients. Also shown is in a Kaplan-Meier curve for 31-gene set-high samples and 31-gene set-low samples 
for time to distant metastasis (if available) or relapse with one-sided log-rank p-value and Cox proportional hazards model hazard ratio 
between the 31-gene set-high and 31-gene set-low groups (see Methods). Only sRNAs that were non-cytotoxic in vitro were selected for 
in vivo study..
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overexpression or EGF stimulation in MCF10A breast 
epithelial cells (Figure 4a). Thus, components of the 
nine-gene set are regulated by estrogen, ERBB2 and 
EGF signaling. Therefore, we examined whether 
individual factors in this 9-gene set influence each other’s 
expression. Indeed, individual depletion of 7/9 genes 
strongly affected the expression of several of the other 
genes (Figure 4b; Supplementary Figure 5a). This mutual 
expression dependency could be captured in a hypothetical 
connectivity map based on IPA analysis (www.ingenuity.
com) (Figure 4c).

Expanded IPA analysis further suggested the 
presence of additional network factors (Figure 4d), 

including several proteins we and others have previously 
associated with (breast) cancer, particularly (mutant) 
TP53, MYC, IL-6 and VEGF [15-17]. To functionally 
validate these computational predictions, we depleted 
these four genes individually and determined the 
expression of the nine genes. The absence of each of 
these genes strongly suppressed most other network genes 
(Figure 4e, Supplementary Figure 5b). These results 
raised the possibility that the nine genes might be part 
of a broader genetic network that is regulated by four 
transcription factors (TFs): Fra-1, MYC, TP53 and E2F1. 

To test this hypothesis in an unbiased fashion, 
we determined by chromatin immunoprecipitation and 

Table 1: The 31-gene Fra-1-dependent signature
Gene symbol Description

ABHD11 abhydrolase domain containing 11
ADORA2B adenosine A2b receptor
AURKB aurora kinase B
BIRC5 baculoviral IAP repeat-containing 5 (survivin)
CENPM centromere protein M
CHAF1A chromatin assembly factor 1, subunit A (p150)
CHML choroideremia-like (Rab escort protein 2)
E2F1 E2F transcription factor 1
EZH2 enhancer of zeste homolog 2
FEN1 flap structure-specific endonuclease 1
FOXM1 forkhead box M1
H2AFZ H2A histone family, member Z
IGFBP3 insulin-like growth factor binding protein 3
MCM10 MCM10 minichromosome maintenance deficient 10
MCM2 MCM2 minichromosome maintenance deficient 2, mitotin
MTDH metadherin
PAICS phosphoribosylaminoimidazole carboxylase, 

phosphoribosylaminoimidazole succinocarboxamide synthetase
PCOLN3 procollagen (type III) N-endopeptidase
PHLDA1 pleckstrin homology-like domain, family A, member 1
PPP2R3A protein phosphatase 2 (formerly 2A), regulatory subunit B'', alpha
PTGES prostaglandin E synthase
PTP4A1 protein tyrosine phosphatase type IVA, member 1
RRP1 ribosomal RNA processing 1 homolog (S. cerevisiae)
SCD stearoyl-CoA desaturase (delta-9-desaturase)
SEC14L1 SEC14-like 1
SFN stratifin
SH3GL1 SH3-domain GRB2-like 1
SMTN smoothelin
TJAP1 tight junction associated protein 1 (peripheral)
TRFP Trf (TATA binding protein-related factor)-proximal homolog
YTHDF1 YTH domain family, member 1



