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ABSTRACT
Cancer cell lines (CCL) are important tools for cancer researchers world-wide. 

However, handling of cancer cell lines is error-prone, and critical errors such as 
misidentification and cross-contamination occur more often than acceptable. Based on 
the fact that CCL today very often are sequenced (partly or entirely) anyway as part of 
the studies performed, we developed Uniquorn, a computational method that reliably 
identifies CCL samples based on variant profiles derived from whole exome or whole 
genome sequencing. Notably, Uniquorn does neither require a particular sequencing 
technology nor downstream analysis pipeline but works robustly across different NGS 
platforms and analysis steps. We evaluated Uniquorn by comparing more than 1900 
CCL profiles from three large CCL libraries, embracing 1585 duplicates, against each 
other. In this setting, our method achieves a sensitivity of 97% and specificity of 
99%. Errors are strongly associated to low quality mutation profiles. The R-package 
Uniquorn is freely available as Bioconductor-package.

INTRODUCTION

Cancer Cell Lines (CCLs) are an essential tool for 
cancer research world-wide [1]. CCLs help to uncover 
cancer etiology and to study the mode-of-action of 
anticancer drugs. They are indispensable for functional 
investigation of proteins and pathways with much 
reduced ethical and legal issues compared to patient-
derived tumor samples [1, 2]. However, CCLs are 
susceptible to misidentification and cross-contamination 
[1–8]; estimates regarding the extend of such problems 
in published scientific results range from 18% to 36% [9, 
10]. A prominent example is MDA-MB-435, which was 
originally derived from the M14 melanoma CCL, yet later 
misclassified as a mammary-tissue CCL [11]. This error had 
wide-ranging, negative consequences because a number of 
research results were attributed to the wrong tissue-type. 
Since no universally accepted nomenclature system for 
CCLs exists [1, 8], researchers keep on inventing names 
of little discriminative power. For example, the CCL TT is 
a distinctively different CCL than T.T, but the similarity of 
both names makes mixing them up very easy. Meanwhile, 

high-impact journals require explicit verification of CCL 
integrity with respect to identity and absence of cross-
contamination prior to publishing related research-results 
[1]. Overall, CCL sample-identification has become an 
integral part of CCL-based research.

The usual way of establishing the identity of a CCL 
sample under study (from now on called query sample 
q) is to compare it to CCLs whose identity is known 
(from now on called R, a library of reference samples) 
by experimentally comparing certain cell line specific 
features [1, 3, 5, 6, 8]. Established identification methods 
differ in the characteristic genomic entity that is compared 
between q and the samples in R. While Short Tandem-
Repeat analysis (STR) compares counts of tandem-
repeats [6], the Single-Nucleotide-Polymorphism Panel 
Identification Assay (SPIA) compares the zygosities 
of distinct diploid single-nucleotide polymorphisms 
(SNPs) [4]. Both methods require additional and costly 
experiments which do not contribute to the scientific goal 
of the original study. Furthermore, in all available methods 
the genotyping-technology – including the subsequently 
used software – applied to analyze the query q and to 
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analyze the references R must be identical for achieving 
the expected accuracy. This implies access to the physical 
samples, which is difficult in large projects with numerous 
partners where often only information on samples or data 
generated from these is exchanged, but not the samples 
themselves.

At the same time, modern CCL-based research is 
increasingly based on high-throughput next generation 
sequencing (NGS [3, 12–14]). All major CCL sequencing 
project such as CCLE [2], CellMiner project [15], or 
COSMIC CLP [16], made extensive NGS-based data 
for characterizing their CCLs publicly available. It is a 
natural idea to use these profiles for identifying the origin 
of a given query sample within such a reference library 
(or within multiple libraries). However, typical NGS 
procedures do not extract the kind of genetic information 
necessary for STR or SPIA-based identification, as 
both methods require homogeneous and locus-specific 
genotype data, but these loci are often omitted from 
sequencing or filtered afterwards because they are assumed 
to be unrelated to the cancer itself. Furthermore, major 
chromosomal deletions, e.g. the common phenomenon of 
losing the Y-chromosome [17], can render usage of pre-
defined genotypes impossible.

