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ABSTRACT
We demonstrate that model-based unsupervised learning can uniquely 

discriminate single-cell subpopulations by their gene expression distributions, which 
in turn allow us to identify specific genes for focused functional studies. This method 
was applied to MDA-MB-231 breast cancer cells treated with the antidiabetic drug 
metformin, which is being repurposed for treatment of triple-negative breast cancer. 
Unsupervised learning identified a cluster of metformin-treated cells characterized by 
a significant suppression of 230 genes (p-value < 2E-16). This analysis corroborates 
known studies of metformin action: a) pathway analysis indicated known mechanisms 
related to metformin action, including the citric acid (TCA) cycle, oxidative 
phosphorylation, and mitochondrial dysfunction (p-value < 1E-9); b) 70% of these 
230 genes were functionally implicated in metformin response; c) among remaining 
lesser functionally-studied genes for metformin-response was CDC42, down-regulated 
in breast cancer treated with metformin. However, CDC42’s mechanisms in metformin 
response remained unclear. Our functional studies showed that CDC42 was involved in 
metformin-induced inhibition of cell proliferation and cell migration mediated through 
an AMPK-independent mechanism. Our results points to 230 genes that might serve 
as metformin response signatures, which needs to be tested in patients treated with 
metformin and, further investigation of CDC42 and AMPK-independence’s role in 
metformin's anticancer mechanisms. 

INTRODUCTION

The emergence of high-throughput, single-cell 
RNA sequencing (scRNA-seq) has allowed investigators 
for the first time to determine levels of gene expression 
in hundreds of individual cells simultaneously [1]. In 
comparison to conventional RNA-seq, which provides an 

aggregate view of the cells in a tissue sample, scRNA-
seq can simultaneously measure the expression level 
of the entire genome in all of the individual cells of the 
sample, allowing the characterization of all cell types and 
states present [1]. In this work we utilized the benefits of 
scRNA-seq to gain insights into metformin’s molecular 
mechanisms in MDA-MB231 triple-negative breast cancer 

Research Paper



Oncotarget27200www.impactjournals.com/oncotarget

cells. Triple negative is the molecular subtype of breast 
cancer for which no highly effective targeted therapy 
currently exists [2]. Metformin is the most commonly used 
drug for reducing hyperglycemia in patients with type 2 
diabetes [3], but is being repurposed for the prevention 
and treatment of cancer.

Evidence from in vitro and retrospective studies 
[4] suggests that metformin inhibits the growth of triple-
negative breast cancer. Multiple mechanisms, including 
5′-adenosine monophosphate-activated protein kinase 
AMPK-dependent and AMPK-independent mechanisms, 
have been suggested for the metformin effect in cancer 
treatment [5, 6]. However, the therapeutic effect of 
metformin in the treatment and prevention of TNBC 
remains unclear [7, 8], and there are no pharmacogenomic 
biomarkers for selecting responsive patients. 

Our first preliminary analysis of homogenous 
MDA-MB-231 triple-negative breast cancer cells without 
metformin treatment demonstrated that distribution of gene 
expression in a cell was best described by a combination of 
distributions (mixtures). Next, we observed that metformin 
response is not uniform across all cells, because we found 
some cells whose distributions of gene expressions were 
altered differently. To further investigate this non-uniform 
response to metformin, we used mixture-model-based 
single-cell analysis (MiMoSA) [9], driven by mixture-
model-based unsupervised learning, to infer single-cell 
subpopulations (clusters of cells) based on differences 
in their distributions, which can be used to drive focused 
functional studies. We used unsupervised learning in this 
work because of the lack of prior knowledge on gene 
expression distribution that characterizes metformin’s 
response in triple-negative breast cancer.

To identify cells with altered gene expression 
distributions, MiMoSA inferred three clusters of cells, 
and in one of them, we observed a group of 230 genes 
that were significantly down-regulated (p-value < 0.0006) 
during metformin treatment which was sufficient to 
pursue with bioinformatics approaches such as pathway 
analysis. Several enriched metabolic pathways associated 
with metformin response such as the citric acid (TCA) 
cycle and respiratory electron transport, oxidative 
phosphorylation, mitochondrial dysfunction were also 
associated with 230 these genes. In the 230 genes on 
these mentioned pathways, nearly 70% of the genes had 
multiple functional evidence of anti-cancer mechanisms 
and offered little novelty in helping us understand 
metformin’s mechanisms in triple-negative breast cancer 
[10, 11]. Remaining genes with lesser functional evidence 
comprised 24 genes. Included among these 24 genes was 
CDC42. CDC42 is known for its effect on cell proliferation 
and cell migration. It has been shown to be involved in the 
metformin effect on neuroblastoma, and has been found to 
be significantly down-regulated in breast cancer patients 
treated with metformin [12, 13]. However, mechanisms 
by which CDC42 might influence metformin response in 

breast cancer remain unknown. Therefore, we performed 
functional characterization of CDC42 in the context of 
its role in metformin response in TNBC. Our functional 
studies found that CDC42 was involved in metformin-
induced inhibition of cell proliferation and cell migration 
mediated through an AMPK-independent mechanism, a 
novel mechanism for metformin’s anti-metastatic action. 

This work highlights the benefits of scRNA-seq 
and the ability of model-based unsupervised learning 
to identify biologically significant, yet subtle effects of 
metformin via the suppression of 230 genes in only 6 cells. 

