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ABSTRACT
CpG island methylator phenotype of breast cancer is associated with widespread 

aberrant methylation at specified CpG islands and distinct patient outcomes. However, 
the influence of copy number contributing to the prognosis of tumors with different 
CpG island methylator phenotypes is still unclear. We analyzed both genetic (copy 
number) and epigenetic alterations in 765 breast cancers from The Cancer Genome Atlas 
data portal and got a panel of 15 biomarkers for copy number and methylation status 
evaluation. The gene panel identified two groups corresponding to distinct copy number 
profiles. In status of mere-loss copy number, patients were faced with a greater risk if 
they presented a higher CpG islands methylation pattern in biomarker panels. But for 
samples presenting merely-gained copy number, higher methylation level of CpG islands 
was associated with improved viability. In all, the integration of copy number alteration 
and methylation information enhanced the classification power on prognosis. Moreover, 
we found the molecular subtypes of breast cancer presented different distributions in two 
CpG island methylation phenotypes. Generated by the same set of human methylation 
450K data, additional copy number information could provide insights into survival 
prediction of cancers with less heterogeneity and might help to determine the biomarkers 
for diagnosis and treatment for breast cancer patients in a more personalized approach.

INTRODUCTION

Breast cancer consists a large part of cancer-
induced mortality in female. About 1.7 million women 
were diagnosed with breast cancer in 2012 worldwide, 
ranking the first in the cancer occurrences of female [1]. 
This heterogeneous malignancy have several molecular 
subtypes: HER2, luminal A, luminal B, basal-like, and 
normal-like, which are mainly characterized by pathologic 
features and clinical behaviors associated with mutations of 
special genes [2]. Though well-classified, those molecular-
determined subgroups remain to be well investigated on 
their molecular foundations and biological heterogeneity. 
Accumulative genomic aberrations, including genetic and 
epigenetic modifications have a profound impact on the 
heterogeneity among those subtypes.

Alterations in tumor progression bring to 
substantial abnormalities in human neoplasia like 
global hypomethylation and promoter CpG island 
hypermethylation [3, 4]. Growing evidence suggested that 
methylation at cancer-specific loci characterized a special 
phenotype in tumors, and this phenotype is nominated as 
CpG island methylator phenotype (CIMP) [5]. Toyota 
et al. first proposed this term to describe a subset of 
colorectal tumors presenting cancer-specific methylation 
pattern, and recent studies have also proved the existence 
of CIMP in breast tumors is related to characteristics like 
metastatic behaviors and clinical outcomes [6, 7]. Rooted 
in methylome aberrations, breast CIMP is different from 
molecular subtypes based on gene expression profiles 
and even can account for some transcriptional diversity 
related to gene expression-based subtyping [8]. For 
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example, basal-like tumors have lower methylation 
pattern while CIMP-high samples are consist of a large 
part of luminal B breast carcinomas, and these expression 
patterns might be regulated through methylation [7–10]. 
Moreover, numerous publications concentrating on breast 
cancer methylome have suggested the DNA methylation 
can be used as a robust biomarker for clinical prediction 
of breast cancer, promoting the research on mechanism 
of CIMP [11]. 

Copy number alteration (CNA), a simple form of 
chromosomal instability, mainly refers to the gain or 
loss of genomic contents in gene sequences contrasted 
with reference genome. Like MSI, CNA also function as 
a widely-used genomic feature to classify cancers [12]. 
With least alteration size of 50 bp, CNA can involve a part 
of a gene, whole part of a gene and even its neighbors, 
the recurrent amplifications of oncogenes and deletions 
of tumor suppressor genes can induce phenotypic 
consequences and different clinical outcomes in cancer 
[13–15]. For example, in HER2-overexpressing breast 
cancers, increased expression of ERBB2 gene is associated 
with 17q21 copy number gain. Recently, Tabarestani et 
al. carried out a study on single copy number alteration 
of several prognosis-related genes (like CCND1, 
TOP2A), and the results strengthened their prognostic 
values in breast cancer [16]. Based on the premise that 
both epigenetic and genetic changes can influence gene 
expression patterns and pathways, several reports have 
addressed the overlap of genomic variations between 
CNA and methylation in breast cancer [17–19]. Moreover, 
Noushmehr et al. found the CIMP-positive and CIMP-
negative tumors presented distinct copy number profile 
in glioma, strongly suggesting a relationship might be 
shared between CIMP and CNA [7]. All these evidences 
suggests that CIMP classification power can be enhanced 
if other currently-used approach like CNA information is 
introduced [12].