Thus, the information required for identification 
is not readily available. Even if it was, the effectiveness 
of STR and SPIA on lab- and project-specific NGS data 
sets were unclear. Both methods were evaluated only with 
homogeneous NGS profiles, i.e., references and query 
samples were sequenced using the same technologies, 
algorithms, and filtering methods; on top, these procedures 
require that the ploidy of the reference samples R matches 
the ploidy of the query sample q. Such a scenario of 
homogeneous, easily comparable NGS data sets is quite 
different from that typically found today, where different 
labs use different technologies, leading to heterogeneous 
NGS profiles. For instance, Hudson et al. compared the 
small missense variant calls accompanying identical 
CCLs (as defined by the creators of the reference libraries) 
between CCLE and COSMIC CLP and found them 
coinciding at only 43% [18]. A prominent case depicturing 
the extend of data-heterogeneity is the ISHIKAWA-
HERAKLION-02ER CCL which has been DNA-genotyped 
by the Broad institute, finding 213 missense mutations, 
and the Sanger institute, which reported 52 pair-wise 
different missense mutations [18]. Causes for the data 
heterogeneity between large-scale sequencing projects 
are complex and include technical and design aspects. 
For example, sequencing of sub-clonal and aneuploid 
cancer-cell cultures may cause heterogeneous sequencing 
results [19]. Furthermore, studies differ in their aims and 
priorities, leading to different choices of algorithmic 
parameters and workflow designs which in turn can cause 
differing genotyping results even for the same CCLs [20].

Here, we present Uniquorn, a novel in silico 
approach for the robust and fast identification of CCLs 

within reference libraries based on their variant profiles. 
Uniquorn uses only NGS data and is based on the 
assumption that already today, most experiments on CCLs 
involve extensive sequencing. The algorithm is designed 
to compare variant profiles derived from a wide range 
of sequencing technology, quality, depth, and scope to 
make it useful for large and distributed research projects. 
Uniquorn was developed to addresses cases where neither 
STR nor SPIA can be applied, as both obligatorily require 
reliable SNP-calls and STR-profiles at specific loci for 
identification. Technically, Uniquorn is based on the 
computation of confidence-scores for the pairwise identity 
of the query sample to any sample from a reference library 
R, taking into account the prevalence of each variant in the 
library and a statistical assessment of the observed number 
of common variants. 

We evaluated our algorithm on three high-profile 
CCL data sets with altogether 1988 reference samples, 
namely COSMIC CLP (1024), CCLE (904) and NCI-
60 CellMiner (60). NGS profiles between these libraries 
are highly heterogeneous, because different laboratories 
created the data using different technologies and software 
and even covering partly different genomic regions 
[18]. SNP-based identification using the available data 
is impractical, as in two out of these three sets all SNPs 
were filtered to facilitate identification of driver mutations. 
Furthermore, neither of these data sets contains information 
on STRs. In such a rather difficult setting, Uniquorn 
achieves a sensitivity of 97% at a specificity of 99%. We 
also show that several pairs of cell lines which our method 
identifies as identical although they have different names 
indeed should be considered identical considering their 
extremely similar mutational profiles, and identify several 
candidates for cross-contamination of cell lines. Finally, 
we confirm a very low probability of random false positive 
hits by comparing all reference libraries’ CCLs with 1024 
genomes of the 1000 genomes projects [21].

RESULTS

Weighting of small genomic variants 

The Uniquorn method identifies a query CCL by 
comparing its variant profile to that of all CCLs in a given 
set of reference libraries, see Figure 1. To this end, each 
variant in a reference library is weighted according to its 
inverse frequency. Only rare variants are used further. To 
assess the impact of different thresholds for this weight, 
we studied the distribution of variant counts in each of the 
three libraries (Figure 2A). As can be seen in Figure 2B, 
more than 50% of variants are unique within their library 
(weight 2 or higher), which means that even a very 
stringent threshold of 1.0 would filter out less than half 
of all variants. In Figure 2C, we show the distribution of 
the number of variants per CCL using different weight 
thresholds. When using only unique variants, CCLs from 
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Figure 1: Uniquorn workflow. CCLs from a reference library are compared to a given query sample q based on their set of small 
variants (variant profile). Variants are weighted according to their prevalence within the library (e.g. CCLE) and frequent variants are 
excluded afterwards. Subsequently, Uniquorn computes a confidence score quantifying the likelihood for each reference sample r being 
identical to q. Significantly different amounts of variants in q and r affect the statistical test that assesses whether q and r are similar. 
Therefore, a regularization step calculates the minimal amount of matching variants required to predict that q and r are related.

