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ABSTRACT

Although microRNAs (miRNAs) play an important role in liver homeostasis, the 
extent to which they can be altered by Toxoplasma gondii infection is unknown. Here, 
we utilized small RNA sequencing and bioinformatic analyses to characterize miRNA 
expression profiles in the liver of domestic cats at 7 days after oral infection with 
T. gondii (Type II) strain. A total of 384 miRNAs were identified and 82 were differentially 
expressed, of which 33 were up-regulated and 49 down-regulated. Also, 5690 predicted 
host gene targets for the differentially expressed miRNAs were identified using the 
bioinformatic algorithm miRanda. Gene ontology analysis revealed that the predicted 
gene targets of the dysregulated miRNAs were significantly enriched in apoptosis. Kyoto 
Encyclopedia of Genes and Genomes analysis showed that the predicted gene targets 
were involved in several pathways, including acute myeloid leukemia, central carbon 
metabolism in cancer, choline metabolism in cancer, estrogen signaling pathway, fatty 
acid degradation, lysosome, nucleotide excision repair, progesterone-mediated oocyte 
maturation, and VEGF signaling pathway. The expression level of 6 upregulated miRNAs 
(mmu-miR-21a-5p, mmu-miR-20a-5p, mmu-miR-17-5p, mmu-miR-30e-3p, mmu-miR-
142a-3p, and mmu-miR-106b-3p) was confirmed by stem-loop quantitative reverse 
transcription PCR, which yielded results consistent with the sequencing data. These 
findings expand our understanding of the regulatory mechanisms of miRNAs underlying 
T. gondii pathogenesis and contribute new database information on cat miRNAs, opening 
a new perspective on the prevention and treatment of T. gondii infection.

INTRODUCTION

Toxoplasma gondii is a highly prevalent 
apicomplexan protozoan parasite, which can cause 
serious clinical illnesses in humans and animals [1]. It 
has been reported to chronically infect roughly one-third 
of the world’s human population [2]. T. gondii acquired 
during pregnancy may cause damage to the fetus and 
reactivation of latent infection can cause life-threatening 

encephalitis in immune-compromised individuals [3]. 
This parasite has an indirect two-host lifecycle, which 
is composed of asexual reproductive phase in the 
intermediate host and sexual reproductive phase in the 
definitive host (members of the Felidae family). The 
enteroepithelial sexual cycle of T. gondii is completed 
within 3 to 10 days after ingestion of intermediate host 
tissue containing T. gondii cysts. T. gondii can also 
spread throughout the cat’s body and affect many organs 
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[4–7]. Hence, cats are unique in respect of their ability 
to accommodate both sexual and asexual reproductions 
of T. gondii, making cats a significant source of infection 
to humans and animals [2, 8].

Besides the adverse clinical consequences on 
humans and other intermediate hosts T. gondii can cause 
disseminated and fatal infection in cats [4-7, 9]. Although 
any organ in the cat’s body can be affected, clinical cases 
related to hepatic and pulmonary damage are particularly 
important because they are associated with quicker 
mortality [6, 10–12]. Also, liver dysfunction, enlargement, 
icterus, cholangiohepatitis, vomiting, abdominal effusion, 
and ascites are complications that frequently occur in T. 
gondii-infected cats. Therefore, with the great need for 
the development of efficacious treatment interventions 
(due to the lack of a vaccine and limited efficacies of 
current therapeutics), it is important to identify the 
molecular mechanisms that underpin liver damage caused 
by T. gondii infection. However, information about the 
molecular pathways that regulate the interaction between 
T. gondii and hepatic tissues has been limited to a few 
studies [13, 14].