Oncotarget20576www.impactjournals.com/oncotarget

Figure 2: Nine genes validate in vivo and retain prognostic power in both ER+ and ER- breast cancer subtypes. a. 
Representative fluorescence imaging of the lungs of mice inoculated intravenously with 105 GFP-labeled LM2 cells expressing a control 
vector or two independent shRNAs directed against the nine genes, 5 weeks after inoculation. Also shown are representative pictures of 
genes from the set of 24 that did not validate (in blue) b. Quantification of the GFP fluorescence in a. (n = 3 lungs, error bars: S.E. *p 
< 0.05 following a one-way ANOVA test). c. Kaplan-Meier curve for 9-gene set-high samples and 9-gene set-low samples for time to 
distant metastasis (if available) or relapse in a sub group of ER+ breast cancer patients (n = 1480). One-sided log-rank p-value and Cox 
proportional hazards model hazard ratio between the 9-gene set-high and 9-gene set-low groups (see Methods) are also shown. d. Same as 
for c, but in a subgroup of ER- breast cancer patients (n = 439). 
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Figure 3: Essential contribution of nine individual genes to primary and metastatic breast tumor growth. Representative 
bioluminescence images a. and quantification of the luminescence signal as a function of time in the lungs of mice b. injected intravenously 
with LM2 cells expressing a control vector or two independent shRNAs directed against the indicated genes (n = 6 mice, error bars: S.E.M., 
*p < 0.05, **p < 0.01, following a Mann-Whitney U-test). c. Kaplan-Meier curves for survival of the mice injected intravenously with LM2 
cells (2x105 cells) expressing a control vector or two independent shRNAs directed against the indicated genes (n = 6 mice, **p < 0.005, 
***p < 0.001 following a Mantle-Cox Logrank test). Mice were euthanized when clinical symptoms became apparent. d. In vivo growth 
curve of primary tumors formed by LM2 cells expressing a control vector or one of two independent shRNAs directed against the indicated 
genes, injected in the 4th mammary fat pad on both flanks (n = 6 tumors, error bars: S.E.M, *p < 0.05, **p < 0.01, following a Mann-
Whitney U-test). Experiments were terminated when the number of animals sacrificed due to tumor burden in one or more experimental 
groups reached half of the original starting size. 
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Figure 4: A genetic network driving breast cancer. a. Nine different genes and a nine-gene metagene (created by averaging all 
nine genes) correlated with different experimental manipulations, as previously described [9, 16]. Plots displaying genes / metagene in 
standard deviation units after 17β-estradiol stimulation (red circles) versus control (blue diamonds) in MCF7 cells; ERBB2 overexpression 
(red circles) versus control (blue diamonds) in MCF10A cells; EGF stimulation (red circles) versus control (blue diamonds) in MCF10A 
cells; and Fra-1 knockdown (red circles) versus control, scrambled hairpin (blue diamonds) in MDA-MB-231 cells. Circles and diamonds 
represent independent replicates. b. Heat map showing the relative expression levels of the components of the nine-gene set in LM2 cells 
expressing two independent shRNAs directed against the indicated genes. Expression values from the two independent shRNAs were 
averaged. c. Network illustrating the functional connections from b, based on statistically significant regulations with two independent 
shRNAs (see Supplementary Figure 5a). d. Network of components of the nine-gene set, Fra-1 and other associated genes identified 
using the IPA algorithm (www.ingenuity.com). The nine-gene set and Fra-1 are highlighted in orange. e. Heat map showing the relative 
expression levels of components of the nine-gene set in LM2 cells expressing two independent shRNAs directed against MYC, IL-6, 
VEGF or TP53, as indicated. Expression values from the 2 independent shRNAs were averaged, measured by quantitative RT-PCR (See 
Supplementary Figure 5b). 
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Figure 5. A substantial number of genes in the genome are bound, and regulated, by Fra-1, MYC, TP53 and E2F1. a. Coverage 
around the TSS with a +/-10kb window. Red signal corresponds with high levels of ChIP signal and green for input levels. Samples are 
ordered left to right: E2F1, Fra-1, MYC, and TP53 with the ranking of genes based on peak levels of E2F1. b. Histogram showing the 
number of peaks for the four transcription factors and the number of intersecting peaks for the four transcription factors. c. The association 
of peaks from the four TF with genetic regions: the -2k/+2.5k promoter region around the TSS, gene exons, gene introns, active enhancers, 
and non-active enhancers. d. A Venn diagram showing the overlap of genes with ChIP-Seq peaks in the promoter regions. e. IGV tracks 
for the four TFs for FOSL1 and TP53 (two examples of known interactions). f. A heat-map image of the differentially regulated genes in 
RNA-Seq data of control vs. knockdown for Fra-1, E2F1, TP53, and MYC along with a parallel heat-map (green/black) showing which of 
those genes have ChIP-Seq peaks in their promoters for the four TFs and the four-way overlap. Genes were selected for the heat-map by 
performing a t-test that compared the 8 control to the 8 knockdown samples (2 for each gene) and selecting the genes with a BH FDR < 
0.1. The gene expression heat-map shows row normalized data for the FDR < 0.1 genes in the four control and four knockdown samples 
from batch 1 with red for high expression and blue for low expression. The ChIP-Seq heat-map shows genes with peaks in their promoters 
in green. g. GSEA enrichment plot in the RNA-Seq data for the 8 control and the 8 knockdown samples (2 for each gene) for the four TF 
using a gene-set with the 579 genes that had peaks within the promoter from all four TFs (Fra-1, E2F1, TP53, and MYC) (FDR < 0.01). 
h. A heat-map image of the nine-gene signature in RNA-Seq data of control vs. knockdown for Fra-1, E2F1, TP53, and MYC along with 
a parallel heat-map (green/black) showing results from ChIP-Seq for the four TFs that indicate which of the nine genes have ChIP-Seq 
peaks with FDR q < 0.01 in their promoter. i. Boxplot showing nine-gene-derived meta-gene expression in control and shRNA knockdown 
samples where meta-gene expression combines RNA-Seq values from the nine genes in the signature (p-value from t-test).
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sequencing (ChIP-Seq) where these four TFs reside across 
the genome. TFs such as these generally show a sharp 
enrichment near transcriptional start sites (TSS), which 
we confirmed in our dataset (Figure 5a). We then used the 
MACS2 algorithm to identify both statistically significant 
peaks for each TF (FDR < 0.01), and an overlapping set 
of 650 peaks common among these TFs, which was far 
greater than chance based on permutation testing (p < 1e-
4) [18] (Figure 5b). While MYC, E2F1, and TP53 were 
most likely bound to gene promoters, Fra-1 was more 