Figure 2: Distribution of CCL variant frequencies and weights across libraries. (A) Number of “rare” variants in CCLs 
according to Uniquorn’s weighting scheme. ‘All‘ shows the log-amount of variants per CCL without any filtering (weight 0.0) and ‘Unique 
shows the amount of variants that remain after all variants were filtered that were present in more than a single CCL (weight 1.0). Differences 
between software, technologies and filters (non-exhaustive) i.e. heterogeneous data-processing leads to different amounts of filtered, non-
unique mutations as shown by the significantly different reduction of variants between the CellMiner (medium), COSMIC CLP (low) and 
CCLE panel (strong), see Table 3 for the sources of heterogeneity. It is shown, that all panels possess unique, i.e. ‘rare’ variants on which 
the Uniquorn identification method is based. (B) Distribution of weights per library. At least 50% of variants are high-weight (rare) variants. 
CCLE shows significantly less unique variants than COSMIC CLP and CellMiner, which explains the strong difference between raw and 
filtered variants in Figure A. (C) Number of variants per reference sample for different weight thresholds in the different reference libraries. 
CCLs from COSMIC CLP show a high amount of unique variants on average, especially when compared to those from CCLE.
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CCLE library have on average 153 variants in their profile 
(COSMIC: 744; CellMiner: 1139).

Cross-Validation benchmark

We benchmarked the accuracy of Uniquorn 
using three large CCL libraries, namely COSMIC CLP, 
CCLE and CellMiner, which together embrace 1988 
CCLs. We manually identified duplicates in this set 
and tested how reliably Uniquorn would detect them. 
To this end, each of the 1988 CCL samples was once 
utilized as query-sample and all three libraries as 
references. Since Uniquorn compares a single query-
sample to all reference-samples, 1988 * 1988 ≈4E6 
comparisons occurred during the cross-validation 
benchmark. Uniquorn predicted for each of the query-
reference-pairs whether they were derived from the 
same cell line or not. Relative to the ~4E6 comparisons 
the amount of 3573 possible true positive identifications 
(1585 duplicates and 1988 self-identifications) is small 
which is why the positive-predictive value (PPV) is a 
particularly important evaluation measure. Results are 
shown in Table 1. The benchmark results show a very 
high specificity (at least 99%) across a range of weight 
thresholds, which can be explained by the extremely 
large number of true negatives. The more important 
metric is sensitivity, which is also very high for 
thresholds 0.5 and 0.25, correctly identifying 3474 and 
3461 of the 3573 identical or related CCLs, respectively. 
Limiting the comparison to unique variants (weight 
threshold 1.0) yields the best PPV and lowest false 
positive rate (FPR), but lower weights of 0.5 and 0.25 
result in higher sensitivity. Quantitative regularization 
slightly reduces identification efficiency, but supresses 
many false positive predictions. Figure 3 shows more 
detailed performance characteristics.

Out-group benchmark

The previous evaluation measured the performance 
of Uniquorn when searching a CCL of a reference library 
within the set of reference libraries. We also tested how 
the method performs when it has to deal with profiles 
that are not derived from CCLs. Specifically, we used 
1024 profiles from the 1000 genomes data set [21] as 
query samples and tested whether Uniquorn would 
assign them to a reference CCL – any such assignment 
certainly would be an error. Note that these comparisons 
work on very heterogeneous sequencing technologies, 
namely WGS-sequenced profiles (1000 genomes) 
with much smaller hybrid/exome-sequenced profiles 
(reference libraries). This implies large differences in 
terms of common polymorphisms (contained in 1000 
genomes profiles, filtered in the references) and in the 
sheer number of variations (on average, a 1000 genomes 
profile consists of ~5E7 variations per sample compared 

to ~5E2 variations in the reference profiles). Using a 
weight threshold of 1.0 and regularization to cater for 
this difference, Uniquorn did not produce a single false 
positive prediction. These comparisons highlight the 
importance of our regularization step; omitting this filter, 
the comparison would produce 167 FP predictions for the 
~2E6 comparisons.