The feline genome already encodes roughly 3,182 
microRNA (miRNA) homologues, which can regulate the 
expression of signalling cascades that perform key cellular 
functions, such as cell cycle regulation, proliferation, 
differentiation, apoptosis, and carcinogenesis. miRNAs 
constitute a group of endogenous non-coding small 
RNAs (18 to 25 nucleotides [nt] long) that regulate 
gene expression by binding to mRNA and inhibiting 
translation [15–18]. miRNAs play an important role in 
liver homeostasis, and aberrant expression of miRNAs 
has been associated with a variety of liver diseases, such 
as viral hepatitis, hepatocellular carcinoma and fatty liver 
disease [19]. Alterations of host miRNA expression have 
also been observed in some parasitic infections, such as 
Cryptosporidium parvum, Plasmodium falciparum and T. 
gondii (reviewed in [20]), underscoring the potential role 
of miRNAs in mediating the interaction between T. gondii 
and host cells. Despite the impact of T. gondii infection on 
hepatic function the mechanisms underlying the alterations 
of hepatic miRNAs expression following acute T. gondii 
infection remain poorly understood.

In this study, we hypothesized that T. gondii 
infection alters the expression of hepatic miRNAs and that 
differentially expressed miRNAs mediate the interaction 
between T. gondii and cat’s liver. Here we use genome-
wide, small RNA sequencing to characterize the global 
miRNA transcriptional response of feline liver to infection 
with T. gondii (Type II) PRU strain. Our study provides a 
full picture of the hepatic miRNA repertoire during acute T. 
gondii infection in domestic cats, including novel miRNAs, 
involved in host cell cycle, apoptosis and anti-T. gondii 
defense.

RESULTS

Confirmation of T. gondii infection in the 
cat livers

Under the conditions we used positive PCR results 
were obtained, providing laboratory confirmation of 
T. gondii infection in the livers of infected cats. RFLP 
analysis of the positive PCR amplicons of T. gondii B1 
gene revealed a restriction fragment pattern characteristic 
to T. gondii genotype II. The livers of control cats and 
negative PCR control yielded negative PCR results.

Analysis of miRNA expression

miRNA libraries of livers from two T. gondii-infected 
or two control cat groups were successfully sequenced 
and sequencing data is summarized in Table 1 and Table 
2. Length distributions of clean reads in the libraries were 
between 20-24 nt (Figure 1A-1D). A very high intra-group 
correlation was detected between the two miRNA libraries 
of T. gondii-infected liver samples (R2 =0.989) (Figure 2A) 
and the two miRNA libraries of uninfected liver samples (R2 
=0.99) (Figure 2B). The known and novel mature miRNAs 
in T. gondii-infected and control groups were summarized in 
Table 3 and Table 4. Finally, through comparing T. gondii-
infected and uninfected sRNA libraries, 82 differentially 
expressed miRNAs were identified, including 33 up-
regulated and 49 down-regulated miRNAs (Table 5).

Pathway analysis of miRNA targets

A total of 5690 predicted host targets were identified 
(Supplementary Table 2). Based on the predicted targets 
of the differentially expressed miRNAs GO enrichment 
analysis was performed in order to identify the biological 
processes, molecular functions and cellular components. 
The enriched GO terms of the biological processes, 
molecular functions and cellular components are shown 
in Figure 3, respectively. KEGG enrichment analysis 
showed that target genes were related to multiple 
pathways, including nucleotide excision repair, lysosome, 
vascular endothelial growth factor (VEGF) signaling, 
estrogen signaling, acute myeloid leukemia, central carbon 
metabolism in cancer, choline metabolism in cancer, 
fatty acid degradation, progesterone-mediated oocyte 
maturation, and renal cell carcinoma. The top 20 KEGG 
enrichment pathways are shown in Figure 4.

miRNA expression validation by qRT-PCR

Six miRNAs, including mmu-miR-21a-5p, mmu-
miR-20a-5p, mmu-miR-17-5p, mmu-miR-30e-3p, mmu-
miR-142a-3p, and mmu-miR-106b-3p, were selected for 
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confirmation by real time PCR to verify the expression 
levels of the differentially expressed miRNAs using miRNA 
specific primers (Supplementary Table 1). The results 
confirmed that these selected miRNAs were differentially 
expressed between infected livers and uninfected livers 
and were consistent with the results obtained by RNA-
sequencing analysis (Supplementary Figure 1). Data set 
from the RNA-sequencing experiment has been deposited in 
the GEO database under accession number PRJNA356106.

