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Whole-genome expression analyses of type 2 diabetes in human 
skin reveal altered immune function and burden of infection
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ABSTRACT

Skin disorders are among most common complications associated with type 2 diabetes 
mellitus (T2DM). Although T2DM patients are known to have increased risk of infections 
and other T2DM-related skin disorders, their molecular mechanisms are largely unknown. 
This study aims to identify dysregulated genes and gene networks that are associated with 
T2DM in human skin. We compared the expression profiles of 56,318 transcribed genes 
on 74 T2DM cases and 148 gender- age-, and race-matched non-diabetes controls from 
the Genotype-Tissue Expression (GTEx) database. RNA-Sequencing data indicates that 
diabetic skin is characterized by increased expression of genes that are related to immune 
responses (CCL20, CXCL9, CXCL10, CXCL11, CXCL13, and CCL18), JAK/STAT signaling 
pathway (JAK3, STAT1, and STAT2), tumor necrosis factor superfamily (TNFSF10 and 
TNFSF15), and infectious disease pathways (OAS1, OAS2, OAS3, and IFIH1). Genes in 
cell adhesion molecules pathway (NCAM1 and L1CAM) and collagen family (PCOLCE2 and 
COL9A3) are downregulated, suggesting structural changes in the skin of T2DM. For the 
first time, to the best of our knowledge, this pioneer analytic study reports comprehensive 
unbiased gene expression changes and dysregulated pathways in the non-diseased skin of 
T2DM patients. This comprehensive understanding derived from whole-genome expression 
profiles could advance our knowledge in determining molecular targets for the prevention 
and treatment of T2DM-associated skin disorders.

INTRODUCTION

Type 2 diabetes mellitus (T2DM) accounts for 
~ 90% of diabetes and constitutes a great challenge for 
healthcare systems. T2DM is a principle contributor to 
heart disease, neuropathy, eye failure, and nephropathy 
[1]. Skin infections and other diabetes-associated skin 
disorders are among the most common complications, 
affecting 30 to 70% of people with diabetes [2]. Certain 
skin disorders are clearly more frequent in diabetic 
patients, but little is known about the molecular 
mechanisms underlying this association [3]. Due to the 
impaired wound healing in diabetic skin, chronic ulcers 

are one of the most severe cutaneous lesions faced by 
people with T2DM [4]. Hence, a better understanding of 
the mechanisms underlying the greater susceptibility of 
T2DM patients to developing skin disorders should lead to 
a better management or prevention of such complications.

There is a consensus that the mechanical competence 
of the dermis is reduced in diabetes [3]. A study led by 
Bermudez et al. found that db/db diabetic mice skin is 
biomechanically inferior to nondiabetic skin [5]. It has been 
suggested that altered collagen expression may contribute 
to this reduced mechanical competence; however, results of 
the expression of dermal collagen are not consistent [5, 6]. 
Furthermore, a recent study showed an increased number 
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of skin inflammatory cells in patients with type 1 or type 2 
diabetes, indicating a more permissive barrier in DM [7].

In this study, we hypothesized that T2DM is associated 
with dysregulated gene networks, which underlie the higher 
risk of developing cutaneous diseases and skin infections. 
With the rapid development of high-throughput sequencing 
technologies and precision medicine, scientists are now 
increasingly able to understand genetic and environmental 
factors that may contribute to complex diseases. We 
performed differential expression and pathway enrichment 
analyses on 74 T2DM cases and 148 non-DM controls from 
the Genotype-Tissue Expression (GTEx) database [8]. The 
GTEx project provides a wealth of gene expression and 
associated extensive clinical data [9]. We have previously 
performed extensive bioinformatics analyses using the GTEx 
database and successfully demonstrated that type 2 diabetic 
skeletal muscle is characterized by insulin resistance [10], 
which is considered to be the primary defect involved in 
T2DM [11]. To the best of our knowledge, our analysis is the 
first, and currently the largest, RNA-Seq-based transcriptome 
study in the skin of T2DM patients. RNA-Seq results 
provided 182 significant differentially expressed (DE) genes 
in the skin of T2DM. These dysregulated gene expression 
profiles could help in determining molecular targets for the 
prevention and the development of potential therapeutic 
avenues of T2DM-associated skin disorders.