To integrate copy number and methylation 
alterations, and also to reduce the tumor heterogeneity in 
a more cost-efficient way, Feber et al. found and validated 
that Infinium HumanMethylation450 BeadChips 
(450K) had potentials to detect not only aberrant CpG 
methylation loci, but also regions with abnormal CNA 
[20]. In this study, we aimed to figure out the survival 
difference between CIMP-H and CIMP-L samples in 
different copy number status using the 450 k array 
data from the Cancer Genome Atlas (TCGA). Our 
study made a stratification of 765 samples according to 
hypermethylated genes with abnormal CNA which were 
picked out by our criteria. The survival analysis found 
that CIMP-L type had a better survival significantly in 
CnLoss but worse tendency in CnGain samples. The 
results may enable a more precise evaluation of CIMP 
and a broader sight into the molecular basis of CIMP 
related to the genomic changes caused by copy number 
changes.

RESULTS

Copy number characteristics of breast cancers

After quality control (see materials and methods), 
the analysis proceeded with 406584 probes and 861 
samples. We checked the copy number profile and counted 
the cumulative percent of CNA on all chromosomes of 
all 765 tumors against the normal samples, and found 
the variations of genomic structures differed across 
those tumors (Figure 1A and 1B). The degree of copy 
number gain was larger than copy number loss, gains of 
chromosomes 1q and 8q and losses of chromosome 8p and 
16q were identified, which is concordant with the genetic 
alterations of breast cancer [21, 22]. 

Methylation patterns of markers with different 
copy number alteration

Most variant CpG loci in top 50 percent probes with 
most significant CV of methylation levels in tumors and 
intersect them by the genes with significant CNAs. We got 
72 most variant probes of 25 genes, 10 presenting wide 
copy number loss and 15 copy number gain (see materials 
and methods). Most probes were located in CGIs of gene 
body and promoter (Supplementary Table 1). The locations 
of markers were listed in Table 1, most of genes with copy 
number gain are located in chromosome 1 and genes with 
copy number loss in chr16, which agreed with regions 
of significant copy number changes in previous studies 
on breast cancers [23, 24]. The recurrence percentage of 
CNA in those genes across all samples showed that two 
types of CNA (gain/loss) didn’t co-occur, and CN gain 
genes apparently occurred more often than CN loss genes 
with higher extent in this dataset (Figure 1C). We also 
compared the methylation pattern of this gene panel in 
normal and tumor status using beanplot, a better alternative 
of boxplot for visual comparison of density distributions 
[25]. The average methylation level of all probes in normal 
sample cohorts was lower than the level in tumor cohorts 
(Figure 1D, left. P value < 2.2e-16, t-test). Likewise, in 
tumorous samples the methylation variances of those genes 
were significant. (Figure 1D, right. P value = 2.92e-15, 
t-test). The average methylation values of tumors was 
about 0.3, and the 3rd quantile was lower than 0.5, here we 
chose 0.6 (0.45) as threshold to determine whether a CN 
loss (gain) gene was hypermethylated (Me (+)). According 
to the distribution of their segment means, the absolute 
segment mean values of CN gain genes were larger than CN 
loss gene, and 0.3 and -0.2 were used to determine whether 
a gene is gain (CN (+)) or loss (CN (−)) (Figure 1E). 
Moreover, we investigated the function of this marker panel 
using DAVID, and they mainly enriched in some causing-
cancer biological processes, like regulation of cell-substrate 
adhesion, regulation of growth, negative regulation of cell 
communication (Supplementary Figure 1). 
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CNA and CIMP classification

To merge the copy number information into CIMP 
stratification, the samples that tended to show either copy 
number gain only or loss only status were remained, 
which were referred as CnGain/Loss. To determine the 
copy number status of a sample, we counted CN (+) and 
CN (−) genes in our marker panel, and evaluated copy 
number status of a sample according to the percentage of 
CN (+/−) genes (See materials and methods). The copy 
number profile of samples that contained binary CN(+/−) 
information was presented in a heatmap (Figure 2A). 