frequently bound to introns or enhancers (Figure 5c). We 
noted simultaneous binding of all four TFs to promoters 
associated with 579 genes (Figure 5d, 5e, Supplementary 
Figure 6a). Similarly, we found coordinated binding of all 
four TFs to enhancers (441 genes) and active enhancers 
(412 genes) (defined by regions with both H3K4me1 and/
or H3K27Ac using ChIP-Seq data on the parental MDA-
MB-231 cell line [19]; Supplementary Figure 6b). These 
observations support the notion that Fra-1, MYC, E2F1, 
and TP53 display coordinated binding across the genome, 

Figure 6: Fra-1, TP53, MYC and E2F1 cooperatively induce oncogenic transformation of non-malignant breast cancer 
and mammary epithelial cells. a./d. Western blot analysis of protein expression in MCF10A and HMEC, respectively, expressing a 
control vector, mutp53 and Fra-1 (PF), mutp53, Fra-1 and c-Myc (PFM), mutp53, Fra-1 and E2F1 (PFE), mutp53, Fra-1, c-Myc and E2F1, 
or mutp53, Fra-1, E2F1 and c-Myc. β-Actin was used as a loading control. b./e. Representative images of colony formation in soft agar by 
MCF10A and HMEC cells, respectively, expressing a control vector or the combinations of transcription factors as described above. Below 
the images, bar graphs show the quantification of the corresponding assays. c./f.  Representative images of anoikis-resistant colonies of 
MCF10A and HMEC cells, respectively, expressing control vector or combinations of transcription factors as described in a./d., along with 
quantifications. (n = at least 2 independent experiments, containing at least 2 technical replicates each, error bars: SEM, *p < 0.05 compared 
to control, following a t-test).
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and that these factors may work cooperatively at multiple 
levels to regulate gene expression.

To corroborate this concept, we performed RNA 
sequencing before and after depletion of each transcription 
factor. We found 1151 genes whose expression was 
significantly altered after knockdown by comparing 
knockdown samples for each of the four TFs to samples 
from control cells (600 down-regulated in knockdown and 
551 up-regulated in knockdown; t-test FDR < 0.05; Figure 
5f; Supplementary Figure 7). Using the 579-gene set of 
promoters bound by all four TFs, we found a statistically 
significant enrichment of this gene set in the expression 
signature associated with functional knockdown of each 
TF [20, 21] (FDR = 0.11; Figure 5g). These findings raised 
the possibility that each of these TFs might be functionally 
necessary for optimal expression of co-regulated target 
genes. In order to search support for this inference, we 
examined the effect of hairpin-mediated knockdown 
on each of the nine genes in our signature and found a 
coordinate decrease in expression (Figure 5h, 5i). We also 
noted that these nine genes had coordinated binding of 
these four TFs in the promoter regions (Figure 5h).