RESULTS

Differential expression analysis identified 182 
significant DE genes in the human skin of T2DM

We examined expression changes of 56,318 
transcribed genes (on the basis of Gencode V19 

annotation, TrueSeq V1) in skin samples (lower leg, 
N=357) from the GTEx RNA-Seq database. To reduce the 
bias due to covariates in the generalized linear regression 
model, we used an optimal matching algorithm to balance 
gender, race, and age between T2DM and control groups 
(Supplementary Table 1), which minimized the average 
of distances among matched units [12]. The jitter plot 
in Figure 1A shows a similar overall distribution of 
propensity scores in matched control (N=148) and T2DM 
(N=74). After removing unmatched controls (N=106), we 
performed generalized linear regression of normalized 
read counts for each expressed gene against disease status, 
adjusting for known and hidden surrogate variables [13]. 
The volcano plot in Figure 1B shows significant T2DM-
related gene expression changes in the skin. At a stringent 
FDR level of 0.2, we identified 182 significant DE genes 
in the type 2 diabetic skin (Supplementary Table 2).

Validation by microarray dataset

To validate our results of significant T2DM-related 
gene expression changes, we compared our findings with the 
microarray-based gene expression GTEx dataset. The GTEx 
study has demonstrated a strong correlation (Pearson’s r = 
0.83) between RNA-Seq and Microarray platforms [8]. We 
pulled out 58 skin samples (lower leg) with microarray-
based transcriptome profiles, then applied the same exclusion 
criteria and preprocesses, resulting in 12 T2DM cases and 24 
Non-DM controls. We performed a similar linear regression-
based approach to model gene expression values against 
T2DM status. As shown in Figure 2, Log2 Fold Changes 
(LFCs) of our DE genes were significantly correlated with 
LFCs of common genes (n=135) in the microarray dataset 
(Pearson’s Correlation = 0.53). These results suggest a 

Figure 1: Differential expression analyses reveal a large number of significant T2DM-associated genes in the human 
skin. (A) Jitter plot shows the distribution of propensity scores in the T2DM and control groups. (B) Volcano plot shows the –log10 
(P-value) and log2 fold change for all expressed genes. Differentially expressed genes in the T2DM at the FDR level of 0.05, 0.1, and 0.2 
are indicated by red, green and yellow respectively.
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consistency of T2DM-related gene expression changes 
between these two platforms.

Pathway enrichment analysis revealed altered 
immune function and pathways related to 
infectious diseases in T2DM

To obtain a functional overview of these 
significant T2DM-associated DE genes (FDR<0.2), 
we conducted overrepresentation tests on up- and 
down-regulated genes separately. As shown in 
Table 1, up-regulated genes were significantly 
overrepresented in two categories: the immune 
response and infectious disease pathways  
(q-value < 0.05). Genes in two significant T2DM-
associated KEGG pathways, Toll-like receptor signaling 
pathway (hsa04620, Figure 3A) and Measles pathway 
(hsa05162, Figure 3B), were visualized through 
“pathview” R package [14]. To determine whether the 
FDR cutoff affects the pathway enrichment analysis, 
we performed overrepresentation test on 66 DE genes 
with FDR < 0.1. As shown in Supplementary Table 3, 
up-regulated DE genes were significantly enriched in 
the similar immune response and infectious diseases 
pathways as observed with FDR < 0.2. These results 
indicate an activation of infectious disease-related 
immune functions in type 2 diabetic skin. Moreover, 
gene set enrichment analysis, an approach which 
determines whether a group of genes has significant 
concordant differences, showed coordinated up-
regulation of genes in all of these immune response and 
infectious disease pathways (Supplementary Table 4).

Although there were no enriched pathways among 
down-regulated genes, cell adhesion molecules (CAMs) 
pathway was the most significant pathway with P-value = 
0.069 (q-value = 0.417). The expression of cell adhesion 
molecules, NCAM1 (neural cell adhesion molecule 1) and 
L1CAM (L1 cell adhesion molecule), were significantly 
decreased in T2DM (Supplementary Table 2). Moreover, 
the expression of the collagen-related genes including 
PCOLCE2 (procollagen C-endopeptidase enhancer 
2), COL9A3 (collagen type IX alpha 3), and COL22A1 
(collagen type XXII alpha 1) were significantly changed 
in T2DM (Supplementary Table 2). These results indicate 
altered lymphocyte trafficking and structural changes in 
dermal collagen in the skin of T2DM.

DISCUSSION

Our study shows for the first time T2DM-related 
whole-genome gene expression changes in the human 
skin. Although it is well known that patients with T2DM 
are at particular risk of developing skin infections and 
disorders, the molecular mechanisms leading to this 
complication are still poorly understood. The clearest trend 
in our RNA-Seq analysis is the significant enrichment of 
up-regulated genes in the immune response and infectious 
disease pathways.

