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AMPKα phosphatase Ppm1E upregulation in human gastric cancer 
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ABSTRACT
Activation of AMP-activated protein kinase (AMPK) is a valuable anti-cancer 

strategy. In the current study, we tested expression and potential function of Ca2+/
calmodulin-dependent protein kinase phosphatase (Ppm1E), an AMPKα phosphatase, 
in human gastric cancers. Ppm1E expression was elevated in human gastric cancer 
tissues (vs. normal tissues), which was correlated with AMPK (p-AMPKα, Thr-172) 
dephosphorylation and mTOR complex 1 (mTORC1) activation. Ppm1E upregulation, 
AMPK inhibition and mTORC1 activation were also observed in human gastric cancer 
cell lines (AGS, HGC-27, and SNU601). Intriguingly, Ppm1E knockdown by shRNA 
induced AMPK activation, mTORC1 inactivation, and proliferation inhibition in AGS 
cells. On the other hand, forced over-expression of Ppm1E induced further AMPK 
inhibition and mTORC1 activation to enhance AGS cell proliferation. Remarkably, 
microRNA-135b-5p (“miR-135b-5p”), an anti-Ppm1E microRNA, was downregulated 
in both human gastric cancer tissues and cells. Reversely, miR-135b-5p exogenous 
expression caused Ppm1E depletion, AMPK activation, and AGC cell proliferation 
inhibition. Together, Ppm1E upregulation in human gastric cancer is important for 
cell proliferation, possible via regulating AMPK-mTOR signaling. 

INTRODUCTION

Gastric cancer has long been a major health threat 
[1]. Over the past decades, significant progress has 
been achieved in pathological mechanism research and 
therapeutic strategies for gastric cancer. Yet the prognosis 
has not been dramatically improved [2–4]. The five-year 
overall survival for those with advanced or recurrent 
metastatic gastric cancer is extremely poor [2–4]. Further, 
the incidence of this devastating disease has been rising 
in China [5] and other Eastern countries [1, 6]. The 
applications of the conventional cytotoxic drugs and 
newly molecular-targeted agents are not satisfactory in 
cancers with widespread pre-existing and/or acquired 
resistance [3, 4, 7]. 

AMP-activated protein kinase (AMPK) is the 
well-established master regulator of cellular energy 

metabolism [8, 9]. Existing literatures have implied that 
AMPK is also important for the regulation of cell survival 
and death (see review [8–10]). Our group [11–15] and 
others have indicated that AMPK activation could also 
promote cancer cell death via regulating the downstream 
targeting proteins. For example, in various cancer cells, 
forced-activation of AMPK, either pharmacologically 
and genetically, could induce p53 activation [16–18] 
and mammalian target of rapamycin (mTOR) complex 1 
(mTORC1) inhibition [19], as well as autophagy induction 
[20, 21] and oncogenic protein degradation [22]. Many 
traditional cytotoxic chemo-drugs and natural compounds 
could provoke AMPK-dependent death pathway 
[10, 16, 23–32] in cancer cells. 

Very recent research efforts have characterized 
Ca2+/calmodulin-dependent protein kinase phosphatase 
(Ppm1E) as a novel and vital AMPKα phosphatase [33–35].  
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On the other hand, Ppm1E silence or mutation could be 
a novel strategy to induce AMPKα1 phosphorylation and 
activation [33–35]. In this study, we show that Ppm1E, 
the AMPKα phosphatase, is significantly upregulated 
in human gastric cancer tissues and cell lines, which 
is possibly important for shutting down AMPK, thus 
promoting cancer cell proliferation. 

RESULTS

Ppm1E upregulation in human gastric cancer 
tissues

First, we tested Ppm1E expression in human gastric 
cancer tissues, and compared with the surrounding 
normal gastric tissues. A total of twelve (12) paired of 
fresh tissue specimens were analyzed. Quantitative real-
time PCR assay (qRT-PCR assay) results in Figure 1A  
demonstrated that Ppm1E mRNA level was clearly 
elevated in gastric cancer tissues (“Tumor”), as compared 
that in the surrounding normal tissues (“Normal”). 
Meanwhile, quantified Western blotting assay results in 
Figure 1B confirmed Ppm1E protein upregulation in the 
gastric cancer tissues. Significantly, Ppm1E upregulation 
was correlated with AMPK in-activation (or AMPKα1 de-
phosphorylation) and mTORC1 activation (or p-S6K1) 
in cancer tissues (Figure 1B). These results are not 
surprising, as Ppm1E is a defined AMPK phosphatase 
[33–35], and AMPK inhibition could lead to mTORC1 
activation [19, 20, 36]. These results demonstrate Ppm1E 
upregulation in human gastric cancer tissues, which 
correlates with AMPK inhibition and mTORC1 activation. 