These data showed that the nine-gene set is 
required for breast cancer growth and aggressiveness, 
and that this correlates with binding of a substantial 
number of genes in the genome by the four transcription 
factors associated with the network, namely, Fra-
1, MYC, mutTP53 and E2F1. This further raised the 
possibility, conversely, that these transcription factors 
might be sufficient to endow non-oncogenic mammary 
epithelial cells with an oncogenic phenotype. To test 
this hypothesis, we introduced into MCF10A breast 
epithelial cells and primary human mammary epithelial 
cells (HMEC) cassettes driving the expression of each of 
these transcription factors (Figure 6a, 6d). Indeed, ectopic 
co-expression of Fra-1, MYC, mutTP53 and E2F1 was 
sufficient to stimulate massive growth of these cells in 
soft agar (Figure 6b, 6e). Another in vitro hallmark of 
oncogenic transformation is suppression of anoikis [22] 
[23]. Consistently, this gene set also strongly stimulated 
survival under detachment conditions (Figure 6c, 6f). 
Downscaling experiments showed that co-expression of 
three, and sometimes even two, transcription factors was 
already sufficient to mediate soft agar growth and anoikis 
resistance, albeit to a lesser extent than was seen for the 
four factors. Thus, coordinate expression of the four 
transcription factors associated with the poor prognosis 
nine-gene network is sufficient to bring about oncogenic 
changes in non-oncogenic breast epithelial cells, at least 
in vitro.

DISCUSSION

To our knowledge, this study is the first systematic 
analysis to functionally annotate the contribution of 
individual genes contained in a poor prognostic genetic 

signature. Whereas prognostic classifiers have proven 
useful in identifying good-prognosis patients who 
should be spared from adjuvant chemotherapy [1, 2, 4, 
24-26], they have not yet been explored in guiding the 
best therapeutic options for poor-prognosis patients. 
The recent prospective validation of two breast cancer 
signatures [7, 8] not only emphasizes their clinical utility 
but also highlights their potential biological value, in that 
they may harbor prognostic genes that, in fact, contribute 
to the aggressive nature of the disease. Therefore, it is 
important to functionally annotate, in a systematic fashion, 
poor prognosis signature genes. Our results suggest that 
the Fra-1 genetic classifier may be used for designing 
personalized therapies. The nine genes, each of which we 
demonstrate to have a critical contribution to breast cancer 
outgrowth and aggressiveness, encode several proteins 
that are amenable to targeted intervention. For example, 
as we and others have shown previously, pharmacological 
inhibition of the adenosine receptor ADORA2B strongly 
inhibits breast cancer in mice [9, 27, 28], as do monoclonal 
antibodies directed against PTP4A1 (PRL1) [29]. An 
inhibitor of EZH2 expression (DZNeP) has anti-tumor and 
anti-invasive activities against breast and other cancers 
[30]. Also the activity of enzymes such as ABHD11 
and PAICS ought to be inhibited by small molecules, 
which we are currently exploring. Furthermore, full 
understanding of the molecular mechanism by which these 
factors contribute to breast cancer may yield additional 
therapeutic opportunities. Our data raise the intriguing 
possibility to develop companion diagnostics, that is, to 
use the Fra-1 classifier to identify those patients who are 
associated with a poor prognosis, and treat them with one 
or more inhibitory agents targeting the nine-gene set. As 
this signature integrates prognostic power with therapeutic 
targets, it may contribute towards a more personalized 
management of poor-prognosis breast cancer.