RESULTS

Sequencing data characteristics 

Cells were treated with 1-mM metformin for 72 hours  
before RNA was isolated for single-cell sequencing. 
Duplicate assays were performed for baseline and post-
metformin treatment. Therefore, we sequenced 192 cells 
at baseline and 192 after metformin treatment, referred 
to subsequently as baseline cells and metformin-treated 
cells, respectively. After quality control was performed 
with MAP-RSeq [14], the initial analysis was conducted 
on normalized gene expression data. The sequencing data 
showed that 20% of the genes had a reads-per-kilobase-
per-million mapped reads (RPKM) measure greater than 
32 (a heuristic for an acceptable gene expression level to 
indicate that the gene is expressed [14]) in 80% or more 
of the cells. In the baseline and metformin-treated data 
sets, 20 and 18 out of 192 cells, respectively, had total 
gene counts under one million, as shown in Figure 1A, 
and were excluded from the study. The probability density 
function (PDF) of gene expression within each cell showed 
mixtures, as illustrated in Figure 1C. This observation was 
expected, since not all genes are expected to be uniformly 
expressed. In addition, the PDF of gene expression also 
had mixtures, as shown in Figure 1D. We observed that 
90% of the information in the PDF was contained in at 
least two mixtures of the genes. Further, 80% of the genes 
in both baseline and metformin-treated cells were not 
expressed in at least 90% of the cells. We chose to study 
the top fifth percentile of genes (1,170 genes) that were 
expressed in at least 90% of the cells and were also among 
those with the highest variance.

Baseline and metformin-treated cells

To spatially visualize the baseline and metformin-
treated cell populations, we combined the two cell 
populations and projected them onto the first two principal 
components (which accounted for 97% of the observed 
variability) from principal component analysis (PCA), 
as shown in Figure 1B. We observed that in both cell 
populations, a group of cells was predisposed to a different 
behavior (right half of the plot) and that metformin-treated 
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cells, in general, exhibited slightly different variability 
than did baseline cells (spatial separation between baseline 
and metformin-treated cells).

Clusters in baseline and metformin-treated cells

 For the baseline cells, MiMoSA identified two 
clusters, B1 and B2, which contained 158 and 20 cells, 
respectively. A visualization of these clusters along the 
first two principal components is shown in Figure 1E. 
We observed that the two clusters behaved similarly, with 
very little variation in their average expression levels for 
all genes except for those few that were differentially 
expressed between the two clusters. This observation 
indicated that the baseline cells were from a homogenous 
cell population.

For the metformin-treated cells, MiMoSA identified 
three clusters, M1, M2, and M3, which contained 160, 6, 
and 12 cells, respectively. The three clusters are shown 
projected along the first two principal components in 
Figure 1F. Clusters M1 and M3 behaved similarly with 
respect to average gene expression, with slightly higher 
expression levels in cluster M1. However, cluster M2 
was significantly different from clusters M1 and M3 
through its spatial separation from M1 and M3, as shown 
in Figure 1F. Using hierarchical clustering, we were able 
to obtain the same clusters in metformin-treated cells 
(Supplementary Section 1). 

Differentially expressed genes

We analyzed all five clusters together to determine 
specific patterns that might maximize the heterogeneity. 
We found that 230 genes (Supplementary Table 2) were 
expressed with RPKM greater than 32 in all clusters of 
both data sets (B1, B2, M1, and M3) except for cluster 
M2 in metformin-treated cells, in which these genes were 
completely suppressed. Figure 2A shows the complete 
down-regulation of these 230 genes in cluster M2 
compared with all other cells in clusters B1, B2, M1, and 
M3; the width of the shaded region of the plot is set to 
one standard deviation, and we see that the variation of 
gene expression for each of the 230 genes in these cells is 
very small (Figure 2A). To test the statistical significance 
of the expression values for these 230 genes in M2 in 
comparison with all other clusters, we performed a Mann-
Whitney U-test and Kolmogorov-Smirnov test (KS-test), 
where all expression values of these 230 genes in M2 
were compared with their expression values in all other 
clusters. The p-value of this observation for the 230 genes 
in M2 was 0.00552 (p-value of 0.00076 in the KS-test), 
making it statistically highly significant. Therefore, at the 
0.05 significance level, we rejected the null hypothesis 
and concluded that the expression levels of the 230 genes 
in M2 and in the other clusters belonged to different 
populations. No other combination of genes from cluster 

analysis showed such dramatic changes in gene expression 
across clusters. 

Pathway-network analysis

We performed network analysis with 230 genes that 
were observed to be down regulated in one metformin 
cluster (cluster M2) and upregulated in all other metformin 
and baseline clusters, as shown in Figure 2B. The 230 
gene network was enriched with 15 ribosomal proteins, 8 
adenosine triphosphate (ATP) synthases, H+ transporting, 
mitochondrial complex proteins, 6 cytochrome c oxidases, 
and 9 nicotinamide adenine dinucleotide (NADH) 
dehydrogenases. Pathway analysis of the 230 gene 
network consisted of several enriched metabolic pathways 
(FDR < 0.005), including the citric acid (TCA) cycle and 
respiratory electron transport, oxidative phosphorylation, 
mitochondrial dysfunction, and neurological disease 
pathways (listed in Supplementary Table 2). The majority 
of the genes (69%) listed in Supplementary Table 2 were 
associated with more than two pathways (as shown in 
Supplementary Table 1) and were supported by multiple 
literature evidences in the Reactome [15] and KEGG 
[16] databases. Since, our goal was to identify novel key 
regulators involved in regulation of metformin treatment 
in breast cancer, we selected 24 genes for further analysis, 
genes that are present in the list of significant pathways 
(bolded and highlighted in Supplementary Table 2), genes 
that have less experimental evidence showing gene-gene 
interactions, or genes for which the mechanisms involved 
transcription regulation are not well understood in the 
context of metformin treatment.  Among these 24 genes, 
TALDO1, PRPS2, PTGES3, RRM2, DAD1, PAICS, 
PARK7, RPL36AL, SRP14, SSR2, CDC42 have been 
shown to be down regulated in the presence of metformin 
in a rat hepatoma line and breast cancer cells [17, 18].

In addition, CDC42, has also been shown to be 
down-regulated in breast cancer patients treated with 
metformin. However, the exact mechanism involved in 
regulation of CDC42 in response to metformin treatment 
is not yet known, thereby making it a candidate for our 
functional studies. 