Based on this and the previous experiments, 
Uniquorn’s default confidence-score threshold is set 
to 10 [~ -log2(0.001)]. By default, the regularization 
filter automatically measures the strength of the 
background-noise and adjusts the required amount 
of matching mutations accordingly. However, users 
can set both thresholds manually to adapt to different 
reference libraries or to change the balance between false 
prediction rates and sensitivity (see Figure 4 for ROC 
analysis). 

Comparison to established methods

Uniquorn compares favourably to other methods 
for the identification of CCLs in terms of the amount 
of data and experimental work necessary (see Table 2). 
In first place, it is similar to established methods 
e.g. SPIA and Tandem-Repeat-Counting in that it is 
comparison-based. Uniquorn, however, is different to 
the aforementioned methods due to its focus on in silico 
identification of CCLs based on variant profiles obtained 
from different high-throughput sequencing technologies. 
Unlike SNP-based methods, Uniquorn does not depend 
on common, well characterized and publicly available 
genomic entities, but instead relies predominantly on 
rare somatic mutations, as SNP-based comparisons 
have severe drawbacks when applied in cancer research. 
First, SNPs with a minor allele frequency of > = 5% are 
frequently filtered from data sets (to focus on driver-
mutations, e.g. by CCLE) and thus cannot be assumed 
to be generally available for CCL identification. Second, 
the loci of the most characteristic SNPs often are not 
genotyped during exome sequencing, and even less often 
so in panel sequencing. Moreover, cancer is frequently 
associated with large structural variants, often removing 
important loci, and with polyploid chromosomes whose 
variant calls cannot be directly compared to diploid 
references. Uniquorn was designed to robustly deal with 
such problems.

We also compared identification results of Uniquorn 
and the SNP-based method by Demichelis et al. [4] 
quantitatively. 130 of the 155 CCLs used by Demichelis 
and colleagues are present in the Uniquorn benchmark set. 
These 130 CCLs have 265 different representations in our 
data set because many are present in different CCL reference 
libraries. Uniquorn identified 100% of these 265 CCLs at an 
inclusion weight of 0.5 (see Supplementary Material File 3). 
Thus, Uniquorn showed an equal performance compared to 
the established SNP-based identification methods.
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DISCUSSION

Analysis of Mis-classifications

Analysis of the 22 false positive (FP) predictions 
from Table 1 (weight 1.0) revealed that all FP-predictions 
were caused by a set of only 13 CCLs. These CCLs have 
in common that their profiles are very small; they have a 
mean size of 366 (sd = 4E3) variants, while the profile sizes 
of CCLs that were never predicted as FP have a mean size 
of 3768 (sd = 8E2) variants (p = 0.006). 20 of these 22 FPs 
occurred with a query sample identifying a reference from a 
library which does not contain the query, which means that 

they would not occur if a lab can safely exclude a reference 
library from considerations. The most problematic CCL 
regarding FP is HCC-2998, which is contained in CellMiner 
and COSMIC CLP. Accordingly, it was used twice as query, 
and produced five FP in total (3 FPs when used as query and 
2 FPs when used as reference). When used as query, HCC-
2998 correctly identified itself in CellMiner and COSMIC 
CLP with high confidence. However, it was also predicted 
to be similar to three CCLs from CCLE (JHUEM-7, SNU-
81, HEC-251). These false predictions all had very low 
confidence scores, sharply above the threshold, and can 
be explained by to the stronger influence of randomly 
matching variants within small profiles.