Ppm1E upregulation in human gastric cancer 
cells

We also tested Ppm1E expression in human gastric 
cancer cell lines. A total of three distinct gastric cancer 

cell lines, including AGS, HGC-27, and SNU601, were 
utilized. As compared to the GES-1 gastric mucosal 
epithelial cells, Ppm1E mRNA level was significantly 
higher in the above gastric cancer cells (Figure 2A). 
Ppm1E protein expression was also increased in above 
cancer cells (Figure 2B). Correspondingly, activation 
of AMPK, tested again by p-AMPKα1 at Thr-172, was 
decreased (Figure 2B), which was associated with 
mTORC1 activation (p-S6K1 increase, Figure 2B). These 
results demonstrate that the AMPK phosphotase is also 
upregulated in human gastric cancer cells, correlating with 
AMPKα dephosphorylation and mTORC1 activation.

Ppm1E silence induces AMPK activation 
and inhibits gastric cancer cell survival and 
proliferation

To study the possible function of Ppm1E in gastric 
cancer cell behaviors, shRNA strategy was utilized to 
knockdown Ppm1E in AGS cells. Two Ppm1E lentiviral 
shRNAs (“1#” and “2#”, gifts from Dr. Cui’s group [35]), 
with non-overlapping sequences, were employed. qRT-PCR 
assay results in Figure 3A showed that the two shRNAs 
indeed potently downregulated Ppm1E mRNA in AGS 
gastric cancer cells. Further, Ppm1E protein expression 
was also depleted, which caused profound AMPKα1 
phosphorylation (Figure 3B) and mTORC1 (p-S6K1) 
inhibition (Figure 3B). MTT assay results in Figure 3C 
showed that Ppm1E knockdown by shRNA decreased MTT 
viability optic density (OD) of AGS cells. Meanwhile, the 
number of survival AGS colonies was also decreased after 
expressing Ppm1E shRNA (Figure 3D). Cell proliferation 
was also tested by the BrdU ELISA assay and [H3] 
thymidine DNA incorporation assay. Results of both assays 
demonstrated that Ppm1E silence significantly inhibited 
AGS cell proliferation, as BrdU ELISA OD (Figure 3E) 
and [H3] thymidine DNA incorporation (Figure 3F) were 
both decreased after Ppm1E knockdown. These results 

Figure 1: Ppm1E upregulation in human gastric cancer tissues. The fresh human gastric cancer tissues (“Tumor”, n = 12) and 
the surrounding normal gastric tissues (“Normal”) were lysed; Expressions of Ppm1E mRNA (A, qRT-PCR assay) and listed proteins  
(B, Western blotting assay, Data were quantified) were tested. *p < 0.05 vs. “Normal”. 
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clearly show that Ppm1E silence induces AMPK activation 
and inhibits survival and proliferation of AGS cells. 

Exogenous Ppm1E over-expression promotes 
gastric cancer cell survival and proliferation

To further confirm the function of Ppm1E in 
gastric cancer cell behaviors, we constructed the Ppm1E-
expressing vector (see Methods). The construct was 
transfected to AGC cells. Through selection, two lines 
of AGS cells constitutively expressing the vector were 
established. They were named as “Line-1” and “Line-2”, 
respectively. Ppm1E mRNA was significantly upregulated 
in the two AGC cell lines (Figure 4A). Western blotting 
assay results in Figure 4B (Upper panel) further confirmed 
the exogenous Ppm1E expression (Flag-tagged) in the two 
lines. Notably, exogenous over-expression of Ppm1E led to 
further AMPKα dephosphorylation/inhibition (Figure 4B, 
Lower panel) and enhanced mTORC1 (p-S6K1) activation 
(Figure 4B, Lower panel). Remarkably, AGC cell viability 
(tested by MTT assay, Figure 4C) and proliferation (tested 
by BrdU ELISA assay, Figure 4D) were both augmented 
with exogenous Ppm1E expression. Therefore, Ppm1E 
over-expression facilitates mTORC1 activation and 
promotes gastric cancer cell survival and proliferation.