Metformin inhibits expression of CDC42

CDC42 is a ubiquitously expressed small guanosine 
triphosphatase (GTPase). It is known to regulate the 
dynamic organization of the cytoskeleton and membrane 
trafficking for physiologic processes, such as cell 
proliferation, mortality, polarity, cytokinesis, and cell 
growth. Deregulation of CDC42 can alter the normal 
function of cells and has been associated with cancer 
development and tumor metastasis [19]. Metformin has 
been shown to inhibit cell migration and metastasis, 
possibly through its inhibition of EMT and cancer stem 
cells [20–22]. TNBC is exquisitely sensitive to metformin 
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Figure 1: Illustration of data characteristics and results from MiMoSA. (A) Illustration of high quality in sequencing (gene 
count > 1 million) in 90% of baseline and metformin-treated cells. (B) Baseline and metformin-treated cells projected along the first two 
principal components derived from principal component analysis (PCA). (C) and (D) Probability density functions (PDF) of gene expression 
in genes across cells, and in cells across genes, respectively. These figures show that both PDFs have mixtures, and distributions are also 
different. (E) Baseline cells clustered into two clusters B1 and B2 by MiMoSA and projected using the first two principal components 
derived from PCA. (F) Metformin-treated cells clustered into three clusters M1, M2, and M3 by MiMoSA and projected using the first two 
principal components derived from PCA. (G) and (H) Illustrations of stage 1 and stage 2 of MiMoSA. 
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treatment. Mechanistically, metformin dampens TGF-β 
signaling, resulting in abrogation of EMT. Further, 
metformin can also reduce migration and invasion 
of mesenchymal stem-like cells [23]. It is not known 
whether or how CDC42 might be involved in metformin-
induced cellular phenotypes, especially the inhibition 
of cell migration, so we performed functional studies to 
pursue the possible mechanism(s) involved in CDC42’s 
contribution to metformin effect in these cells. 

As a first step, we confirmed metformin’s effect on 
the down regulation of CDC42. Specifically, we determined 
CDC42 expression levels in human MDA-MB-231 triple-
negative breast cancer cells before and after metformin 
exposure and observed a striking down regulation of CDC42 
expression in the presence of metformin (Figure 3A).  
To further confirm that this phenomenon was not cell-
type-specific, we also used SU86, a pancreatic cancer cell 
line, and repeated the experiment (Figure 3A, left panel). 

Figure 2: (A) The average expression (log scale) of 230 genes (label tics show only a fourth of the 230 genes) that were completely 
suppressed in cluster M2 in metformin-treated cells, but expressed in all other baseline and metformin clusters. We observe that with two 
standard deviations around the mean (shaded region), the expressions in clusters except M2 are exhibiting less variance. (B) Network 
analysis of the 230 genes differentially expressed in one of the MDA-MB-231 metformin-treatment clusters compared to all other baseline 
and metformin-treatment clusters. Red indicates genes from the 230 differentially expressed gene set, and green indicates linker genes 
obtained from publicly available databases or the literature.
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We observed a significant decrease in CDC42 mRNA 
and protein levels in response to metformin (Figure 3A, 
right panel). To determine whether metformin down 
regulation of CDC42 at the transcriptional level depended 
on AMPK, SU86 and MDA-MB-231 cells were treated 
with 5-aminoimidazole-4-carboxyamide ribonucleoside 
(AICAR), an activator of AMPK (Figure 3B). Treatment 
with AICAR did not significantly change CDC42 
expression. We also performed knockdown of AMPKα1 and 
AMPKα2 in those two cell lines. Knocking down AMPK did 
not reverse metformin-induced down regulation of CDC42 
expression. In fact, down regulation of AMPK also resulted 
in decreased CDC42 expression (Figure 3B). Metformin 
treatment can activate AMPK. If AMPK activation is 
required for metformin-induced down regulation of CDC42, 
we would have expected a reversal of CDC42 transcription 
level after the down regulation of AMPK. Therefore, taken 
together, these experiments suggested that metformin-
induced down regulation of CDC42 expression levels was 
independent of AMPK activation, even though AMPK itself 
can regulate CDC42 expression. 

Knockdown of CDC42 and treatment 
with metformin reduces breast cancer cell 
proliferation 

We next investigated the effect of CDC42 on 
metformin response and cancer cell proliferation using 
both MTS assay and BrdU labeling [24]. It was shown 
previously that inhibition of CDC42 can decrease cancer 
cell proliferation [25] and that metformin can inhibit 
cell proliferation. We found that overexpression of 
wild type (WT) CDC42 can reverse the decrease in cell 
proliferation observed after metformin treatment when 
compared with empty vector transfected cells treated 
with metformin using both MTS assay and BrdU labeling 
assay (Figure 3C–3D, left panel). Overexpression of a 
constitutively active CDC42 (Q61L) construct showed 
a similar effect on cell proliferation in the presence of 
metformin (Figure 3C–3D, middle panel). However, 
overexpression of a dominant negative CDC42 (N17) 
construct did not reverse the metformin-induced inhibition 
of cell proliferation (Figure 3C–3D, right panel). These 
results indicate that metformin-mediated growth inhibition 
involves CDC42.

Metformin inhibits migration and invasion of 
cancer cells by inhibiting CDC42

 Recent studies have demonstrated that metformin 
can block invasion and metastasis for several types of 
cancers [26–30]. However, the underlying mechanism is 
not well understood. CDC42 plays a key role in regulating 
actin dynamics [31–33] and promotes the transendothelial 
migration of cancer cells [34]. We set out to determine 
whether CDC42 might be an important factor in mediating 

the effects of metformin on cell migration. Specifically, we 
transfected CDC42 siRNA into SU86 and MDA-MB-231 
cells and found that CDC42 knockdown decreased the 
migration of both SU86 and MDA-MB-231 cells using a 
wound-healing assay (Figure 4A). When a matrigel invasion 
assay was used, knocking down of CDC42 also significantly 
inhibited the invasion of SU86 and MDA-MB-231 cells 
(Figure 4B). Treatment of CDC42 knocked-down cells with 
metformin showed a synergistic effect on the inhibition of 
cell migration, indicating that CDC42 might contribute to 
metformin-dependent inhibition of cell migration. This 
possibility was confirmed when cells were transfected 
with the wild type (WT), constitutively active (Q61L), and 
dominant negative CDC42 (N17) plasmids (Figure 4C). The 
inhibitory effect of metformin on migration was partially 
reversed in cells transfected with WT or constitutively 
active CDC42 (Q61L), whereas metformin consistently 
elicited a greater inhibition of migration in cells transfected 
with dominant negative CDC42 (N17). These results 
suggest that metformin suppresses cancer cell migration 
through a CDC42-mediated signaling pathway.