Table 1: Results of cross validation for different weight thresholds (columns 2 to 5)
Weight Threshold 1.0 0.5 0.25 0.0
Maximally possible TPs 3573

True positives
3027 3474 3461 3111

(3372) (3521) (3528) (3485)

False negatives
546 99 112 462

(201) (52) (45) (88)

False positives
22 37 59 4631

(18) (94) (155) (7689)

Sensitivity %
85 97 97 87

(94) (99) (99) (98)
Specificity % 99

F1 %
91 98 98 55

(97) (98) (97) (47)

Positive predictive value %
99 99 98 40

(99) (97) (96) (31)

A higher threshold enforces utilization of more specific variants but reduces the amount of considered variants. Depending 
on the threshold (0.0, 0.25, 0.5 1.0), between 3027 and 3474 of the 3573 true relationships between CCLs are successfully 
recovered. Numbers in brackets show results when the to-be-expected amount of matching variants is set manually to 10 
variants; numbers without brackets show statistically estimated background-noise strength (regularized, see methods).

Table 2: Properties of Uniquorn compared to established methods for identification of CCLs
Identification 

Method for NGS 
CCLs

Physical sample 
required

Additional
experiments 

required

Locus coverage 
required

Zygosity-
pattern required

Dependent on 
reference genome

STR (19) X X - - -
SPIA (6) X X X X -
NGS SNP (4) - - X X X
NGS All Variants 
(Uniquorn) - - - - X

SPIA and STR require additional verification experiments on the physical CCL sample. Identification of CCLs by matching their 
SNP-zygosities directly from the NGS-data requires that the loci of the characteristic SNPs were sequenced and not filtered. For 
SPIA and NGS-SNP, zygosity calls have to be comparable (technology, ploidy, algorithms, etc.). Uniquorn only requires using 
the same reference genome for variation calling. Note that CCL samples created with a specific reference genome versions can 
be converted into another version, e.g. by a lift-over software, thereby decreasing the severity of this limitation.
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Three factors have been found to be associated with 
false negative (FN) predictions: About 100 of the 546 
FN-predictions for weight 1.0 occurred between query-
reference pairs that were defined as identical by the gold-
standard due to either cross-contamination (e.g. ACCS 
and T24 [7]) or an origin within the same human being 
but not the same cancer-tissue (e.g. AU-565 and SKBR-3 
[22]). Secondly, FN predictions are enriched in CCLs with 
small profiles. CCLs that failed at least once to identify 
a related query have on average 345 (sd = 2E2) variants, 
while CCLs that always identified their counterparts 
successfully have on average 528 (sd = 1E3) variants (p = 
1E-8). Thirdly, CCLs that are highly similar to another CCL 
within the same library generally perform poorly because 
in those cases the amount of rare variants is insufficient. 
For instance, HEL and its closely related sub-clone HEL 
92.1.7 [23] both failed to identify themselves because they 
are so similar that none of their variants is unique within 
the library. This effect can be diminished by appropriate 
adjustment of the weighting scheme, as can be seen by 
a FN-reduction of 82% from weight 1.0 to weight 0.5. 
However, these cases are rare within our evaluation data: 

As shown in Figure 2, unique variants are present in 1986 
out of 1988 CCLs (99.9%).

CCL-identification based on generic  
‘omics-sequencing data

Every NGS technology that allows calling of small 
genomic variants could, in principle, be utilized to identify 
CCLs based on the Uniquorn method. We believe that 
bulk-RNA-seq should be utilizable without conceptual 
changes, although we did not yet test our algorithm with 
such data. Panel-seq will at least require the re-adjustment 
and optimization of thresholds to compensate for the 
relatively low number of variants. Furthermore, since 
fewer matching entities may already indicate that two 
CCLs are similar, the statistical tests for matches occurring 
just be chance might have to be strengthened. Usage of 
single cell technologies would require adjustments to 
compensate for higher impact of random events (noise). 
Less similar NGS technologies, such as methylation, Chip-
seq or Atac-seq, probably would require more profound 
changes to our method.