Exogenous expression of miR-135b-5p causes 
Ppm1E depletion, AMPK activation, and 
proliferation inhibition in AGC cells

Next, we focused on the possible cause of 
Ppm1E upregulation in gastric cancer tissues and 
cells. Several very recent studies have characterized a 
Ppm1E-targeting miRNA: namely microRNA-135b-5p  

(“miR-135b-5p”) [34, 35]. We therefore tested expression 
of this miRNA in above tissues and cells. Remarkably, 
as shown in Figure 5A, miR-135b-5p level was 
dramatically downregulated in human gastric cancer 
tissues. Meanwhile, its level was also quite low in the 
tested gastric cancer cell lines (Figure 5B). Next, a miR-
135b-expressing vector (a gift from Dr. Cui [35, 37]) was 
introduced to AGS cells. qRT-PCR assay results showed 
that AGS cells with miR-135b vector showed significantly 
increased miR-135b-5p expression (Figure 5C). Reversely, 
Ppm1E mRNA (Figure 5D) and protein (Figure 5E) was 
depleted. Forced miR-135b-5p expression similarly 
induced AMPK activation (p-AMPKα1, Thr-172) and 
mTORC1 (p-S6K1) inhibition (Figure 5E, results were 
quantified). Meanwhile, miR-135b-5p expression also 
inhibited AGC cell survival and proliferation, which were 
again tested by the MTT assay (Figure 5F) and BrdU 
ELISA assay (Figure 5G), respectively. Together, we show 
that exogenous expression of miR-135b-5p causes Ppm1E 
depletion, AMPK activation, and proliferation inhibition 
in AGC cells. 

DISCUSSION

The possible AMPKα phosphatases are largely 
unknown until recently. A group of studies have implied 
Ppm1E as a vital AMPKα phosphatase [33–35]. On the 
other hand, genetic inhibition of Ppm1E could provoke 
AMPKα1 phosphorylation or AMPK activation [33–35].  
Here, we showed that Ppm1E was significantly upregulated 
in both human gastric cancer tissues and gastric 
cancer cell lines, which was correlated with AMPKα 
dephosphorylation/inhibition. Ppm1E knockdown by 
shRNA then activated AMPK and significantly inhibited 

Figure 2: Ppm1E upregulation in human gastric cancer cells. Human gastric cancer cell lines (AGS, HGC-27, and SNU601) 
and the gastric mucosal epithelial cell line GES-1 were subjected to qRT-PCR assay (A) and Western blotting assay (B) to test listed genes. 
Western blot data were quantified. *p < 0.05 vs. GES-1 cells. Experiments in this figure were repeated three times, and similar results were 
obtained.
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Figure 3: Ppm1E silence induces AMPK activation and inhibits gastric cancer cell survival and proliferation. Expressions 
of Ppm1E mRNA (A) and listed proteins (B) in AGS cells with Ppm1E shRNA (“1#” or “2#”) or scramble control shRNA (“shRNA-C”) 
were shown. Above cells were also subjected to MTT assay (C), colony formation assay (D), BrdU ELISA assay (E) and DNA [H3] 
thymidine DNA incorporation assay (F) to test cell survival and proliferation. For these assays, exact same number of viable cells with 
listed shRNA was initially plated. *p < 0.05 vs. “shRNA-C” cells. Experiments in this figure were repeated four times, and similar results 
were obtained.

Figure 4: Exogenous Ppm1E over-expression promotes gastric cancer cell survival and proliferation. Expressions of 
Ppm1E mRNA (A) and listed proteins (B, Data were quantified in the Lower panel) in stable AGS cell lines with exogenous Ppm1E 
(“Line1” and “Line2”, Flag-tagged) or empty vector (“Vector”) were shown. Above cells were also subjected to MTT assay (C) and BrdU 
ELISA assay (D) to test cell survival and proliferation, respectively. For these assays, exact same number of viable cells with listed shRNA 
was initially plated. *p < 0.05 vs. “Vector” cells. Experiments in this figure were repeated three times, and similar results were obtained.
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human gastric cancer proliferation. Reversely, forced over-
expression of Ppm1E induced further AMPK inhibition 
to promote gastric cancer cell proliferation. Therefore, 
Ppm1E, the AMPKα phosphatase, has the potential to be 
a novel and valuable oncotarget protein for human gastric 
cancer. 