DISCUSSION

Previous studies showed that T. gondii infection 
can alter the expression of host miRNAs, indicating that 
miRNAs may be involved in the pathogenesis of T. gondii 
infection [21–24]. Our results have also shown that acute 
T. gondii infection alters the level of miRNAs in the liver 
of domestic cats. In the present study, we used small RNA 
sequencing to identify cellular miRNAs and signaling 
pathways involved in the response of cats to T. gondii 
infection. Specifically, we determined miRNAs that are 
differentially expressed by comparing sham-infected to 
T. gondii-infected cat livers at 7 days after infection. This 
analysis identified 82 differentially expressed microRNAs, 
of which 33 were increased and 49 decreased. By using 
qRT-PCR, the expression level of six up-regulated miRNAs 
(mmu-miR-21a-5p, mmu-miR-20a-5p, mmu-miR-17-5p, 
mmu-miR-30e-3p, mmu-miR-142a-3p, and mmu-miR-

106b-3p) were consistent with the results obtained by 
sequencing analysis. Knowledge of molecular changes 
in human liver during the acute phase of toxoplasmosis 
is lacking due to the mild and subtle nature of this 
infection especially in immune-component individuals 
[1, 2]. Hence, these findings may serve as the basis for 
understanding the molecular mechanisms associated with 
hepatic pathology during acute T. gondii infection.

Differentially expressed miRNAs were associated 
with signalling pathways involved mainly in cell cycling, 
apoptosis, oncogenesis, and host defense. Among the 
differentially expressed miRNAs, miR-21a-5p, miR-
17-5p, miR-223-3p, miR-27a-5p, miR-126, and miR-
486 were significantly upregulated in T. gondii-infected 
livers compared to controls. Of note, the level of miR-
21a-5p expression was elevated in various cancer tissues, 
including rectal, gastric and lung tissues [25–27] and 
has been suggested to play a role in tumor biology [27]. 
The similarity between the expression of miR-21a-5p 
during T. gondii infection and various forms of cancers 
is interesting. One striking finding was the correlative 
link between upregulation of miR-17-92 in T. gondii-
infected human foreskin fibroblasts [28] and in human 
astrocyticglioma tissue [29]. The presence of RNA 
silencing machinery and small silencing RNAs in T. gondii 
genome [30] indicates that this parasite has the ability to 
use its own miRNAs to interrupt host cell functions in 
analogy to oncogenic viruses [31].

Table 1: Summary of small RNA sequencing data obtained in the present study

Library type Reads Bases Error rate Q20 Q30 GC content

Infected liver Group 1 10665548 0.533G 0.01% 96.21% 92.13% 49.65%

Infected liver Group 2 12569494 0.628G 0.01% 96.16% 92.13% 49.98%

Uninfected liver Group 1 11727706 0.586G 0.01% 96.24% 92.33% 49.56%

Uninfected liver Group 2 10273236 0.514G 0.01% 96.44% 92.60% 49.72%

Table 2: Summary of the standard bioinformatic quality check and cleaning of small RNAs

Library
Infected groups Uninfected groups

Infected liver
Group 1

Infected liver
Group 2

Uninfected liver
Group 1

Uninfected liver
Group 2

Total reads 10665548 (100.00%) 12569494 (100.00%) 11727706 (100.00%) 10273236 (100.00%)

N%>10% 531 (0.00%) 636 (0.01%) 606 (0.01%) 540 (0.01%)

Low quality 40551 (0.38%) 47641 (0.38%) 42076 (0.36%) 32984 (0.32%)

5_adapter_contamine 1247 (0.01%) 1565 (0.01%) 1026 (0.01%) 915 (0.01%)