Figure 3: Results of the cross-identification benchmark depending on regularization and variant inclusion weight.  
(A) Number of false positives. (B) Number of false negatives. (C) Number of false positives. (D) Number of true negatives. (E) Sensitivity.  
(F) F1-Score (harmonic mean of specificity and sensitivity). (G) Specificity. (H) Positive Predictive Value. Best specificity and sensitivity 
values are achieved using a weight threshold of 0.5. A threshold of 1.0 achieves the least false positives, most true negatives, and the highest 
positive predictive value.
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MATERIALS AND METHODS

Reference libraries

Uniquorn compares NGS data of a given query 
sample q with that of samples r from a given CLL library 
R. Currently, three large libraries are integrated into the 
package: (1) COSMIC CLP, obtained January 13th 2016 
from http://cancer.sanger.ac.uk/cell_lines (2) CCLE, obtained 
January 13th 2016 from http://www.broadinstitute.org/ccle 
and (3) CellMiner, obtained January 13th 2016 from http://
discover.nci.nih.gov/cellminer. All data sets are based on the 
same reference genome HG19/ GrCH37. Variant profiles and 
CL-names were directly parsed from the files provided. Note 
that the Uniquorn package also features an API for adding 
novel, possibly in-house-created, reference libraries.

Table 3 shows most important characteristics of the 
three libraries. COSMIC CLP is the largest data set with 
1024 whole-exome genotyped CLs from 30 tissues. CCLE 
contains 904 hybrid-capture genotyped CLs from more 
than 36 tissues. The CellMiner project comprises whole-
exome genotype data of the NCI-60 panel from 9 tissues.

Confidence scoring

Uniquorn represents each sample (query or 
reference) by its variant profile, which is defined as the 
sequence of substitutions or small insertions and deletions 
compared to the reference genome. Each variant is 
encoded by its start position and its length. The scoring 
of query and reference samples is library-specific, i.e., 
the score obtained from the comparison of query q with a 
sample r from reference library R assesses the likelihood 
that q is identical to r independently of all other libraries. 
This reflects the fact that in a typical setting the set of 
potential contaminators, i.e. all samples from which q 
could have been derived in principle, is known.

When comparing query q to a reference sample 
r, Uniquorn estimates the likelihood that their profiles 
stem from the same cell line. Developing a complete 
model for assessing this likelihood would require exact 
knowledge about the ways how the profiles of q and r 
were obtained, i.e., the error rates and distributions of 
the sequencing technologies applied and of the entire 
variant calling procedures. Since such detailed data 

Figure 4: Receiver-Operator-Curves (ROC) of the cross-identification benchmark for different weight thresholds. 
Thresholds 0.5 and 0.25 reached the maximal sensitivity (see also Table 1). The embedded plot shows the same ROC plot with an adjusted 
FPR-axis range to visualize the ROC curve of inclusion weight 0.0. The vertical black line shows the Uniquorn default threshold (confidence 
score of 10). The threshold was chosen as optimal cutoff between sensitivity and specificity.
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is not available for most techniques, we developed a 
simple yet highly effective heuristic for quantifying 
the likelihood of identity using only variant profiles 
(see Figure 1). The algorithm first weights all variants 
found in R according to their frequency. In a second 
step, it discards variants whose weight is below a given 
threshold. Next, Uniquorn computes the overlap in 
remaining variants in q and each r and derives a multiple 
testing corrected p-value for the likelihood that these sets 
stem from the same cell line. This likelihood is based on 
the assumption that the profiles of q and r have the same 
sequencing scope (panel, whole exome, whole genome), 
although the sequencing technology used might have 
been different. For the case that different sequencing 
scopes were applied for q and r, which will result in a 
strong difference between the numbers of variants found, 
we compute a second threshold taking into account the 
spread of randomly matching variants between q and 
all r. Each of these steps is explained in detail in the 
following paragraphs.
(1) Variant weighting 

As preparatory step, each variant v found in any 
sample of the given reference library R is weighted 
according to its frequency fv using:

)1(2)( −−= vfvw
Variant weights are library-dependent, i.e., the same 

variants will receive different weights in different libraries 
to reflect the inherent divergence of sequencing technologies 
and algorithms. Uniquorn identifies samples by their 
characteristic variants, i.e., variants with a high weight. The 
default threshold is 0.5, i.e. the further scoring considers only 
variants occurring maximally two times in one respective 
reference library R. Other thresholds can be chosen as well, 
depending on the desired trade-off between sensitivity and 
false positive rate (see Table 1 and Discussion).
(2) Confidence score calculation