Since it was hard to find out which type of CNA are 
dominant in the samples with both copy number gain 
and loss (CnBoth) for this dataset, those samples were 
removed. And samples with no alteration of copy number 
in our markers were also removed. So finally 80 CnGain 
samples with no less than 6/15 CN (+) genes and 153 
CnLoss samples with no less than 3/10 CN (−) genes 
were remained. Then we analyzed the CIMP−H/L in 
CnLoss/Gain groups separately using CN loss/gain genes 
and found the methylation patterns of markers differed 
in CIMP-H/L in both copy number status (Figure 2B 
and 2C). Therefore, we counted the number of genes 

Figure 1: Copy number patterns of breast cancer genome and different methylation patterns of recurrent CNA 
genes. Copy number alterations of the CG sites were analyzed with 765 breast cancers across 22 autosomes and were plotted in genomic 
coordinates along the x axis. Neutral/no change was indicated in white, gain was indicated in red and loss was indicated in dark red. (A) The 
copy number gain/loss occurrence in all tumors, the sites with segment mean > 0.3 were regarded as copy number gain, and < −0.2 for copy 
number loss (see materials and methods). (B) Total percentage of gain/loss is listed by the cumulative change per sample. (C) The copy 
number gain/loss recurrence of 25 markers (The percentage of occurrence in all tumors). (D) The methylation value distribution of genes 
in normal and tumor samples. The average methylation values of tumors was about 0.25, and the 3rd quantile was higher than 0.5. (E) The 
distribution of segment mean in CN gain and loss genes. The average segment mean of CN gain genes was about 0.2, and 0.1 in loss genes. 
The average changes of CN gain genes were larger than CN loss genes.
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harboring hypermethylation in each CnGain/Loss sample 
and compared their cumulative frequency in all samples 
(Figure 3). It was evident that most samples presented low 
number of hypermethylated markers. Then CIMP-H was 
defined as having as least 9/15 Me (+) genes in CN gain 
genes, and this group constituting 25% (20/80) of CnGain 
samples (Figure 3A). As for CnLoss samples, CIMP-H 
samples were defined as having at least 3/10 Me (+) genes, 
making up 16.3% (25/153) in CnLoss group (Figure 3B). 

Judged by the frequency distribution of Me (+) 
genes, most samples didn’t present much hypermethylation 
measured by the gene panel, proving the strictness of 
our criteria on the other hand. Particularly, the ratio of 
CIMP-H/CIMP-L in CnGain status was larger than those 
of the CnLoss (25% and 16.3%). CIMP-H were much less 
than CIMP-L, which was consitent with the low fraction 
of CIMP-H in most studies researched on CIMP. The 
higher fraction of CIMP-H in CnGain samples indicated 
that for our gene panel, tumors with copy number gains 

might have high methylation levels and a relationship 
might be shared between CN loss and hypomethylation. 

On the other hand, the distribution of clinical factors 
of all samples with the CnGain/Loss and CIMP-H/L was 
checked, but most of them were not significant, by Chi-
square test (Supplementary Table 2). Particularly, among 
233 CIMP samples in two copy number status, there 
were 69 samples with known PAM50 defined subtypes 
including Basal-like, HER2-enriched, Luminal A, 
Luminal B, and normal-like [26] (Supplementary Table 3). 
Basal-like and HER2-enriched subtypes appeared most 
frequently in CnGain/CIMP-L group, constituting 61.5% 
and 60% of their total amount. While CnLoss/CIMP-L 
contained the largest proportion of Luminal A cancers 
(74.2%), and CnLoss/CIMP-H contained the highest 
proportion of Luminal B with subtypes (38.9%). For the 
significance of the enrichment of PAM50 subtypes was 
determined by the hypergeometric test (Supplementary 
Figure 2). The CnLoss/CIMP-L group was significantly 

Table 1: The location of markers on genome and their dominant copy number status in most 
samples

chrom start end geneid symbol CNA
1 165171103 165325952 1783 LMX1A gain
1 186640943 186649559 1979 PTGS2 gain
1 220087605 220101993 2219 SLC30A10 gain
1 228194722 228248972 2293 WNT3A gain

1 228645807 228646259 2309 HIST3H2BB gain
1 234040678 234460262 2356 SLC35F3 gain

1 236139131 236228481 2375 NID1 gain
1 236305831 236372209 2376 GPR137B gain
1 236849753 236927927 2382 ACTN2 gain
1 240938813 241520530 2395 RGS7 gain
1 242251688 242687998 2405 PLD5 gain
1 248020500 248043438 2452 TRIM58 gain