To determine how metformin affects CDC42 gene 
transcription, we reviewed the list of 230 genes that 
are differentially expressed in cluster M2 cells treated 
with metformin. We chose all of those genes that are 
known to be involved in transcription regulation. We 
used a literature search to identify 34 candidate genes 
that play a role in transcription regulation (Figure 5A). 
Treatment with metformin led to significant changes 
in the expression of several of those candidate genes in 
SU86 and MDA-MB-231 cells (Figure 5B). We then 
identified five candidate transcription regulators that 
were consistently down regulated and one gene, ZFP64, 
that was significantly up regulated in cell lines after 
metformin treatment (Figure 5C). To determine whether 
these genes might directly affect CDC42 expression, SU86 
and MDA-MB-231 cells were transiently transfected 
with siRNAs targeting each of the six candidate genes. 
Knockdown of deoxynucleotidyltransferase terminal-
interacting protein 2 (DNTTIP2), histone acetyltransferase 
1 (HAT1), transcription elongation factor B polypeptide 
2 (TCEB2), and 14-3-3 protein beta/alpha (YWHAB) 
decreased CDC42 gene transcription in SU86 cells, 
whereas knockdown of HAT1, TCEB2, and YWHAB 
decreased CDC42 gene transcription in MDA-MB-231 
cells (Figure 5D, upper panel); those results were also 
confirmed by western blot analysis (Figure 5D, lower 
panel). These results suggest that metformin’s effect 
on CDC42 transcription might be mediated through the 
regulation of several transcription regulators, including 
DNTTIP2, HAT1, TCEB2, and YWHAB.

DISCUSSION

Single-cell RNA sequencing has promised to 
uncover transcriptome variability in subpopulations of 
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Figure 3: Metformin inhibits expression of CDC42. (A) The effects of metformin treatment on the endogenous mRNA expression 
levels of CDC42 in SU86 pancreatic cancer cells and MDA-MB-231 breast cancer cells were determined by qRT-PCR and western 
blotting. SU86 and MDA-MB-231 cells were treated with 5mM and 1mM metformin, respectively, and 30 μg lysate were analyzed by 
western blotting using antibodies against CDC42 and actin, a loading control. Target gene expression was normalized to the reference 
gene, GAPDH, and represented as mean fold change relative to vehicle treatment. Error bar represents the mean fold changes ± SEM of 
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cells (clusters) that otherwise would have been missed 
with bulk sequencing methods. However, with limited 
samples for analysis and the presence of noise, novel 
methods are needed to analyze single-cell data; further, 
in most cases, the methods need to be tailored to specific 
data characteristics. 

In this study, we applied a data-driven unsupervised 
analysis approach, in which the clustering problem was 
driven by the distribution of gene expression profiles of 
the cells to identify candidate genes for functional analysis 
[9]. That helped identify a unique cluster of only 6 cells 
that showed the most dramatic effect in the expression 
of 230 genes that were down regulated after exposure 
to metformin. Focusing on the subset of the 230 genes 
that was related to known metformin and breast cancer 
pathways with sufficient statistical significance, we found 
that 24 genes were less studied (present only in one 
one pathway with FDR < 0.005) Included among these 
24 genes was CDC42, down-regulated in breast cancer 
treated with metformin. Functional studies revealed this 
gene to be involved in metformin inhibition of triple-
negative breast cancer cell migration. This result combines 
a novel method of unsupervised learning analysis that 
allowed us to decide on choosing CDC42 as a candidate 
for functional studies. An extensive functional evaluation 
of the method’s findings provides novel insights into the 
role of CDC42 in metformin response. 

In our study, we used the model-based unsupervised 
learning method to solve a machine-learning problem 
defined as follows: cells are the data samples, and genes 
are the features; gene-expression behavior in samples will 
be used to infer cell types. One common observation in all 
extant work on scRNA-seq analysis is the high-dimensional 
nature of the problem. In our study, by combining two 
assays for each dataset, we have a total of 192 cells 
(data samples) in our analysis to infer cell heterogeneity 
using 23,398 genes (features). Thus, the number of data 
samples is at least two orders of magnitude smaller than 
the number of features that are used to differentiate the 
samples, making single-cell analysis a high-dimensional 
problem. Further, by excluding genes that either are not 
expressed or show similar expression across all samples, 
earlier work has found that only a small number of genes 
may contribute to cell heterogeneity [35–37]. 

To reduce the number of genes used to infer cell 
heterogeneity, we chose the top fifth percentile of the 
expressed genes with highest variance. This reduced the 

ratio of the number of genes to the number of cells by 
at least one order of magnitude while still capturing 95% 
of the expression variability in two principal components. 
We found no significant difference in either the raw 
counts or the natural log-transformed data in terms of 
results. However, we decided to present our results using 
raw RPKM measures, for two reasons. First, the idea 
behind using the two principal components to project the 
results was that genes with maximum variability drive 
the separation of the points in lower-dimensional space. 
Second, the first two principal components accounted for 
96.5% and 0.5% of the observed variability, indicating that 
only a few genes were driving variability in the dataset. 
Hence, using the raw RPKM measure would offer a larger 
divergence of the cells’ PDF than a log transformation of 
the RPKM measures would. 