After filtering non-characteristic variants, q is 
compared to all reference samples from R to obtain a pair-
wise confidence score. To this end, we model CCL profiles 
as a set of variants drawn at random from the set of all 

variants in R and assess the probability of the overlap of 
variants in q and in each r using an overrepresentation test. 
Let T be the number of variants in R, N be the number 
of variants in r, n the subset of these also found in q, and 
k = N-n the number of variants in r not found in q. Then, 
the probability of a given variant in r to also occur in q 
is pr = N/T. Accordingly, the likelihood to miss exactly k 
variants from r in q is 

( )
N ! (1 )
k ! !

k k N k k N k
r r r r r

ND q p p p
k N k

− − 
= = −  − 

Following [24], we next compute a p-value ˆ rp  by 
summing up the probabilities to miss up to k variants.

ˆ
N

k
r r

N n k

p D
− =

= ∑
ˆ rp is the probability to commit a statistical error of 

type one when rejecting the null-hypothesis H0, which 
here states that the k variants missing in q with respect 
to r are missing because r and q are different CCLs. 
The p-values are corrected for multiple testing with the 
Benjamini-Hochberger method [25]. We use the negative 
logarithm of the corrected value as the confidence cr that 
q and r represent the same cell line. We put a threshold on 
this score which is determined empirically by balancing 
sensitivity and specificity in our test data (see the ROC-
curve in Figure 4).
(3) Quantitative regularization

The confidence score derived above is based on 
the model that q’s and r’s variant profiles were both 
created by randomly drawing n variants from R. This 
implies that both profiles are of roughly the same size, a 
valid assumption when both profiles were obtained using 
the same sequencing scope. However, if the number of 
variants in q is much different from the average number of 
variants in samples from R, this assumption is most likely 
wrong. This occurs, for instance, if samples in R were 
panel-sequenced while q was whole-genome sequenced, 
or if both were whole-genome sequenced, yet all known 
SNPs were filtered from the profiles in R. In such cases, 

Table 3: Characteristics of the three CL reference library used in this work
Reference 
Library

Total number 
of variants

Cancer 
Cell Lines

Ø Variants  
per CL

Number of 
genes covered

Variant calling 
software

SNP MAF 
filtering

COSMIC 
CLP 760E5 1024 7,4E5 20965

Caveman(13) > 0.0
Pindel (14) (all)*

CCLE 140E5 904 1,5E5 1651 MuTect (15) > = 0.05
CellMiner 0,68E5 60 0,01E5 > 20 k GATK (16) None

The absolute and the average number of variants differ by orders of magnitude since different technologies and algorithms 
were utilized for sequencing and variant calling. Moreover, the number of genes covered varies strongly. SNPs – required 
for SNP-based identification - have been mostly or completely excluded in two of the three sets. For the COSMIC CLP, two 
different methods were used to call small variants and indels.
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our confidence will be either overly optimistic (large 
variant overlap due to a much larger profile of q) or 
overly pessimistic (low variant profile due to a much 
smaller profile of q). For correcting for such cases, 
we model the estimated number of additional variants 
between q and any r through a spuriousness variable 
sp, sp ε [0,..,1]. is estimated by the integral of the beta 
function with parameters smax and smean, where smax is 
the maximal number of shared variants between q and 
any sample from r, and smean is the mean of the number 
of these matches. The beta function has been found to 
suitably estimate the expected number of additional 
variants in that it is governed (1) by the relative 
number of matches and (2) by the absolute size of its 
input-parameters and (3) by its boundedness to [0,..,1]. 
Thereafter, a threshold Mmin on the acceptable amount of 
observed unmatched variants is calculated as

*
(1 )

mean max
min

S S SPM
SP

+
=

−

If the confidence score threshold and the Mmin threshold 
are met, the variant profile of a reference CCL r is predicted 
to stem from the same cell line as the profile of q. Note that 
this implies that multiple cell lines from the same reference 
library might be predicted to be identical to q. We find this 
strategy to have advantages over the option to simply return 
the best matching reference sample, as we thus (1) do not have 
to assume a reference library to be duplicate-free, and (b) may 
also report that none of the reference cell lines to be identical.