3_adapter_null or 
insert_null 174157 (1.63%) 176650 (1.41%) 223708 (1.91%) 195007 (1.90%)

With ployA/T/G/C 10772 (0.10%) 12621 (0.10%) 7991 (0.07%) 6939 (0.07%)

Clean reads 10438290 (97.87%) 12330381 (98.10%) 11452299 (97.65%) 10036851 (97.70%)
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miR-17-5p, a key regulator of the G1/S phase 
cell cycle transition, was up-regulated in our study in 
agreement with others who reported overexpression 
of miR-17-5p in human and mouse spleen in response 
to T. gondii infection [21, 31]. T. gondii can increase 
miR-17~92 and miR-106b~25 that play key roles in the 
regulation of mammalian cell cycle by influencing the 
functionally intertwined pathways of apoptosis and G1/S 
cell cycle progression [32]. miR-17-5p targets mouse 
Bcl2l11, Zmat3, Aifm1, and Capn2 to increase host 

apoptotic process and targets mouse Ppp3r1 and Akt3 to 
promote cellular apoptosis process [21]. Also, miR-17-5p 
may function as both a tumor suppressor [33] and as an 
oncogenic activator [34] by targeting both anti- and pro-
proliferative genes and by competing with each other in 
different cellular contexts [35]. The effect of T. gondii 
infection on the expression of miRNAs (miR-30c-1, miR-
125b-2, miR-23b-27b-24-1, and miR-17~92 cluster genes) 
that have anti-apoptotic activity has been reported [36]. 
Modulating these apoptosis-related miRNAs with mimics 

Figure 1: Length distribution of the small RNA expressions in the liver of domestic cats infected with Toxoplasma 
gondii compared to control cats. (A and B) Group 1 and group 2 of T. gondii-infected domestic cats; (C and D) Group 1 and group 2 of 
uninfected, control, domestic cats. Abbreviations: IL1, IL2, UL1, and UL2: infected liver 1, infected liver 2, uninfected liver 1, uninfected 
liver 2, respectively.
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or inhibitors can validate their roles in the dysregulation 
of host cell apoptotic machinery during T. gondii infection.

The miR-223-3p has been implicated in the regulation 
of inflammatory response [37] and granulocyte production 
and function [38], and can function as a tumor suppresser 
in osteosarcoma by regulating the osteosarcoma cell cycle 
progression and proliferation [39]. The level of miR-
223-3p was significantly increased in infected samples, 
suggesting that T. gondii infection of feline liver stimulates 
the production of miR-223-3p, which plays a role in the 
activation of inflammatory response elicited in response 
to T. gondii infection. This is concordant with a previous 
study showing that miRNAs, such as miR-146a and miR-
155, known to activate immune and inflammatory responses 
can influence host response to T. gondii infection [40–43]. 
Also, the upregulation of miR-27a-5p (a regulator of lipid 
metabolism-related genes) and miR-21-5p in the infected 
liver samples suggests that both miR-27a-5p and miR-21-5p 
play a role in host response to infection. This assumption is 
supported by the association between inhibition of miR-21 
and increased Cryptosporidium parvum burden [29].

miR-126 is associated with tumorigenesis and has 
recently been found to modulate the survival and function of 
Plasmacytoid dendritic cells (pDCs) via positive regulation 
of the vascular endothelial growth factor (VEGF) signaling 
pathway [44]. miR-126 upregulation may activate Toll-like 
receptor (TLR)/MyD88 signalling in pDCs to secrete large 
amounts of type I interferons (IFNs), which is essential for 
host resistance to T. gondii infection. Also, the biological 
significance of T. gondii-induced upregulation of miR-486 
may lie in its ability to augment the host defense mechanisms. 

miR-486 has been shown to activate nuclear factor (NF)-κB 
signaling pathway [45], which leads to the production of 
proinflammatory cytokines, thereby providing a protection 
against T. gondii infection. Of note, both miR-486 and 
the NF-κB signaling pathway have oncogenic roles in 
human cancers, such as glioma progression [45].