MATERIALS AND METHODS

Gene silencing in LM2 cells

LM2 cells (subline#4173 [12], a kind gift of J. 
Massagué, New York) were cultured in DMEM (Life 
Technologies) supplemented with 10% FCS (Greiner bio-
one), 2 mM glutamine, 100 units ml-1 penicillin, and 0.1 
mg ml-1 streptomycin (Gibco). Gene silencing in LM2 
cells was performed using pLKO.1 vectors from the 
TRC library (Sigma). Around 5 shRNAs for each gene 
were tested and the 2 most efficient ones were selected 
for further studies. As a negative control, vector without 
insert was used. Alternatively, vectors containing a 
scrambled sequence or an shRNA targeting luficerase 
gene (Sigma) were used. References of pLKO.1 vectors 
used in experiments are listed in Supplementary Table 1. 
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Lentiviral particles were produced by transfection of the 
HEK293T cell line and supernatants were collected 48 h 
after transfection. Supernatants were used to infect sub-
confluent cultures in the presence of 5 μg ml-1 polybrene 
overnight. Puromycin (2 μg ml-1) was then used to select 
for stable cell lines. 

RNA isolation and qRT-PCR

RNA was extracted from exponentially growing 
cells using TRIzol reagent (Life Technologies). Total 
RNA was DNase-treated with RQ1 RNase-Free DNase 
(Promega). Reverse transcription was performed using 
Superscript II first strand kit (Invitrogen). qRT-PCR was 
performed with the SYBR Green PCR Master Mix on a 
StepOne Real-Time PCR System (Applied Biosystems). 
Primer sets used are listed in Supplementary Table 2. 
mRNA levels were normalized using β-Actin mRNA 
levels.

In vivo experiments

All animal experiments were done in accordance 
with a protocol approved by the NKI Institutional Animal 
Experiment Ethics Committee. Female Balb/c nude 
mice aged 6-8 weeks were used for all xenografting 
experiments. For experimental lung metastasis assays, 
1 × 105 or 2 × 105 viable cells were resuspended in 150 
μl of PBS and injected into the lateral tail vein. When 
GFP-labeled LM2 cells were used, mice were sacrificed 5 
weeks after cells inoculation by CO2 asphyxiation. Lungs 
were subsequently dissected and imaged within 2 hours 
by fluorescence microscopy. Images were taken with 
the same intensities and exposure times, and the mean 
fluorescence intensity per surface area was quantified 
using ImageJ software (http://rsb.info.nih.gov/ij/
download.html). When luciferase-labeled LM2 cells were 
used, mice were injected intraperitonally with D-Luciferin 
(Caliper Life Sciences), 150 μg/g body weight, and 
anesthetized with isoflurane. Images were acquired 15 
min after D-Luciferin injection with a cryogenically 
cooled IVIS system using LivingImage acquisition and 
analysis software (Xenogen Corp.). Photon flux was 
determined by using a rectangular region encompassing 
the thorax of the mouse. These values were normalized to 
the values obtained immediately after xenografting of the 
cells for each mouse. Mice were sacrificed when clinical 
symptoms became apparent. Orthotopic tumor growth was 
measured by injecting 1 × 106 viable cells in 50 μl of a 1:1 
mixture of PBS and growth-factor-reduced Matrigel (BD 
Biosciences) into the 4th mammary fat pad in each flank. 
Primary tumor growth rates were analyzed by measuring 
at regular time points the tumor length (L) and width (W), 
and tumor volume (V) was estimated using the formula 
V = LW2/2. Mice were sacrificed when the tumor length 

reached a size of ≥15 mm or when the tumors started to 
ulcerate.

In vitro proliferation, soft agar and anoikis assays

For proliferation assays LM2 cells (2× 104 cells) 
were seeded in 6 well plates at day 0. At regular time 
points cells were trypsinized and the number of cells 
in each well was calculated using a CASY cell counter 
(Innovatis). Soft agar assays were performed as described 
in [9]. Colonies were imaged using a GelCount Colony 
Counter (Oxford Optronix) and images were quantified 
using ImageJ software. Anoikis assays were performed 
by seeding 5x104 cells into ultra-low cluster 6 well plates 
where they were left to grow out for 3 weeks. Afterwards, 
images were taken and total protein content per well was 
quantified with a Bradford protein assay (Bio-Rad).