The top 5% high-variance genes all have over one 
million sequence reads. As shown in Figure 1A, we found 
that a fraction of cells had sequencing depths of under one 
million reads and excluded them from our study. While 
there is significant interest in the single-cell research 
community in determining the optimum sequencing depth 
per cell for analyses, there is still no standard available to 
decide the optimal sequencing coverage. Several studies 
have shown that low sequencing depth also allows for 
the identification of subpopulations of cells [38–40]. 
However, there is also evidence that one million reads 
suffices to study single cells and that higher sequencing 
depth is preferred when studying subtle differences among 
cells [41, 42]. With these findings, we justified a higher 
sequencing depth because we wanted to seek subtle 
variation that metformin introduces in cells. Hence in this 
work, we decided that a sequencing depth of one million 
reads was a reasonable threshold for this work.

In this work, we assumed that without loss in 
generality, the distributions of clusters were finite 
Gaussian mixture models with exponential distributions. 
This choice of clustering method augurs well for our 
observation that gene expressions in our data for a large 
population of cells (~100 cells) had mixtures in their 
distributions and provided the best model fits for Gaussian 
mixture models (GMM) with varying volume and equal 
shape (See Supplementary Figure 1). Using the estimated 
means and variance of the mixture model, we generated 
10,000 random samples. To test whether the PDF of the 
generated samples was statistically close to the PDF 
from the data, we performed a Mann-Whitney U-test. For 

3 biological triplicates. (B) Effects of AMPK on metformin-induced decrease in CDC42 mRNA expression in SU86 and MDA-MB-231. 
Cells were treated with AICAR or were co-transfected with AMPKα1 and AMPKα2 siRNAs followed by incubation with or without 
metformin (5 mM for SU86 and 1 mM for MDA-MB-231) for 48 hours. Quantification of CDC42 mRNA levels and AMPK knockdown 
efficiency is shown. (C) CDC42 is involved in metformin-mediated growth inhibition. SU86 and MDA-MB-231 cells were transfected with 
empty vector or CDC42 WT and mutant constructs, and then treated with metformin at different concentrations for 24, 48, 72, 96, 120, and 
144 hours. Cell proliferation was measured by MTS assay. The results are represented as the mean ± SD of three independent experiments. 
CDC42 knockdown efficiency was determined by qRT-PCR and western blot. *p < 0.05; **p < 0.01. (D) BrdU incorporation assays were 
performed at 48 and 96 hours after metformin treatment in SU86 and MDA-MB-231 cells transfected with empty vector or CDC42 WT 
and mutant constructs. Values are shown as mean ± s.d.
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illustration, we arbitrarily chose a cell, and for this cell 
the p-value from the test was 0.7406. At a significance 
level of 0.05, we failed to reject the null hypothesis that 
the gene expression of the cell chosen and the generated 
expression levels from the estimated mixture model were 
drawn from identical populations; the result can also be 

visually verified by comparing the PDFs in Supplementary 
Figure 1. Thus, we made this work truly data-driven by 
allowing the clustering to be determined by distributions 
in the data instead of by distances or densities. The use of 
distances or densities might require stricter assumptions 
with regard to data characteristics (e.g., normality) and 

Figure 4: Metformin regulates cancer cell migration and invasion by down regulation of CDC42. (A) Metformin regulates 
cancer cell migration by reducing the expression of CDC42. SU86 and MDA-MB-231 cells were transfected with Negsi (negative control 
siRNA) or siCDC42 (siRNA specific for CDC42). Equal numbers of cells from Negsi and siCDC42 groups were seeded into 12-well plates 
for wound healing assay. Metformin (1–5 mM) was added during the migration for 48 hours. Original magnification: ×10. (B) SU86 and 
MDA-MB-231 cells were transfected with Negsi (negative control siRNA) or siCDC42 (siRNA specific for CDC42), and then treated with 
or without metformin. Cell invasion was analyzed 24 h post transfection using Transwell invasion assay. Group t-tests were performed to 
compare each data point with the control (siCon). Error bars are mean ± SD (n = 3). **p < 0.01. (C) SU86 and MDA-MB-231 cells were 
transfected with empty vector (EV), wild type CDC42 expressing plasmid (WT), N17 (dominant negative), or Q61L (constitutively active), 
and then treated with or without metformin. The Transwell invasion assay was performed as described above. Error bars are mean ± SD. 
(n = 3). **p < 0.01.
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Figure 5: Metformin regulates CDC42 expression by regulating transcription regulatory genes. (A) Candidate transcription 
regulatory genes from the scRNA-seqanalysis that differentiate cluster M2. Candidate transcription regulatory genes were chosen from 
the list of genes expressed in clusters M1 and M3 but not expressed in cluster M2, and genes not expressed in clusters M1 and M3 but 
expressed in cluster M2. (B) Metformin-induced expression changes for the transcription regulatory genes. SU86 and MDA-MB-231 cells 
were treated for 48 hours with 1–5 mM metformin prior to RT-qPCR analysis of endogenous mRNA expression levels of the indicated 
genes. Gene expression was normalized to the reference gene GAPDH and presented as mean fold change relative to vehicle treatment. 
Error bars represent mean fold changes ± SEM of biological triplicates. One representative experiment is shown. **p < 0.01. (C) Candidate 
transcription regulatory genes that are consistently deregulated in both SU86 and MDA-MB-231 cells by metformin. (D) siRNA screening 
of candidate transcription regulatory genes for the regulation of CDC42. Quantification of endogenous mRNA levels of CDC42 in SU86 
and MDA-MB-231 cells was measured by RT-qPCR 48 hours after transfection with negative or specific siRNA. Gene expression was 
normalized to reference gene GAPDH and presented as mean fold change relative to transfection with Negative siRNA ± SEM of biological 
triplicates of a representative experiment. Protein levels of CDC42 and load control actin were assessed by western blot 48 hours after 
transfection of cells with specific siRNA. **p < 0.01.
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will not guarantee consistent answers if the feature space 
and its associated variability are large.