The let-7 family is a key regulator of the innate 
immune response. The level of let-7i during protozoal 
infection with C. parvum infection was found reduced 
together with increase of TLR4 in biliary epithelial cells, 
contributing to cholangiocyte’s defense responses [46]. 
In line with this study our results revealed significant 
downregulation of mmu-let-7f-5p, mmu-let-7i-5p, mmu-
let-7a-5p, mmu-let-7g-5p, mmu-let-7e-5p, and mmu-let-
7c-5p in T. gondii-infected cat’s livers compared with 
controls. Finally, the fact that miRNAs are host-, tissue-, 
and strain-specific [47] explains why the expression of 
some miRNA (e.g. miR-712-3p, miR-511-5p and miR-
217-5p) that are dysregulated during T. gondii infection 
[48] was not altered in our study.

In conclusion, these findings provided new insight 
regarding the ability of T. gondii to alter the expression of 
82 microRNAs in cat liver. Our study revealed that through 
reprogramming of hepatic miRNAs expression T. gondii 
influences the cellular microenvironment and host anti-T. 
gondii response, which are likely to play roles in the parasite 
pathogenesis. GO analysis revealed that the predicted targets 
of the differentially expressed miRNAs were involved 
in the regulation of cell cycle and most of the identified 
KEGG pathways were related to cancer. Considering the 
immunoregulatory effects of miRNAs and their ability to 

Figure 2: Correlation analysis of the small RNA expressions in the livers of T. gondii-infected and uninfected cats. (A) 
Correlation analysis of small RNA expression levels between T. gondii-infected cats of group 1 and group 2 (IL1 vs IL2); (B) Correlation 
analysis of small RNA expression levels between uninfected cats of group 1 and group 2 (Ul1 vs UL2).
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Table 3: Known miRNA mapping

Criteria
Infected groups Uninfected groups

Infected liver 
Group 1

Infected liver
Group 2

Uninfected liver
Group 1

Uninfected liver
Group 2

Mapped mature 358 360 348 356

Mapped hairpin 273 274 266 268

Mapped uniq sRNA 2531 2604 2411 2409

Mapped total sRNA 3086174 3665542 3484600 3037510

Table 4: Novel miRNA mapping

Types Infected liver
Group 1

Infected liver 
Group 2

Uninfected liver
Group 1

Uninfected liver
Group 2

Novel mature 69 76 75 73

Novel star 10 14 12 10

Novel hairpin 72 78 80 77

Mapped uniq sRNA 186 187 161 161

Mapped total sRNA 12381 12103 13702 7981

Table 5: Differentially expressed miRNAs

Type miRNA Fold change P-value P-adjustment

Up-regulated mmu-miR-21a-5p 2.564 1.32E-17 3.15E-15

 mmu-miR-20a-5p 1.610 3.26E-09 3.88E-07

 mmu-miR-339-5p 1.839 5.42E-06 0.0002

 mmu-miR-101a-3p 1.855 8.22E-06 0.0002

 mmu-miR-320-3p 1.507 9.27E-06 0.0002

 mmu-miR-195a-5p 1.805 1.33E-05 0.0003

 mmu-miR-126a-3p 1.486 2.05E-05 0.0003

 mmu-miR-23a-3p 1.585 2.13E-05 0.0003

 mmu-miR-140-3p 1.701 2.45E-05 0.0003

 mmu-miR-28a-5p 1.500 0.0002 0.0018

 mmu-miR-223-3p 1.917 0.0002 0.0023

 mmu-miR-30f 1.504 0.0002 0.0023

 mmu-miR-126a-5p 1.437 0.0003 0.0025

 mmu-miR-126b-3p 1.435 0.0003 0.0025

 mmu-miR-17-5p 1.436 0.0005 0.0036

(Continued )
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Type miRNA Fold change P-value P-adjustment