Microarray and gene-expression signature 
analysis

Full description of the methods and results for 
each experiment is available at http://www.ebi.ac.uk/
microarray-as/aer/#ae-main [0] (accession numbers 
E-MTAB-1230 and E-NCMF-27 for MDA-MB-231 and 
LM2 data, respectively). The Agilent probes that were 
significantly up- or down-regulated by both Fra-1 shRNAs 
(p < 1.10-6) were selected and mapped to the corresponding 
Affymetrix U133A probes using Martview from BioMart 
(http://www.biomart.org/index.html). We selected a single 
Affymetrix HGU-133A probe for each Entrez ID based 
on the Affymetrix algorithm probe extension, favoring 
‘_at’ over ‘_x_at’ over ‘_s_at’. Expression of remaining 
duplicate probes were averaged, resulting in a 1140 
and 1234 probe set for MDA-MB-231 and LM2 data, 
respectively.

For generation of the gene-expression signatures, we 
collected six publicly available datasets based on Human 
Genome HGU-133A Affymetrix arrays from NCBI’s 
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/) with the following identifiers: GSE6532 
[31], GSE3494 [32], GSE1456 [33], GSE7390 [34] and 
GSE5327 [35]. The Chin et al. data set was downloaded 
from ArrayExpress (http://www.ebi.ac.uk/, identifier 
E-TABM-158).

To ensure comparability between the different 
datasets, they were all subjected to the same pre-processing 
procedure. Microarray quality-control assessment was 
carried out using the R AffyPLM package (Bioconductor, 
http://www.bioconductor.org). We applied the Relative 
Log Expression (RLE) and Normalized Unscaled Standard 
Errors (NUSE) tests. Chip pseudo-images were produced 
to assess artefacts, and 1 to 5% of the arrays of the datasets 
did not pass the quality control tests. Selected arrays were 
normalized according to a 3-step procedure using the RMA 
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expression measure algorithm (http://www.bioconductor.
org): RMA background correction convolution, median 
centering of each gene across arrays separately for each 
data set and quantile normalization of all arrays. Out of 
the 947 unique collected microarray samples of sufficient 
quality, 509 had Distant Metastasis Free Survival (DMFS) 
data available. We employed these samples as training set. 
From the experimental Fra-1 signature of 1140 and 1234 
unique probes, those probes were extracted that exhibited 
a P-value P < 0.1 (log-rank test) on the training set. This 
resulted in a subset of 445 and 447 probes for MDA-
MB-231 and LM2, respectively.

Clinical outcome and tumor grade analysis

For Figure 1b, Figure 2c, 2d, and Supplementary 
Figure 4, the datasets used and their breakdown by 
molecular sub-type (when available) are as given in 
Figure 3b and 3c of Desmet et al. [9]. The Kaplan-Meier 
curve, Cox hazard-ratio and p-value were computed as for 
Supplementary Figure 10 of Desmet et al. [9]. We used 
the following method to generate Supplementary Figure 
4. From all publically available breast cancer tumor 
expression databases known to us at the time of analysis 
we selected those datasets that had at least 10 annotated 
grade III and 10 annotated grade I tumors. We ensured 
that only one tumor was used from each patient. This 
yielded the datasets given in Supplementary Table 3 and 
Supplementary Figure 4. For each dataset the standardized 
mean difference was estimated by the following estimate 
of the unbiased estimator
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The standard error was then estimated by

.
The standardized mean difference and standard error 

for each of the ten datasets were then combined using a 
random effects model. A p-value and 95% confidence 
interval was computed from the combined standardized 
mean difference and standard error using the assumption 
that the estimate of the standardized mean difference has 
a normal distribution [36]. 

Chromatin immunoprecipitation

Cells were harvested by crosslinking with 1% 
formaldehyde in cell culture medium for 15 min at 
room temperature. After quenching with the addition of 
125 mM glycine for 5 min at room temperature, the cells 
were washed twice with ice cold PBS. After aspiration 
of all liquid, pellets consisting of ~107 cells were flash 
frozen and stored at −80 °C. Fixed cells were thawed and 
sonicated to obtain chromatin fragments of ~200 to 700 bp 
with a Branson 250 Sonifier. Solubilized chromatin was 
immunoprecipitated with ~5 μg antibody against c-Myc 
(Santa Cruz; sc-764), Fra-1 (Santa Cruz; sc-183), E2F1 
(Millipore; 05-379) and p53 (BD-Pharmingen; 554294). 
Immunoprecipitation was performed retaining a fraction 
of input ‘whole-cell extract’ as a control. Antibody-
chromatin complexes were pulled-down using Dynabeads 
Protein G, washed and then eluted. After crosslink reversal 
and proteinase K treatment, immunoprecipitated DNA was 
extracted with phenol, precipitated in ethanol and treated 
with RNase. ChIP DNA was quantified by fluorometry 
using the Qubit assay (Invitrogen). The Western blot 
results shown in Figure 6 and Supplementary Figure 7 
were achieved using the same antibodies as described 
here.