2 29320541 29406679 2706 CLIP4 gain
8 11561716 11617509 9971 GATA4 loss
8 22993100 23021543 10065 TNFRSF10D loss
10 123748688 124014060 12689 TACC2 gain
11 2150341 2182439 12877 INS-IGF2 gain
16 56651372 56652730 18511 MT1L loss
16 56659584 56661024 18512 MT1E loss

16 58497548 58547523 18561 NDRG4 loss

16 61685914 62070739 18571 CDH8 loss

16 67679029 67691472 18624 RLTPR loss
16 69139466 69152619 18659 HAS3 loss
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Figure 2: Heatmaps of binary copy number profile and methylation profile of CnGain/Loss samples. (A) The binary 
copy number alteration profile. Samples were first classified into 4 copy number statuses by the number of CN (+) and CN (−) genes. CN 
(+): segment mean > 0.3; CN (−): segment mean < −0.2. (B) The methylation profile of CnGain samples. (C) The methylation profile of 
CnGain/Loss samples.

Figure 3: Enrichment analysis of PAM50 golden standard in the CIMP-H/L in CnGain/Loss samples. * represents p < 0.05. 
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enriched in Luminal A subtype. While in CnGain/CIMP-L 
group, basal-like subtype tended to be a dominant part. 
CnLoss/CIMP-L was specially associated with Luminal B 
subtype. In brief, the enrichment difference of molecular 
subtypes may explain the heterogeneity existed in breast 
CIMP cancers to some degree.

To have a look at our CIMP subtypes in a more 
comparative way, we also visualized the methylation 
patterns of CIMP-H/L by hierarchical clustering and by 
our method (Figure 4). Similar to the results generated 
by hierarchical clustering method using 601 differentially 
methylated probes (Euclidean distance, Ward-D2 
method), the samples also aggregated into two clusters 
using our classification rule. The results of hierarchical 
clustering yielded 49 CIMP-H in 80 CnGain samples 
and 73 CIMP-H in 153 CnLoss samples, with the overlap 
of 41 CIMP-H and 107 CIMP-L with our method. In 
summary, more CIMP-H samples were figured out by the 
clustering method than our method, which contradicted the 
phenomena that CIMP-H consisting less part of tumors 
than CIMP-L in most studies. 

Survival analysis of CIMP groups in different 
CNA status

To highlight the power of our method stratifying 
CIMP based on copy number status of samples, we first 
checked the survival difference of CIMP-H/L classified by 
the clustering method without copy number information, 
which was detailed above (Figure 5A and 5C). And the 
survival difference of CnGain/Loss was also checked 
(Figure 5B and 5D). Both results of preliminary 

classifications just based on methylation or copy 
number information were not significant in training or 
validation set. However, the survival of CIMP-H/L varied 
significantly in CnLoss samples after adding the genomic 
information of copy number alteration (Figure 6). The 
KM plots were draw for both CN groups in training and 
validation sets. The univariate Cox proportional hazard 
regression model found that in CnLoss samples, CIMP-L 
outperformed CIMP-H (HR = 0. 219; 95% CI = 0.048–
0.999; log-rank P = 0.032) in training set, and the 
difference is still significant in validation set (HR = 0.199; 
95% CI = 0.034–1.151; log-rank P = 0.05). Inversely, the 
survival of CIMP-L was worse than CIMP-H in CnGain 
status in training set, but not significant in validation set. 
Several clinical factors like age, stage and menopause 
were also checked by multivariate Cox regression 
model, but most of them were not significant (Table 2, 
Supplementary Table 4).

This result not only indicated that our method 
stood above the clustering method, but also validated our 
supposition that the CIMP classification could be better 
described when more genomic information integrated. 
Therefore, messages related to genomic alteration could 
provide more information than the bare information of 
methylation in CIMP grouping.

DISCUSSION

It has been decades since the first study put forward 
the idea of CIMP, a subgroup exhibiting hypermethylation 
of several CGIs in colorectal cancers. Many studies have 
found this unique cancer subtype in other malignancies, 

Figure 4: Methylation profiles of CIMP-H/L. The order of samples in the heatmap followed the order of CIMP-L and CIMP-H, 
between which were separated by a red line. (A) Samples divided by our CIMP classification criteria were presented in the heat map. (B) 
Heat map created by hierarchical clustering of the same cohort but the labels were 601 differentially methylated probes with most 20% 
significant CV in DMGs. Samples in lower methylation status were in the left part of both heat maps. Concordant hypermethylation in a 
subset of tumors was observed by different classification methods, but clustering method yielded more CIMP-H samples.
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including breast, glioblastoma, lung, stomach and renal 
carcinoma [7, 8, 27–29]. Those CIMP types in cancers 
have different influences on clinical performance, and 
are associated with a series of known classic tumor 
subtypes. As for the CIMP research in breast cancer, only 
several studies hinted its relevance to some conventional 
histological and intrinsic subtypes. 