T2DM is associated with increased systemic 
inflammation, which has been suggested to induce 
insulin resistance [15], the key feature of T2DM. 
Although a recent study indicates that increased 
inflammation was found in the skin of patients with 
T2DM [7], the molecular insights into the inflamed skin 

Figure 2: Correlation of significant T2DM-related gene expression changes (FDR < 0.2, n = 135) between the RNA-Seq 
and Microarray datasets. Each point showing the log2 fold change between T2DM and control subjects. A significant correlation is 
observed with P-value < 0.0001 and Pearson’s r = 0.53 (Linear fit line slope = 0.55). The nonparametric density contour lines are quantile 
contours in 5% intervals.
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Figure 3. (A) DE genes are significantly overrepresented in the Toll-like receptor signaling pathway. Pathview is used to visualize gene 
expression changes. Color key indicates log2 fold change. Up-regulated genes appear in red, and down-regulated genes appear in green.  
(B) Genes in the Measles pathway show a concordant up-regulation in T2DM. Pathview is used to visualize gene expression changes. Color 
key indicates log2 fold change. Up-regulated genes appear in red, and down-regulated genes appear in green.
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of T2DM remain unclear. Here we showed that three 
KEGG immune-related pathways including chemokine 
signaling pathway (hsa04062), toll-like receptor 
signaling pathway (hsa04620), and cytokine-cytokine 
receptor interaction (hsa04060) were significantly 
up-regulated in the skin of T2DM patients (Table 1). 
Notably, among significantly up-regulated DE genes 
in immune response pathways, chemokines including 
CCL20, CXCL9, CXCL10, CXCL11, CXCL13, and 
CCL18 (Table 1 and Supplementary Table 2) have been 
suggested to induce leukocyte chemotaxis and activation 
[16]. Specifically, chemokines CXCL9, CXCL10, and 
CXCL11 were involved in the T cell recruitment and 
infiltration in inflammatory skin diseases [17]. Our 
expression profiles indicated that JAK/STAT molecules 
including JAK3, STAT1, and STAT2 were up-regulated 
in the skin of T2DM (Table 1 and Supplementary Table 
2). The JAK/STAT signaling pathway is associated with 
cellular functions such as proliferation, differentiation, 
and migration [18]. Importantly, the JAK-STAT pathway 
has been shown to dysregulate the immune response in 
the chronic inflammatory skin disorders [19]. Moreover, 
tumor necrosis factor superfamily members including 
TNFSF10 and TNFSF15, which play essential roles in 
stimulating T and B lymphocytes [20], were up-regulated 
in T2DM (Table 1 and Supplementary Table 2). Increased 
expression of chemokines, JAK/STAT molecules, and 
TNFSF genes indicates inflammatory dysregulation 
of leukocytes in the skin of T2DM. Altered expression 
of immune-related genes may underlie the greater 
susceptibility of T2DM for developing infectious 
diseases.

A number of studies have shown that patients with 
T2DM are associated with a higher risk of infectious 
diseases [21–24]. About fifty percent of the diabetic 
patients involved in Shah’s study had at least one 
hospitalization or physician claim for infection in each 
cohort year [23]. Another prospective cohort study in 
Australia showed that the risk of hospitalization for 
an infectious disease increased more than two-fold in 
diabetic patients [22]. Furthermore, infection-related 
mortality has been shown to be higher in patients with 
diabetes [24]. Although the hyperglycemic environment 
is suggested to cause immune dysfunction that increases 
the risk for diabetic patients acquiring infectious diseases, 
the molecular mechanisms underlying the relationship 
between glycaemia and infections are still poorly 
understood [25]. We identified three infectious disease 
pathways that were significantly enriched among up-
regulated DE genes (Table 1). Notably, three genes, 
OAS1, OAS2, and OAS3 of the 2'-5'-oligoadenylate 
synthetase family, were significantly up-regulated in 
T2DM and presented in all of these infectious disease 
pathways (Table 1 and Supplementary Table 2). The 
2'-5'-oligoadenylate synthetase and its downstream 
effector enzyme RNase L are known to be involved in the 
host defense mechanisms against viral infection [26]. The 
activity of 2'-5'-oligoadenylate synthetase was found to be 
persistently activated in type 1 diabetes [27]. Moreover, 
another antiviral gene, IFIH1 (interferon induced with 
helicase C domain 1), was significantly up-regulated in 
patients with T2DM and involved in all infectious disease 
pathways (Table 1 and Supplementary Table 2). IFIH1 is a 
member of the RIG-I-like receptor (RLR) family involved 

Table 1. Significantly enriched pathways on upregulated DE genes (FDR < 0.2) in T2DM