Library preparation and illumina sequencing

For each ChIP or control sample, ~5 ng of DNA was 
used to generate a standard Illumina sequencing library. 
Briefly, DNA fragments were end-repaired using the End-
It DNA End-Repair Kit (Epicentre), extended with a 3′ ‘A’ 
base using Klenow (3′  5′ exo-, 0.3 U μl−1, NEB), ligated 
to standard Illumina adapters (75 bp with a ‘T’ overhang) 
using DNA ligase (0.05 U μl−1, NEB), gel-purified on 
2% agarose, retaining products between 275 and 700 bp, 
and subjected to 18 PCR cycles. These libraries were 
quantified by fluorometry and evaluated by quantitative 
PCR to confirm representation and specific enrichment 
of DNA species. Libraries were sequenced in one or two 
lanes on the HiSeq 2000 using standard procedures for 
cluster amplification and sequencing by synthesis.

ChIP-Seq data analysis

Sequencing read quality was examined using 
FastQC (http://www.bioinformatics.babraham.ac.uk) 
at three stages in the analysis pipeline: on the raw data, 
after trimming, and after duplicate reads were removed. 
Trimming of low quality reads and clipping of sequencing 
adapters was done using the program Trimmomatic 
[37] and all reads shorter than 35bp after trimmer were 
dropped. Reads were aligned to a masked genome (hg19) 
using Bowtie, only keeping uniquely mapping reads, with 
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no mismatches in the first 45bp (M = 1, N = 0, L = 45) 
[38]. Bam to Sam file conversion was done with SamTools 
[39], and duplicate reads were removed using Picard-tools 
(http://picard.sourceforge.net). ChIP-Seq heatmap plots 
of Figure 5a were generated through the use of NGSPlot 
[40]. Peaks were called using MACS2 [18] with the 
False Discovery Rates (FDR) q < 0.01 with a distribution 
across the factors as shown in Figure 5b and Figure 5c 
shows the distribution across genomic regions. The 
MACS2 algorithm utilizes a dynamic Poisson distribution 
to capture local biases in the genomic sequence, which 
allows for a sensitive and robust prediction of peaks. 
The IGV browser [41] was used to visually check called 
peaks and produce the ChIP-Seq traces in Figure 5e and 
Supplementary Figure 6a. Peaks were assigned to genes 
using PeakAnnotator in the PeakAnalyzer package where 
positive genes were determined by the presence of a peak 
in a -2kb and +2.5Kb window around the transcription 
start site (TSS) [42]. The Venn diagrams of Figure 5d and 
Supplementary Figure 6b were made with the R package 
VennDiagram.

RNA sequencing

In parallel with the ChIP sample preparation, ~5 x 
106 cells were harvested and RNA isolation was done in 
TRIzol reagent. Libraries were prepared for sequencing 
using standard Illumina TrueSeq protocols. Libraries 
were pooled and sequenced 51 bp on a HiSeq2000. After 
sequencing, basecalling and demultiplexing have been 
performed using the standard casava pipeline. 

RNA-Seq data analysis

Gene expression values were derived from RNA-
Seq data for MDA-MB-231 derivative LM2 cells treated 
with shRNA for Fra-1, E2F1, TP53, MYC, or scrambled 
(two biological replicates for each gene and controls). 
FastQC was used to evaluate read quality on raw RNA-
Seq reads and trimmed reads. Trimming of low quality 
reads and clipping of sequencing adapters was done using 
the program Trimmomatic [37] and all reads shorter than 
35bp after trimming were dropped. Reads were aligned 
to the hg19 reference genome with TopHat [43] version 
2.0.8. Bam to Sam file conversion, sorting, indexing, and 
file merging was done with SamTools [39]. FPKM values 
(Fragments per Kilobase of transcript Per Million mapped 
reads) were calculated by Cufflinks [43] version 2.1.1. 
FPKM data was loaded into a matrix in R and a variation 
filter was applied to remove genes with less than 1.5 fold 
minimum variation and 1 minimum absolute variation 
(leaving 12239 out of 23615 genes). A t-test was then 
performed to find genes significantly varying between 
scrambled and TF knockdown samples and corrected for 
multiple hypothesis testing using the Benjamini-Hochberg 