In early times, candidate genes were picked out 
from a set of known genes related to certain cancer types, 
and tumor samples were evaluated by the methylation 
status of those fixed markers. After the high-throughput 
technologies emerged, whole-genome analysis helped 
a lot to the molecular classification of breast cancer 
subtypes, and markers in CIMP characterization got more 
specific, which were the most typical genes that filtered 
by statistical methods [27]. However, this approach still 
couldn’t solve the problem of the heterogeneity existed in 
large sample cohorts, especially when those data were not 
retrieved from the same batch of experiment. Meanwhile, 
even we know that the CIMP does occur in many cancers, 
due to the multiple analytical methods and standards to 
select markers, how to divide CIMP-H and CIMP-L 
remains elusive with inconsistency [30]. 

The lack of enough integration between genetic and 
epigenetic abnormalities can be a possible reason that 
caused the confusion of CIMP stratification. Traditionally 
in colorectal cancers, the influence of CIMP is checked 
with microsatellite instability (MSI), a chromosomal 
instability that characterizes the tumor progression. 
However, heterogeneous cancer subtypes are assessed only 
by a set of common MSI loci, so its power to evaluate the 
specific genetic abnormality of tumors can be weakened. 
Copy number alteration (CNA) is another type of genetic 
instability in shorter segments than MSI and happens 
more frequently than MSI. Based on the difference of 
MSI and CNA, we hypothesize that the specific genes 
with CNA can also reveal specific genetic variations which 
occurred in CIMP subtypes when the MSI status can’t be 
retrieved or can’t offer adequate information of genomic 
alteration. Therefore, we tried to find the genes with not 
only hypermethylation but also recurrent CNA and use 
them to categorize samples into different copy number 
and methylation status, where different thresholds were 
taken. When it comes to genomic information integration, 
the technical variations would increase inevitably and thus 
lead to imprecise results. In order to settle this problem, 

Table 2: The univariate and multivariate Cox proportional hazard regression of CIMP-H/L and 
other clinical factors in training set

Clinical factors Univariate Multivariate
Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age(continuos) 1.002 (0.954–1.053) 0.9362 0.943 (0.813–1.094) 0.4397
Lymph nodes 1.044 (0.961–1.134) 0.3075 97.409 (3.458–2744.295) 0.0072
Stage

Stage I/II ref ref
Stage III 2.174 (0.575–8.213) 0.2523 355.567 (0.892–1.4E4) 0.0545
Stage IV

Stage X

Histological type

Infiltrating Ductal ref ref
Infiltrating Lobular 1.017 (0.222–4.663) 0.983 13.808 (0.013–1.4E4) 0.458
Mixed histology 0.88 (0.092–8.401) 0.9112 286E7(117.613–6.93E+12) 0.0067
Other

Menopause

Interminate

Peri NA (NA–NA) –
Post 0.08 (0.007–0.903) 0.0411 461.861 (2.05–104038.129) 0.0264
Pre 0.039 (0.002–0.81) 0.036 –

CIMP in CNA–none
CIMP–L/CIMP–H 0.219 (0.048–0.999) 0.0499 0 (0–0.174) 0.0134

The hazard rations of some clinical factors were not calculated because the amount of samples in that group was not enough for the 
estimation of risk.



Oncotarget48814www.impactjournals.com/oncotarget

we acquired the methylation and CNA information from 
the same set of HM450K bead array data, which not 
only detected epigenomic changes on methylome but 
also outperformed the CGH arrays in scanning the copy 
number changes occurred in single genes and avoided 
unnecessary heterogeneity introduced by batch effects 
when data were merged.