 mmu-miR-19b-3p 1.485 0.0007 0.0048

 mmu-miR-27a-5p 1.741 0.0011 0.0076

 mmu-miR-486b-3p 1.593 0.0011 0.0076

 mmu-miR-151-3p 1.338 0.0017 0.0093

 mmu-miR-27a-3p 1.389 0.0017 0.0093

 mmu-miR-486a-3p 1.571 0.0017 0.0093

 mmu-miR-99b-5p 1.359 0.0021 0.0106

 novel_1 1.998 0.0030 0.0134

 mmu-miR-3074-5p 1.315 0.0049 0.0202

 mmu-miR-30e-3p 1.325 0.0052 0.0211

 mmu-miR-24-3p 1.306 0.0055 0.0212

 mmu-miR-101c 1.052 0.0069 0.0252

 mmu-miR-378c 1.528 0.0069 0.0252

 mmu-miR-486a-5p 1.494 0.0075 0.0271

 mmu-miR-361-3p 1.379 0.0101 0.0342

 mmu-miR-106b-3p 1.255 0.0153 0.0451

 mmu-miR-142a-3p 1.690 0.0152 0.0451

 mmu-miR-142b 1.690 0.0152 0.0451

Down-regulated mmu-let-7f-5p -1.546 1.73E-07 1.38E-05

 mmu-let-7i-5p -1.705 1.37E-06 6.52E-05

 mmu-miR-365-3p -1.532 1.24E-06 6.52E-05

 mmu-miR-148a-3p -1.662 6.17E-06 0.0002

 mmu-miR-381-3p -2.264 4.87E-06 0.0002

 mmu-miR-370-3p -2.876 8.54E-06 0.0002

 mmu-miR-3071-5p -2.007 1.62E-05 0.0003

 mmu-miR-136-3p -1.987 2.23E-05 0.0003

 mmu-miR-30c-2-3p -1.683 6.94E-05 0.0009

 mmu-miR-128-3p -1.487 7.45E-05 0.0009

 mmu-miR-30d-5p -1.358 0.0002 0.0018

 mmu-let-7a-5p -1.426 0.0002 0.0023

 mmu-miR-340-5p -1.570 0.0002 0.0023

 mmu-let-7g-5p -1.349 0.0003 0.0023

 mmu-miR-493-5p -2.565 0.0003 0.0023

(Continued )
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Type miRNA Fold change P-value P-adjustment