Activation of mTORC1 participates in almost 
all cancerous behaviors [3, 38, 39]. mTORC1 is often 
dysregulated and constitutively-activated in human gastric 
cancers, representing a key oncotarget for treatment 
[3]. Numerous studies, including ours [11–15, 40],  
have demonstrated that AMPK activation could inhibit 
mTORC1. There are two following mechanisms for 
mTORC1 inhibition by AMPK. Activated AMPK 
indirectly inhibits mTORC1 via phosphorylating and 
activating TSC2, the latter is a known mTORC1 upstream 
inhibitor protein (TSC2-dependent) [19]. Further, AMPK 
could also phosphorylate and in-activate mTORC1 
component Raptor to directly inhibit mTORC1 (TSC2-
independent) [41, 42]. In this study, we showed that 
Ppm1E knockdown by shRNA activated AMPK in gastric 
cancer cells, which led to mTORC1 in-activation and 

proliferation inhibition. Following studies will be needed 
to confirm that mTORC1 inhibition is the reason of gastric 
cancer cell proliferation inhibition by Ppm1E shRNA. 

Very recent studies have characterized miR-135b-5p  
as the Ppm1E-targeting miRNA. Here we found that 
miR-135b-5p was significantly downregulated in 
human gastric cancer tissues and cell lines. Remarkably, 
exogenous expression of miR-135b-5p induced Ppm1E 
downregulation, AMPK activation, and proliferation 
inhibition in AGC cells. Therefore, miR-135b-5p 
depletion could be the cause of Ppm1E upregulation in 
human gastric cancer tissues/cells. The detailed underlying 
mechanisms warrant further investigations. 

MATERIALS AND METHODS

Culture of established cell lines

 Human gastric cancer cell lines, AGS, HGC-27, 
and SNU601, as well as human gastric mucosal epithelial 
cell line GES-1 were purchased from the Cell Bank of 
CAS Shanghai (Shanghai, China) at Dec 2013. Cells 

Figure 5: Exogenous expression of miR-135b-5p leads to Ppm1E depletion, AMPK activation, and proliferation 
inhibition in AGC cells. The fresh human gastric cancer tissues (“Tumor”, n = 12) and the surrounding normal gastric tissues (“Normal”,  
n = 12), as well as gastric cancer cells (AGS, HGC-27, and SNU601) or GES-1 epithelial cells were subjected to qRT-PCR assay of 
microRNA-135b-5p (“miR-135b-5p”) expression (A and B). AGC cells, expressing miR-135b-vector or the miR-control vector (“miR-Ctrl”)  
were subjected to qRT-PCR assay testing expression of miR-135b-5p (C) and Ppm1E mRNA (D) Listed proteins were also tested by 
Western blotting assay, and blot data were quantiifed (E) Cells were also subjected to MTT assay (F) and BrdU ELISA assay (G). For these 
assays, exact same number of viable cells with listed vector was initially plated. *p < 0.05 vs. “Normal” tissues (A) or GES-1 cells (B).  
*p < 0.05 vs. “miR-Ctrl” cells (C–G). Experiments in this figure were repeated three times, and similar results were obtained.
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were maintained in RPMI medium with 10% fetal bovine 
serum (FBS). The cell line verification was described 
previously [43]. 

Reagents and antibodies

Puromycin was purchased from Sigma (Shanghai, 
China). The Ppm1E antibody was from Dr. Cui’s group 
[35]. All other antibodies utilized in this study were 
obtained from Cell Signaling Tech (Danvers, MA). The 
cell culture reagents were obtained from Gibco Life 
Technologies (Carlsbad, CA).

Isolation of human gastric cancer tissues

 Surgery-isolated primary human gastric cancer 
tissue specimens were washed in DMEM. Tumor tissues 
and surrounding normal tissues were separated under 
microscopy very carefully. A total of twelve (12) different 
patients with primary gastric cancer, administered at authors’ 
institution, were enrolled (8 male, 4 female, 42–67 years  
old). Enrolled patients received no chemotherapy or 
radiotherapy prior to surgery. Fresh tissues were stored in 
liquid nitrogen. Tissue lysis buffer (Biyuntian, Wuxi, China) 
was applied to homogenate the tissue samples [44–47].  
Experiments and protocols requiring human samples were 
approved by the Internal Review Board (IRB) of all authors’ 
institutions. The written-informed consent was obtained 
from each participant. All studies using human samples 
were conducted according to the principles expressed 
in the Declaration of Helsinki and national/international 
guidelines.