Moreover, some of markers were related to cancer 
progression, like IGF2, PTGS2, WNT3A, according to 
our literature review [31–33]. In CN loss genes, GATA4 is 
related to the progression of breast carcinoma from early 

stages and is an independent prognostic factor for survival 
in breast cancer-specific disease-free IDC patients. Its 
dispersion can induce distant metastasis, histological grade 
and HER2 status, but could reduce progesterone receptor 
in IDC [34]. As for CN gain genes, WNT3A was a highly-
expressed gene in ER+ breast cancer cell lines. The 
expression of PTGS2 (COX2) can influence the physical 
properties of the tumor microenvironment including 
human breast cancer cells through mechanotransduction 
[35]. The IGF2 genetic variants can influence the death 
risks of breast cancers with BRCA1/2 mutations [36]. 

Figure 5: The KM plot of CIMP-H/L in CnLoss/Gain samples divided into training and validation set. (A, B) The KM 
plot of CIMP-H and CIMP-L samples in CnLoss status, training/validation set. (C, D) The KM plot of CIMP-H and CIMP-L samples in 
CnGain status, training/validation set.
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Also, Yagi et al. also utilized the SLC30A10 gene to 
evaluate the methylation status of colorectal cancers, 
indicating unbiased aberrations in methylation patterns 
across tumors [37]. In all, those genes tend to show highly 
cancer-related and can offer a concise view of CNA and 
methylation status for our samples. 

The distribution of the breast cancer luminal A 
phenotype in CIMP-L tended to differ between CnGain 
and CnLoss samples. Such enrichment may due to the 
large portion of luminal A samples, so more information 
related to those molecular phenotypes may need to be 

added in further analysis to check out the tendency in 
this study. Particularly, the CnGain samples retained 
more CIMP-H samples than CnLoss, implying that copy 
number gain might correlate with hypermethylation in our 
markers. In all, the combination of methylation and CNA 
may shed lights on mechanisms of CIMP and facilitate 
more accurate cancer risk assessment, detection and 
outcome prediction.

Current studies related to CIMP still couldn’t yield a 
consistent criterion to partition CIMP-H/L. More specific 
benchmark is needed for the discovery of CIMP-specific 

Figure 6: The KM plot of CIMP-H/L or CnLoss/Gain samples. The significance of two types of classification was not 
significant. (A, B) The KM plot of CIMP-H/L classified by clustering method of training/validation set. (C, D) The KM plot of CnGain/
Loss samples in training/validation set.
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genes and evaluation of sample methylation status for 
comprehensive understanding of methylation patterns. 
Inclusion of predetermined CIMP cohorts by high 
throughput sequencing and clinical with larger dataset 
would also be suggested as a standard to assess the new 
CIMP classification methods. Expression mode of markers 
may also work to reflect the potential mechanisms that 
regulated by methylation and copy number.

MATERIALS AND METHODS

Sample filtering and methylation profiling

Breast adenocarcinoma data of 861 samples (female) 
was retrieved from TCGA and obtained with the Infinium 
HumanMethylation450 (HM450K) BeadChips including 
485,577 CpG sites with the coverage of 27,176 CGIs and 
21231 RefGenes, about 17.2 probes per gene [38]. 

Methylation profiles were processed by the 
utilization of the Chip Analysis Methylation Pipeline 
(ChAMP, vesion 1.4.1), an R package which integrates 
popular methods to normalize and process the raw .IDAT 
files from HM450K chips [39]. This 450K pipeline is able 
to find out differentially methylated genes (DMGs) and 
detect segments with copy number aberration of samples in 
a same dataset. The quality control method called subset-
quantile within array normalization (SWAN) screened 
the fraction of failed probes per sample which didn’t pass 
the statistical test [40]. After normalization, “ComBat” 
method was used to correct batch effects related to slides 
(Sentrix ID) [41]. To check the efficiency of ComBat 
normalization, singular value decomposition method 
(SVD) was used to analyze the biological and technical 
variations before and after ComBat, and the significant 
p values were presented in heatmaps (Supplementary 
Figure 4) [42]. All the parameters of functions we used 
were set as default. 

A series of filtering steps were included to pick out 
suitable samples and probes for our analysis: (1) One 
sample were removed to meet the slide number standard 
demanded by ComBat that every slide must have at least 
two samples for normalization; (2) After removing 17 
samples whose failed probe fraction was larger than 0.05, 
the quality control step was rerun; (3) 69059 probes with 
a detection p value above 0.01 in more than one sample 
or with a beadcount less than 3 in at least 5% of samples 
were removed from the analysis; (4) The probes in CGIs 
were retrieved to generate the methylation profile. 