Evaluation

We benchmarked Uniquorn using all 1988 CCLs from 
the three data sets described above (see Table 1) as query 
sample against each of the three reference libraries; thus, we 
performed 1988*1988 ~ 4E6 comparisons in total. A true 
positive identification was counted when Uniquorn predicted 
that a query was identical to a reference CCLs in accordance 
with a gold standard (see below); analogously for true 
negatives. A false positive was counted when Uniquorn 
predicted query and reference CCL to be identical but not 
the gold standard. False negatives were cases were query 
and reference CCLs were assessed as not being identical by 
our algorithm but identified as such in the gold standard. 

Note that the maximal number of true positives 
(TP) per query in this evaluation scheme depends on 
whether this CCL was present in only one or in more 
than one data sets (many such cases exist; see Figure 5). 
If a CCL exists only in a single reference library, only 
one TP can occur. If it is part of two libraries or has 
related identified CCLs within the same library, four TPs 
are possible, since each will be used as query and should 
identify both itself and the related sample; for CCL in all 
three libraries, maximally nine TPs can be found. Using 
our gold standard, a maximum of 3573 TPs is possible.

Gold standard set creation

The gold standard defines which pairs of CLs are 
considered identical within our evaluation. To create 
a gold standard we first defined all CCLs with the same 

Figure 5: Source of true positive CCL identifications based on gold standard. Total amount, percentage, and source of all 3573 
TPs for each of the 1988 CCL samples are shown. For instance, 1238 TPs are identified because copies of the same or highly similar CCLs 
are contained in COSMIC CLP and CCLE. Positive identification within a single circle are due to relatedness of CCLs within the same 
library and self-identifications. 43% of all possible true positive cross-identifications are due to CCL copies in different reference libraries. 
Percentages do not sum up to 100% due to rounding errors.
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regularized name as identical. CCL names were regularized 
by removing any non-alpha-decimal and capitalization of 
all remaining characters. In a second step, we manually 
confirmed or rejected the identity of all CCLs whose names 
only differed by a small prefix or suffix, such as MDA-
MB-435 and MDA-MB-435s. In a third step, we screened 
the literature for cases were CLs with same regularized 
name were reported as being different, e.g. TT and T.T, and 
adapted the gold standard accordingly for these cases. A list 
showing the CCLs that were defined as similar as a result 
of the literature screening can be found in Supplementary 
Material File 2. Note that pairs of identical CCL may be part 
of the same or of different reference libraries (See Figure 5).

After the evaluation, we furthermore checked all FP 
predictions to see if these are indeed FPs or errors in the 
gold standard (see Discussion); one such example is the pair 
SNB19 and U-251, which have completely different names 
but denote the biologically identical CCL [4]. The entire 
gold standard is available in Supplementary Material File 1.

Implementation and availability of data sets

The method was implemented in the freely available 
R-Bioconductor package Uniquorn. The benchmark 
libraries CCLE and COSMIC CLP can be freely obtained 
and used as Uniquorn reference libraries. The CellMiner 
Project library is included by default. Custom libraries can 
be created e.g. for identification of proprietary CCL samples.

CONCLUSIONS

Uniquorn is a novel in-silico method for helping to 
avoid confusion of cancer cell lines during lab processing. 
Specifically, it compares the mutation profile of a given 
query CCL to those of CCLs in reference libraries 
to identify all cell lines from these libraries that are 
genetically suspiciously similar to the query. Compared 
to existing methods for CCL identification, Uniquorn 
works across a range of sequencing techniques and can 
also be applied after SNP filtering; furthermore, assuming 
the CCL today are anyway sequenced in most projects, 
it does not require any additional experimentation. The 
software is freely available and can easily be adapted 
to specific reference libraries or specific requirements 
regarding specificity and sensitivity of the results. 
Uniquorn has been benchmarked by cross-identifying 
1988 CCL samples from three different providers, using 
different sequencing technologies. A sensitivity of up to 
97% and specificity of 99% has been achieved. In future 
work, we plan to adapt Uniquorn to also robustly identify 
profiles obtained from gene panel sequencing and RNA-
sequencing. 
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