ID Description P-value q-value Gene ID Count

Immune System

hsa04062 Chemokine 
signaling pathway

1.15E-07 1.40E-05 STAT1/CCL20/CXCL9/CXCL10/
CXCL11/CXCL13/ADCY1/LYN/
STAT2/CCL18/JAK3

11

hsa04620 Toll-like receptor 
signaling pathway

1.41E-04 4.26E-03 CTSK/STAT1/CXCL9/CXCL10/
CXCL11/SPP1

6

hsa04060 Cytokine-
cytokine receptor 
interaction

8.06E-04 1.63E-02 CCL20/TNFSF10/CXCL9/
CXCL10/CXCL11/CXCL13/
TNFSF15/CCL18

8

Infection

hsa05164 Influenza A 5.98E-06 3.00E-04 RSAD2/IFIH1/STAT1/TNFSF10/
CXCL10/STAT2/OAS1/OAS3/
OAS2

9

hsa05162 Measles 7.44E-06 3.00E-04 IFIH1/STAT1/TNFSF10/STAT2/
OAS1/OAS3/OAS2/JAK3

8

hsa05168 Herpes simplex 
infection

4.80E-04 1.16E-02 IFIH1/STAT1/SP100/STAT2/
OAS1/OAS3/OAS2

7
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in the recognition of viral RNA and mediates the virus-
induced innate immune response [28]. It has been shown 
that rare variant or reduced expression of IFIH1 protects 
against type 1 diabetes [29, 30]. However, the influences 
of these antiviral genes in T2DM are not clear. Excessive 
expression of OAS family genes and IFIH1 may limit the 
magnitude of the response to viruses in the skin of T2DM, 
leading to a higher risk of viral infection.

Importantly, we observed the similar immune 
activation in response to infections in the human skeletal 
muscle of T2DM [10]. Three infectious disease pathways, 
Influenza A (hsa05164), Measles (hsa05162) and Herpes 
simplex infection (hsa05168), were significantly up-
regulated in both muscle and skin of type 2 diabetic 
patients. In addition, 152 DE genes in the skin (FDR < 
0.2), which are also expressed in the muscle, showed a 
consistent T2DM-associated expression changes between 
the muscle and skin (Supplementary Figure 1). These 
results indicated the burden of infection in both human 
skin and muscle of T2DM, and are consistent with high 
rates of skin and soft-tissue infections observed in patients 
with type 2 diabetes [21].

Although no pathways were significantly enriched 
among down-regulated genes, Cell Adhesion Molecules 
(CAMs) pathway was placed at the top of all down-
regulated pathways from overrepresentation tests (q-
value = 0.417). CAMs are cell surface proteins involved 
in mediating leukocyte migration in the immune system 
[31]. Notably, the expression of NCAM1 was significantly 
down-regulated in the skin of T2DM (Supplementary 
Table 2). NCAM1 is expressed in NK cells and serves as 
a host protective component in the local innate immune 
response against viral infections [32]. Moreover, the 
expression of another cell adhesion molecule L1CAM was 
significantly down-regulated in T2DM (Supplementary 
Table 2). L1CAM is expressed on the surface of 
leukocytes and regulates the adhesion of leukocytes 
through L1 and L1/NCAM homophilic binding [33]. 
Decreased expression of cell adhesion molecules in T2DM 
may underlie a greater susceptibility to the development 
of infectious diseases. In addition, two collagen-related 
genes, PCOLCE2 and COL9A3 were significantly down-
regulated in T2DM, while COL22A1 was significantly up-
regulated (Supplementary Table 2). Altered expression of 
collagen-related genes may affect the physical integrity of 
the epidermis, leading to greater susceptibility of T2DM 
patients to infectious diseases.

In conclusion, our RNA-Seq analyses of the human 
skin from 74 T2DM cases and 148 matched controls 
revealed comprehensive molecular and network defects 
associated with T2DM. We acknowledge that gene 
expression studies in the human postmortem tissues alone 
do not allow establishing the causal relationship with 
the type 2 diabetes [33]. Nerveless, skin and soft tissue 
infections are prominent in T2DM patients with chronic 
hyperglycemia, and hyperglycemia has been shown to 

affect immune responses and increase susceptibility to 
infections in patients with T2DM [34]. Therefore, it is 
reasonable for us to hypothesize that the up-regulation of 
genes related to immune response and infectious disease 
pathways partly reflect the adaptive changes caused by 
the type 2 diabetic states such as hyperglycemia. Skin, as 
the most visible and largest organ of the integumentary 
system, can be considered as the first warning signal for 
T2DM and a good predictor marker for evaluating the 
therapy efficiency in patients with T2DM. This analytical 
study provides novel molecular targets for developing 
therapeutics in the prevention and management of 
T2DM-associated skin disorders. In addition, given the 
easy accessibility of skin, genes whose expression levels 
significantly changed in T2DM can be employed as 
potential diagnostic biomarkers for T2DM.