By comparing the clusters of cells from MiMoSA, 
we identified 230 genes that were significantly down 
regulated in one cluster (M2) of metformin-treated cells 
but were uniformly well expressed in all other clusters 
(p-value of 0.00552), as shown in Figure 2A. This finding 
raised the question of whether these 230 genes might 
be markers for metformin sensitivity in triple-negative 
breast cancer cells. Metformin has been used to treat 
type 2 diabetes for decades, but its antitumor effects 
were not recognized until recently. Regulation of the 
AMPK pathway is thought to be a major mechanism of 
metformin’s antitumor activity [6]. Metformin-induced 
inhibition of oxidative phosphorylation leads to elevated 
levels of cellular AMP, which activates the energy sensor 
AMPK [43]. Activated AMPK phosphorylates the 
tuberous sclerosis complex (an inhibitor of mammalian 
target of rapamycin (mTOR)), leading to the up regulation 
of its activity and subsequent mTOR inhibition and 
tumor suppression [44]. Despite increasing knowledge 
about metformin’s anticancer mechanisms, the exact 
mechanisms responsible for these actions remain unclear. 

In follow-up functional analyses, we selected one 
of the 230 genes that we found to be down regulated 
by M2: CDC42, a major player in actin dynamics that 
is also down regulated in breast cancer patients treated 
with metformin. Metformin has been shown to inhibit 
cell migration and tumor metastasis [26–30]. One 
mechanism involves metformin inhibition of cancer stem 
cells [45, 46]. We therefore also examined a number 
of mesenchymal markers described previously [47], 
including SOX2, CD44, CD24, CD133, ALDH, OCT-4,  
FN1, SNAI2, VIM, FOXC2, MMP2, MMP3, CDH1, 
and DSP, at the mRNA level in all clusters. All of these 
genes except VIM and CD44 were suppressed in all 
clusters (baseline and metformin-treated cells); VIM and 
CD44 were equally expressed in all three clusters without 
any differential behavior among the clusters, either at 
baseline or metformin-treated cells. Our results suggested 
additional mechanisms by which metformin might have an 
effect on cell proliferation and cell migration, mechanisms 
that are not entirely dependent on AMPK activation. 
AMPK activation was not required for metformin-induced 
down regulation of CDC42 expression (Figure 3B). 
However, AMPK could up-regulate CDC42 expression, 
since knockdown of AMPKα1 and AMPKα2 dramatically 
reduced CDC42 level (Figure 3B). We did not observe 
any increase or other change in CDC42 level in the 
presence of AICAR, a known AMPK activator, probably 
because of the very high baseline level of CDC42. These 
observations together, the non-AMPK-dependent effect 
on the down regulation of CDC42 by metformin was a 
major determinant of CDC42’s effect on cell proliferation 
and cell migration. The reason was that metformin’s 

ability to inhibit cell proliferation and cell migration was 
increased when CDC42 expression was down regulated 
(Figure 3C–3D, Figure 4). Furthermore, we found that the 
regulation of CDC42 expression by metformin occurred, 
at least in part, through the regulation of a series of genes 
involved in transcription regulation, including DNTTIP2, 
TCEB2, and YWHAB (Figure 5). DNTTIP2 is involved 
in chromatin remodeling and gene transcription [48]. 
HAT1 is a type B histone acetyltransferase involved in the 
rapid acetylation of newly synthesized histones. Evidence 
suggests that HAT1 moderates the nuclear factor κB 
(NF-κB) response by regulating the transcription factor 
promyelocytic leukemia zinc finger (PLZF) [49]. TCEB2, 
a subunit of the transcription factor B (SIII) complex, is 
known to activate elongation by RNA polymerase II [50], 
and YWHAB acts as a coactivator for several transcription 
factors, including Peroxisome proliferator-activated 
receptor γ2 (PPARγ2) [51]. 

Notably, several studies demonstrate that 
metformin is beneficial for neurodegenerative disease 
such as Alzheimer′s disease and Huntington’s disease 
[52, 53]. Recently, several studies also reported the 
neuroprotective effect of metformin in Parkinson’s 
disease model [54, 55]. Energy metabolism disturbance 
and mitochondrial dysfunction have been implicated in the 
pathogenesis of Parkinson’s disease [56].  Interestingly, 
our pathway analysis of the 230 genes revealed pathways 
related to Parkinson’s disease, Huntington’s disease, and 
Alzheimer’s disease with over 20 genes in each pathway 
(Supplementary Table 1). These pathways are deregulated 
in cluster 2 post metformin treatment, suggesting 
metformin may play a role in neurodegenerative disease. 
However, further studies are needed in order to determine 
whether metformin’s effect on neurodegenerative disease 
contributes to the therapeutic effect of metformin in the 
treatment and prevention of TNBC.

In summary, MiMoSA identified cluster M2, 
which contained only six cells that showed significantly 
differential gene expression with plausible biological 
significance after exposure to metformin. In all engineering 
and applied-statistics practices, such clusters are generally 
discarded as outliers. Thus, it is possible that this is the kind 
of subtle-yet-important cell behavior that we can pursue 
using a combination of single-cell sequencing technology 
and data-driven unsupervised learning methods. Our results 
also provide a series of metformin exposure genes. This 
230 gene signature needs to be further validated in other 
cell lines and clinical samples. We understand that gene 
expression has tissue specificity; therefore, it is important 
to determine the effect of metformin on these genes in 
different cells or tissue types. Our study also has provided 
novel insights into the metformin effect on CDC42 through 
the regulation of a series of transcription factors. Future 
studies should identify how these transcription regulators 
influence CDC42 gene expression. The relationship 
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could also be tested further using clinical samples and by 
determining metformin outcomes.

MATERIALS AND METHODS

Cell lines

Human triple-negative breast cancer cell line 
MDA-MB-231 and pancreatic cancer cell line SU86 were 
obtained from the American Type Culture Collection 
(Manassas, VA). MDA-MB-231 cells were cultured in 
L-15 medium containing 10% fetal bovine serum (FBS). 
SU86 cells were cultured in Roswell Park Memorial 
Institute (RPMI) 1640 medium containing 10% FBS. 