step-up FDR-controlling procedure [44]. Genes with 
a Benjamini-Hochberg FDR value < 0.1 were selected 
leaving 295 genes (157 down in knockdown and 138 
up in knockdown). The red-blue heat map in Figure 5i 
was produced after scaling each row of data to a zero to 
one range. A parallel heat map with the same genes was 
produced for ChIP-Seq data using green to indicate genes 
that had peaks for each ChIP-Seq factor with FDR < 0.01 
within a window of -2kb / +2.5kb of the gene’s TSS. The 
red-blue heat-map of Figure 5h was produced for the genes 
of the nine-gene signature after scaling each row of data to 
a zero to one range. A parallel heat map with the same nine 
genes from the nine-gene signature was produced with 
the ChIP-Seq data using green to indicate genes that had 
peaks for each ChIP-Seq factor with FDR < 0.01 within a 
window of -2kb / +2.5kb of the gene’s TSS. The box plot 
of Figure 5i was produced by calculating meta-gene values 
for the control and shRNA knockdown samples where the 
meta-gene value for the nine-gene signature is found by 
taking the mean of the RNA-Seq values for all nine genes 
in the signature in each sample.

In order to test the correlation of the nine-gene 
signature with proliferation, TCGA RNASeqV2 data 
for breast cancer (BRCA) was downloaded from TCGA 
data matrix access portal (http://cancergenome.nih.gov/). 
Proliferation score came from the TCGA BRCA paper 
by Ciriello et al. [45], comprising data for 817 of the 
1093 TCGA BRCA RNASeqV2 samples. The meta-gene 
value for the nine-gene signature is found by taking the 
mean of the log2 RNASeqV2 values for all nine genes 
in the signature in each sample. Supplementary Figures 
3b for all subtypes of breast cancer samples (817) and 
3c for the TNBC subset (116 samples) show Pearson 
correlation between the meta-gene and Ciriello et al. [45]. 
Proliferation Score from a correlation test (cor.test() in R).

Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) [20,21] 
was used to evaluate the association of genes bound by 
the 4 transcription factors with regulation and produce the 
enrichment plot of Figure 5g. A gene set was made out of 
the 579 genes that had peaks with FDR < 0.01 associated 
with the TSS for all four TFs (Fra-1, E2F1, TP53, and 
MYC) and tested for enrichment in the RNA-Seq data of 
control vs. knockdown for Fra-1, E2F1, TP53, and MYC 
(8 vs. 8 samples). GSEA was run with 1000 permutations 
of the phenotype using signal-to-noise to rank genes.

Overexpression of transcription factors in 
MCF10A and HMEC

Overexpression constructs were made by performing 
PCR on LM2 (whole) cDNA to amplify TP53, FOSL1, 
MYC and E2F1. Primers were so designed that each of the 
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amplicons was flanked by a NotI site on the 5’-forward 
end and a BamHI site on the 5’-reverse end. The cDNA 
was then cloned into a set of lentiviral vectors, each with a 
different selection marker. These vectors were: pHAGE2-
EF1aFull-rtTA-IRES-Puro-W (where the rtTA is replaced 
with one of the cDNAs), pHAGE2-EF1a-ZsGreen-IRES-
Blasticidin-W (ZsGreen is replaced), pHAGE2-FullEF1a-
DsRedExpress-IRES-ZsGreen-W (DsRedExpress is 
replaced) and pHAGE2-FullEF1a-ZsGreen-IRES-
dTomato-W (ZsGreen is replaced), which were a kind gift 
of Dr. Gustavo Mostoslavsky. Lentivirus production and 
infection of MCF10A/HMEC cells was done as described 
above. ZsGreen and/or dTomato expression was used to 
select populations by FACS (MoFlo Asterios, Beckman-
Coulter). Cells expressing puromycin and/or blasticidin 
resistance cassettes were selected with 1 μg ml-1 and 5 µg 
ml-1, respectively.
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