MATERIALS  AND METHODS

GTEx database

The GTEx database (v6, October 2015 release) 
contains 357 skin samples from lower leg with RNA-Seq 
transcriptome profiles. Detailed information on sample 
collection, RNA sequencing, and the data processing 
pipeline can be found in the GTEx Consortium paper [8]. 
We excluded cases with type 1 diabetes, unknown T2DM 
status, and races other than black or white, leaving 254 
non-diabetic samples and 74 T2DM cases. To reduce 
effects of cofounders in our statistical model, MatchIt 
(v2.4) in R was used to balance three covariates (age, 
gender, and race) between Non-DM controls and T2DM 
cases with “optimal” matching and 2:1 optimal ratio 
(Supplementary Table 1).

Identification of significantly differentially 
expressed genes in T2DM

Differentially expressed genes were identified as 
described previously [10]. Briefly, we used the “svaseq” 
function from the sva R package to identify hidden 
cofounding factors [13]. In addition to gender, 5 surrogate 
variables were added to the formula in DESeq2 [35]. The 
residuals for normalized read counts, after gender and 
surrogate variables correction, were tested against the 
“T2DM” status using the following negative binomial 
(NB) generalized linear regression model (GLM):

Kij ~ NB (μij, αj) (1)
μij = si qij (2)

g= b + b + b + =Â + eklog2 (qij) 0 j 1jT2DMi 2 jGENDERi kj1
5 SVki ij  (3)

Where Kij is the read count for gene j in sample i, 
fitted with a negative binomial distribution. αj is a gene-
specific dispersion parameter. μij represents fitted mean, 
containing a sample-specific size factor si and a covariate-
dependent part qij [35]. In Equation 3, β0 is the regression 
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intercept for gene j, εij is the error term. β1j, β2j, and γkj 
(k=1, …, 5) denote the regression coefficients of T2DM, 
gender, and kth surrogate variables for gene j respectively. 
The Wald test P-values were adjusted for multiple testing 
using the Benjamini-Hochberg (BH) algorithm. We 
defined significant DE genes at the level of FDR < 0.2.

To validate our results, we extracted the microarray-
based GTEx dataset from the skin of lower leg, which 
contains 12 subjects with T2DM and 46 Non-DM 
controls [36]. MatchIt (v2.4) in R was used to balance 
three covariates (age, gender, and race) with “optimal” 
matching and 2:1 optimal ratio, resulting 12 T2DM and 24 
Non-DM controls. For each gene signature, we performed 
differential expression analysis by using the limma R 
package [37]. Multiple testing P-values were adjusted 
using the BH method.

Detecting significantly enriched KEGG 
pathways in T2DM

We performed overrepresentation tests on significant 
DE genes (FDR < 0.2) in T2DM by using clusterProfiler 
(v3.0.2) in R [38]. The function “enrichKEGG” was 
used to test whether up- (n=122) or down-regulated 
(n=60) DE genes are significantly overrepresented in 
given pathways from Kyoto Encyclopedia of Genes and 
Genomes (KEGG PATHWAY database). q-values were 
reported for FDR control. For pathway-based analyses, we 
defined significant T2DM-associated biological functions 
at the level of q-value less than 0.05. Selected significant 
T2DM-associated pathways were visualized through the 
“pathview” R package [14].

Gene set enrichment analysis (GSEA) was 
performed by using clusterProfiler (v3.0.2) in R [38], 
which implements the algorithm developed by the Broad 
Institute [39]. Specifically, we constructed a pre-ranked 
gene list of all expressed genes ordered by log2 fold 
change from DESeq2 package. Enrichment score (ES) and 
significance level of ES (nominal P value) were calculated 
by 1000 phenotype-based permutation test. Pre-defined 
pathways from KEGG PATHWAY database with minimal 
gene size of 10 and maximal of 500 was used in GSEA. 
q-values were calculated for FDR control. Significant 
pathways with q-value less than 0.05 were reported 
(Supplementary Table 3).

Statistical analysis and dataset access

All statistical computing was performed in the R 
(v3.3, https://www.r-project.org/) and JMP (v12, SAS 
Institute). The GTEx dataset can be downloaded from 
dbGaP, study accession no. phs000424.v6.p1.
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