Experimental setup and data generation 

The primary dataset included 384 scRNA-seq 
samples from MDA-MB-231 cells, half of which had 
been exposed to metformin. Specifically, MDA-MB-231 
cells were plated into 6-well plates (6 × 104 cells per well) 
and incubated for 24 hours; half were then exposed to 
1 mmol/L metformin (Sigma-Aldrich, St. Louis, MO). 
Fresh medium and drug were replaced daily; after 5 days, 
cells were resuspended and single cells immediately 
captured with the Fluidigm C1 system. Two independent 
MDA-MB-231 batches were used, and 96 untreated cells 
(control) and 96 metformin-treated cells were captured 
from each. Cells from the two independent batches were 
captured on two different C1 machines in an orthogonal 
design. Sequencing libraries were prepared with the 
standard Fluidigm protocol based on SMARTer chemistry 
and Illumina Nextera XT. RNA sequencing of 100-bp 
paired-end reads was done on an Illumina HiSeq, with an 
average of 4.9 million reads/cell. 

Data preprocessing 

Raw Fastq files for 384 RNA-seq single cells 
were obtained and processed through the MAP-RSeq 
workflow [14] to obtain binary alignment map (BAM) 
files, summary alignment statistics, and quality control 
visualizations of mapped reads for each single cell. Paired-
end RNA-seq reads were aligned using TopHat [57] to the 
human genome build NCBI 37.1, which corresponds to 
the hg19 human genome assembly from the University of 
California, Santa Cruz (UCSC; [58]). Total reads, mapped 
reads, unmapped reads, and junction reads were obtained 
for each single cell to identify samples with no cells or 
low reads. We removed 19 and 15 samples with a total 
count of < 1 million reads from further analysis in baseline 
and metformin-treated cells, respectively, and the average 
total reads in baseline and metformin-treated cells were 
3.10 million and 3.02 million, respectively. The gene-
expression count data for single cells was obtained using 
HTSeq software [59]. 

Network and pathway analysis 

Network analysis was performed using Cytoscape 
[60], NetworkAnalyzer [61], and the Reactome database 
[62] functional interaction (FI) feature. Linker genes were 
included in the network analysis. Through the Reactome 
database, and based on information obtained from the 
literature or on data evidence, these linker genes were 
connected in the network with the gene set we were 
investigating. Network parameters, such as number of 
edges for each node, neighborhood connectivity, and 
degree of connections for each node, were obtained to 
determine the size of the node in the network. The size of 
the node in the network indicates the degree of connection 
with other genes. Hence, the size of the nodes in the 
network indicates the gene connectivity. The pathway 
enrichment analysis method in Cytoscape was applied 
to identify pathways enriched in the network. Gene 
annotations were obtained using the UCSC refFlat file. 

Mixture model-based single-cell analysis 
(MiMoSA)

As the best fit for the mixtures in our data was 
Gaussian mixture models (GMM), we used MiMoSA 
to cluster the cells so that the method makes use of the 
GMM. The MiMoSA workflow uses a model-based 
clustering algorithm tailored for data that exhibit mixed 
Gaussian distributions in the PDFs [9]. The workflow is 
divided into two stages, as illustrated in Figure 1G and 1H. 

Stage 1 (Figure 1G): Inputs to this step are the 
baseline and metformin-treated RPKM measures from the 
MAP-RSeq workflow. [Step i] Remove cells with low gene 
counts: We remove cells from the analysis if they have 
a total gene count under one million. This allows us to 
study cells with high sequencing depth and quality. [Step 
ii] Eliminate genes with low variance: The goal here is to 
understand the mechanism of metformin in breast cancer 
cells. Thus, to observe metformin’s action, we wanted 
to capture the maximum variability in gene expression 
introduced by metformin in comparison with baseline 
cells. We observed that 80% of the genes were found with 
low expression (with RPKM less than 32), consistent 
with the existing literature, and hence it made sense to 
remove these genes from the analysis. In this work, we 
chose genes that were in the top fifth percentile of variance 
observed across the whole genome. This reduced the 
number of genes we used for clustering cells from 23,398 
to 1,170. We output the cells with the reduced set of genes 
to Stage 2 of MiMoSA. 

Stage 2 (Figure 1H): All computations in stage 2 are 
performed with an existing R package called MCLUST 
[63]. The MCLUST package performs model-based 
clustering that makes use of the Gaussian mixture models, 
and uses an expectation-maximization algorithm to learn 
the model parameters. MCLUST has been widely used 
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for applied mathematics and engineering applications. 
The optimal number of clusters is chosen based on the 
Bayesian information criteria (BIC) plot: it is the number 
at which the scree plot for BIC against the increasing 
number of clusters starts to see an asymptotic convergence. 
MCLUST outputs a data structure that contains the cluster 
label for each data sample (cell), among other clustering 
parameters. 

Quantitative reverse-transcription PCR  
(qRT-PCR) 

Total RNA was isolated from cultured cells with 
the QIAGEN RNeasy kit (QIAGEN Inc.,  Valencia, CA, 
USA), followed by qRT-PCR performed with the one-
step Brilliant SYBR Green qRT-PCR master mix kit 
(Stratagene, La Jolla, CA, USA). Specifically, primers 
purchased from QIAGEN were used to perform qRT-PCR 
with the Stratagene Mx3005P™ real-time PCR detection 
system (Stratagene). All experiments were performed in 
triplicate with GAPDH as an internal control. Reverse-
transcribed Universal Human Reference RNA (Stratagene) 
was used to generate a standard curve. Control reactions 
lacked the RNA template.

Western blot analysis 

MDA-MB-231 cells were lysed with the CelLytic 
M Cell Lysis buffer (Sigma-Aldrich, St. Louis, MO, 
USA). Cell lysate was subjected to electrophoresis 
on 10% sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) gels, followed by transfer to 
polyvinylidene fluoride membranes. The polyvinylidene 
fluoride membranes were blocked with 5% nonfat milk at 
room temperature for 1 h and then probed with primary 
antibodies against CDC42 at a 1:1,000 dilution (BD 
Biosciences, San Jose, CA, USA) and β-actin at a 1:1,000 
dilution (Sigma-Aldrich, St. Louis, MO, USA). Protein 
bands were visualized using enhanced chemiluminescence 
(Thermo Scientific, Rockford, IL, USA).