RNA extraction and real-time PCR

As previously reported [13, 43, 48], total RNA from 
fresh cellular and tissue lysates was prepared via the TRIzol 
reagents (Invitrogen). Quantitative Real Time-PCR (“qRT-
PCR”) assay was performed. The PCR reaction mixture 
had SYBR Master Mix (Applied Biosystem), 0.5 μg RNA 
and 100 nM primers. The ABI Prism 7500 Fast Real-Time 
PCR system (Foster City, CA) was employed for PCR 
reactions. The mRNA primers for Ppm1E and GAPDH 
were provided by Dr. Cui’s group [35, 37]. The primers 
for miR-135b-5p were also gifts from Dr. Cui [35, 37]. 
Melt curve analysis was tested to analyze product melting 
temperature. GAPDH was always analyzed as the reference 
gene. The 2−∆∆Ct method was applied to quantify targeted 
gene/miRNA expression change within samples [13, 48]. 

Western blotting assay

 As described previously [43, 46, 49, 50], aliquots of 
30 µg of lysate proteins from cell or tissue samples were 
separated by SDS-page gel (10–12%), and were transferred 
onto polyvinylidene difluoride (PVDF) membranes 
(Millipore, Shanghai, China). After blocking, membranes 

were added with specific primary and corresponding 
secondary antibodies. Enhanced chemiluminescence (ECL) 
reagents (Amersham Bioscience, Freiburg, Germany) were 
applied for detection the interested band. The intensity of 
each band was quantified by ImageJ software. 

MTT assay

 Cell viability/survival was tested by the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay as described [15].

[H3] Thymidine incorporation assay of cell 
proliferation

 As descried [43, 51], cells with indicated 
treatment was incubated with 1 μCi/ml of tritiated 
thymidine (Sigma, China). To determine [H3] thymidine 
incorporation, cells were washed with PBS. Afterwards, 
cold 10% trichloroacetic acid (TCA) was applied to 
precipitate DNA, which was then solubilized with 1.0 M 
sodium hydroxide. The aliquots were counted by liquid-
scintillation spectrometry [43, 51]. 

BrdU ELISA assay of cell proliferation

Cells with different genetic modifications were 
incubated with BrdU (10 μM, Cell Signaling Tech, 
Shanghai, China). BrdU incorporation was determined in 
the ELISA format [47]. 

Colony formation assay

Colony formation was also performed to test cell 
proliferation. Briefly, cells (1 × 104) with different genetic 
modification were seeded onto the 6-well tissue culture 
plate, which were allowed to attach for 24 hours. Cells were 
further cultured for additional 7 days. Afterwards, colonies 
were stained with crystal violet solution and counted. 

Ppm1E knockdown by shRNA 

Two non-overlapping Ppm1E lentiviral shRNA 
plasmids were provided by Dr. Cui [35]. These two 
Ppm1E shRNAs were added to cultured AGS cells (with 
60% confluence) directly. After 24 hours, virus-containing 
medium was replaced with fresh complete medium. Stable 
AGS colonies were then selected by puromycin (2.5 μg/mL,  
Sigma) for 4 days. Expression of Ppm1E in the stable cells 
was tested by Western blotting assay. 

Exogenous expression of Ppm1E

A full-length Ppm1E cDNA (provided by 
Genepharm, Kunshan, China) was sub-cloned into the 
pSV2 neo Flag plasmid [43], which was transfected into 
AGS cells by Lipofectamine 2000 (Invitrogen) reagents. 
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After 24 hours, cells were re-plated on selection medium 
containing 100 μg/mL of G418 for 4 days. Expression of 
Ppm1E (Flag-tagged) in the resulting cells was tested by 
qRT-PCR assay and Western blotting assay. 

microRNA-135b (miRNA-135b) transfection 

miRNA-135b expression vector and non-sense 
miRNA-control (“miR-Ctrl”) vector were gifts from Dr. 
Cui [35, 37]. Cells were seeded on to six-well plates 
with 60% confluence. Lipofectamine 2000 transfection 
reagent (Invitrogen) was utilized for transfection the 
construct (0.15 μg construct per transfection). After 24 
hours, cell medium was replaced with 2 mL of complete 
medium. Puromycin (2.0 μg/mL, Sigma) was then added 
to establish stable cells for 4 days. Expression of miRNA-
135b-5p and Ppm1E in above cells was always tested.

Statistical analysis

Data were presented as mean ± standard deviation 
(SD). Statistics were analyzed by one-way ANOVA 
followed by a Scheffe’ and Tukey Test (SPSS 16.0, 
Chicago, CA). p < 0.05 means significant difference. 

CONCLUSIONS

In summary, we show that Ppm1E is upregulated 
in both human gastric cancer tissues/cell lines, which 
apparently is important for shutting down AMPK signaling 
and promoting cancer cell proliferation.
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