CIMP marker selection

We used “champ.lasso” in ChAMP to get the 
differentially methylated probes. The probes in CGIs 
were picked out with Benjamini–Hochberg adjusted 
p value 0.001, and their differences of DNA methylation 
level were more than 0.1 between cancers and normal 

samples. Then the coefficients of variation (CV) in tumors 
was used to assess the variant extent of those probes, the 
50% most variant probes were remained, CV = SD/AVE. 
Then those probes were matched to their uniquely mapped 
genes, which were recognized as DMGs hereafter. The 
methylation value of a gene was calculated as the average 
beta values of its picked-out probes.

To detect the genes with recurrent CNAs, we 
mainly integrated different functions in three R packages. 
Firstly, “champ.CNA” in ChAMP pipeline was used to 
get segments with CNAs and their segment mean in every 
cancer. The mean log2-ratio (segment mean) of a region 
accessed its copy number status, the cut-off value to call 
gain and loss of a segment was set as (0.2 and −0.2), and 
for the CNA evaluation of genes, we chose more strict 
thresholds to enhance the classification power, which is 
0.3 and −0.2 in subsequent analysis. Then the “CNTools” 
(version 1.22.0) transformed the segment information into 
a reduced segment matrix (segments as rows and samples 
as columns), enabling a convenient calculation of the CNA 
frequency of regions in all samples. Lastly, the R function 
“cghMCR” (version 1.26.0) converted the matrix of 
regions into gene copy number profile and calculated their 
frequencies of CNA in all samples. We found there were 
apparently more CN gain than CN loss genes according to 
their distribution of frequency plot (Figure 1C), so 35% 
and 20% were used as the recurrence percent in patients 
separately to determine whether a gene’s copy number is 
recurrently gain or loss in tumors. 

The overlap part of DMGs and genes of recurrent 
CNA were selected as markers to evaluate the copy 
number stage of samples and CIMP status. 

Copy number alteration analysis and CIMP 
stratification

The copy number status of samples were analyzed 
by all 25 makers first and then CnGain and CnLoss 
samples were stratified into CIMP-H/L by 15 markers with 
copy number gain and 10 markers with copy number loss 
separately (Supplementary Figure 3). We found that the 
copy number status of some samples not only presented 
highly aberrant gains of markers, but also losses. So 
four CNA stages of samples (CnNone, CnGain, CnLoss, 
CnBoth) were defined according to the copy number 
status of 25 genes selected. Since we found the regions 
of copy number gain is wider and their average segment 
mean was larger than those of copy number loss, the gene 
was regarded as CN (+) when its segment mean value 
was larger than 0.3, and CN (−) when segment mean was 
less than −0.2. If a sample had at least 6 CN (+) genes 
in all 15 CN gain genes, it was categorized into CnGain 
status, and at least 3 CN (−) genes in 10 for CnLoss status. 
The samples in both CnGain and CnLoss status were 
categorized into CnBoth status. The left ones were in 
CnNone status. 
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The methylation values of 15 CN gain and 10 CN 
loss markers were used to classify CIMP status of CnGain 
and CnLoss samples. Different threshold, 0.45 and 
0.6 (larger than the 3rd quantile) were used to evaluate 
the methylation status of CN gain and CN loss genes, 
separately. If the methylation value was larger than the 
threshold, the gene was marked as Methylation (+) (Me 
(+)). CIMP-H tumors were defined as having at least 9 Me 
(+) in 15 CN gain genes for CnGain samples, and at least 
3 Me (+) genes in 10 CN loss genes for CnLoss samples.

Statistical analysis

CIMP-H/L classification only using methylation 
information was achieved with hierarchical clustering 
of methylome characterized by the 601 most variant 
probes (Ward-D2, Euclidean distance). The datasets 
were divided into two equal parts for training and 
validation. The Survival analysis employing the Kaplan–
Meier product limit estimator and log rank tests were 
performed to compare the likelihood of disease-related death 
of different CIMP cohorts. The multivariate Cox proportional 
hazard models were fitted to check the survival risks of 
CIMP types, and covariates included age, tumor stage, 
etc. Student’s t-test was used to compare the distribution 
of methylation levels between copy number gain and copy 
number loss genes. Chi-square (Fisher test when sample 
number less than 5) was used to check the distribution 
difference of molecular phenotypes in CIMP-H/L samples 
in CnGain/Loss status. All statistical tests were two sided and 
plots were performed by R program (version 3.2.2). 
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