Transient transfection and RNA interference 

Specific siGENOME siRNA SMARTpool® reagents 
against a given gene as well as a negative control, 
siGENOME Non-Targeting siRNA, were purchased from 
Dharmacon Inc. (Lafayette, CO, USA). A second CDC42 
siRNA was purchased from QIAGEN (Valencia, CA, 
USA). MDA-MB-231 and SU86 cell lines were used to 
perform the siRNA knockdown studies. The Lipofectamine 
RNAiMAX transfection reagent (Invitrogen, Carlsbad, 
CA, USA) was used for siRNA reverse or forward 
transfection. Specifically, cells were seeded into 96-well 
plates or 6-well plates and mixed with siRNA-complex 
consisting of 20–50 nmol of specific siGENOME 

siRNA SMARTpool or nontargeting negative control 
(Dharmacon) and Lipofectamine RNAiMAX transfection 
reagent.

The CDC42 plasmids that included WT, N17 
(dominant negative), or Q61L (constitutively active) 
constructs were gifts from Dr. Daniel Billadeau, Mayo 
Clinic Rochester. Plasmids were transfected with 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

MTS cytotoxicity and cell proliferation assay 

Metformin was purchased from Sigma-Aldrich 
(Milwaukee, WI, USA). Drugs were dissolved in 
phosphate-buffered saline (PBS), and aliquots of stock 
solutions were frozen at −80°C. Cytotoxicity assays 
were performed in triplicate at each drug concentration. 
Specifically, cells were seeded onto 96-well plates and 
mixed with siRNA-complex consisting of 20–50 nmol of 
specific siGENOME siRNA SMARTpool or nontargeting 
negative control (Dharmacon) and the Lipofectamine 
RNAiMAX transfection reagent [64]. After 24 hours, 
cells were treated with 10 μL of metformin at final 
concentrations of 0, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, 
50, and 100 mmol/L. After incubation for an additional 
72 hours, 20 μL of CellTiter 96® Aqueous Non-Radioactive 
Cell Proliferation Assay solution (Promega Corporation, 
Madison, WI, USA) was added to each well. Plates were 
read in a Safire2 plate reader (Tecan AG, Switzerland) [65]. 

The MTS assay was used to determine whether 
metformin altered cell proliferation. Cells were transfected 
with specific siRNA or plasmids for 24 h; 104 cells were 
plated in triplicate in 96-well plates and then treated 
with metformin or vehicle control (dimethyl sulfoxide 
(DMSO)). MTS assays were performed at 0, 24, 48, 72, 
96, 120, and 144 hours after metformin treatment.

Cell proliferation was also measured using the 
BrdU Cell Proliferation Assay kit (Cell Signaling, 
Danvers, MA), following the manufacturer’s instructions. 
Specifically, 5000 cells per well were plated on a 96-
well plate in triplicate for each of three independent 
experiments.  SU86 and MDA-MB-231 cells were 
transfected with CDC42 plasmids, and then treated 
with 1–5 mM metformin for 24, 48, and 96 hours.  Cell 
proliferation was assayed relative to day 0 using the 
BrdU Cell Proliferation Assay Kit after incubation with 
bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) 
for 2 h. Cells were then fixed with a fixing solution 
for 30 min and subjected to immunostaining with a 
monoclonal anti-BrdU antibody and an HRP-conjugated 
secondary antibody. After adding substrate of theTMB 
(tetramethyl-benzidine) peroxidase to the cells, the cells 
were incubated for 30 min in the dark and the stop solution 
was added to terminate the reaction. Absorbance was read 
at 450 nm using in a Safire2 microplate reader (Tecan AG, 
Switzerland).
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Wound-healing assay 

SU86 and MDA-MB-231 cells were seeded in a 
6-well plate and grown to confluent monolayers. Next, 
cells were cultured in medium without FBS for 12 h. A 
200-µL pipette tip was drawn across the center of the well 
to produce a wound area and washed twice with serum-
free medium to remove detached cells. Cells were then 
treated with a medium containing different concentrations 
of metformin (1 or 10 mM) and 1% FBS. (1% FBS permits 
cell survival but not cell proliferation.) Subsequently, 
images of the wound-healing process were photographed 
digitally (×10) at 0, 24, and 48 h. Each value was an 
average value derived from three randomly selected fields.

Cell invasion assay using staining 

An invasion assay was performed using 24-well 
Transwell units with 8-μm-pore-size polycarbonate 
inserts. Cells were cultured in serum-free medium for 
24 h. The polycarbonate membranes were cultured at 37°C 
for 1 h. A cell suspension (100 µL of 1 × 105 cells/mL in 
serum-free medium) containing metformin or vehicle was 
added into the inner cup of a 24-well Transwell chamber, 
which had been coated with 50 µL of Matrigel™ (BD 
Biosciences, Franklin Lakes, NJ, USA). 650 μL of culture 
medium containing 10% FBS was added into the lower 
compartment as a chemoattractant. After incubation for 
24 h, non-invading cells were removed from the upper 
surface by gentle rubbing with a cotton-tipped swab. Cells 
that had migrated through the Matrigel and the 8-µm-pore 
membrane were fixed and stained with 0.1% crystal violet. 
The lower filter was used to count cell numbers in five 
random fields under the microscope. Each experiment was 
performed in triplicate.

Statistical analysis 

All data were presented as mean ± SD of at least 
three independent experiments. Statistical analysis was 
performed using SPSS22.0 and Prism 5 (GraphPad 
Software Inc., San Diego, CA, USA). Single-factor 
analysis of the variance test was used for comparisons 
among multiple groups, and a t-test was used for 
comparisons between two groups; P < 0.05 was considered 
statistically significant.
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