 mmu-miR-218-5p -1.618 0.0003 0.0025

 mmu-miR-127-3p -1.517 0.0003 0.0026

 mmu-let-7e-5p -1.380 0.0006 0.0042

 mmu-miR-98-5p -1.452 0.0012 0.0077

 mmu-miR-409-3p -1.919 0.0013 0.0083

 mmu-let-7c-5p -1.572 0.0015 0.0089

 mmu-miR-139-5p -1.418 0.0015 0.0089

 mmu-miR-129b-3p -1.526 0.0017 0.0093

 mmu-miR-129-5p -1.526 0.0018 0.0095

 mmu-miR-382-3p -2.192 0.0019 0.0096

 mmu-miR-193b-3p -1.554 0.0020 0.0102

 mmu-miR-429-3p -1.738 0.0021 0.0102

 mmu-miR-181b-5p -1.485 0.0023 0.0109

 mmu-miR-1b-5p -1.752 0.0024 0.0110

 mmu-miR-1a-3p -1.751 0.0024 0.0111

 mmu-miR-450a-5p -1.536 0.0025 0.0112

 mmu-miR-423-3p -1.296 0.0034 0.0148

 mmu-miR-328-3p -1.452 0.0035 0.0148

 mmu-miR-532-5p -1.316 0.0048 0.0200

 mmu-miR-148a-5p -1.521 0.0055 0.0212

 mmu-miR-499-5p -1.473 0.0055 0.0212

 novel_115 -2.137 0.0059 0.0223

 mmu-miR-425-5p -1.490 0.0080 0.0283

 mmu-miR-299a-3p -1.481 0.0091 0.0319

 mmu-miR-200a-3p -1.500 0.0099 0.0342

 mmu-miR-30b-5p -1.305 0.0104 0.0350

 mmu-miR-30e-5p -1.486 0.0108 0.0356

 mmu-miR-200a-5p -1.410 0.0110 0.0358

 mmu-miR-26a-5p -1.260 0.0113 0.0363

 mmu-miR-99a-5p -1.379 0.0125 0.0396

 mmu-miR-409-5p -1.705 0.0127 0.0398

 mmu-miR-92a-3p -1.350 0.0132 0.0409

 mmu-miR-129-1-3p -1.769 0.0146 0.0446

 mmu-miR-148b-3p -1.277 0.0167 0.0484
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Figure 4: The top 20 enriched pathways of the predicted host targets of the differentially expressed miRNAs.

Figure 3: GO enrichment analysis of predicted gene targets of differentially expressed miRNAs. Abbreviations: IL vs UL: 
infected liver vs uninfected liver, BP: biological process, MF: molecular function, CC: cellular component.



Oncotarget25608www.impactjournals.com/oncotarget

modulate crucial host cellular targets needed for T. gondii 
replication, miRNAs may hold promise as biomarkers for 
prediction of disease progression. Finally, miRNA pathways 
that are stimulated during infection may offer potential 
targets for therapeutic control of toxoplasmosis.

MATERIALS AND METHODS

Ethics statement

This study was performed in strict accordance 
with the recommendations set forth in the Animal Ethics 
Procedures and Guidelines of the People’s Republic 
of China. All animal experiments were reviewed and 
approved by the Animal Ethics Committee of Lanzhou 
Veterinary Research Institute, Chinese Academy of 
Agricultural Sciences (Approval No. LVRIAEC2014-009). 
Liver tissue collection was performed as a terminal 
procedure under isoflurane anesthesia and all efforts were 
made to minimize suffering.

Animals, parasite infection and sample collection

Twelve, 3 month-old, domestic cats (Felis catus) of 
the Chinese Li Hua breed were purchased from a local 
breeder and were housed in a controlled environment. 
The cats belonged to two litters, six cats per litter. These 
12 cats were randomly allocated to four groups (two 
infected and two control) with three cats per group. 
Before the experiment, all cats were confirmed to be 
free from T. gondii using the modified agglutination test 
and free of major viral infections (e.g. feline calicivirus 
and coronavirus, feline immunodeficiency virus, 
feline leukemia virus, and feline parvovirus) based 
on serological examination. Cats were maintained on 
commercial cat diets (Royal Canine Inc., St. Charles, MO, 
USA) and water ad libitum during the 3 weeks prior to 
experimentation in order to allow cats to acclimate and 
to minimize any potential dietary influence on the study 
results. During the experiment cats were individually fed 
once daily based on daily energy requirements and water 
was available ad libitum.

Toxoplasma gondii strain used in this study was 
the PRU strain (Genotype II), which is maintained in our 
laboratory by passage through Kunming mice as described 
previously [49]. T. gondii type II was used in this study 
because it seems to be the predominant genotype 
circulating in cats [50–52]. Also, the PRU strain is able to 
produce brain tissue cysts in mouse and oocysts in the gut 
of cats and is thus a suitable candidate for a standardized 
challenge model in cats. The number of T. gondii cysts was 
determined using an optical microscope and was adjusted 
to 100 cysts mL−1 in phosphate buffered saline (PBS), pH 
7.4. Each cat was infected by intragrastric inoculation with 
100 cysts in 1 mL PBS. Control cats were sham-infected 
with PBS only. Livers were harvested 7 days post infection 
(7 dpi) in order to allow sufficient time for the infection to 

be established in the liver [1]. Collected livers were rinsed 
extensively in saline, flash frozen in liquid nitrogen, and 
stored at −80°C until processing.

Detection of infection in the liver

Genomic DNA was extracted from the collected 
liver samples using TIANamp Genomic DNA kit 
according to the manufacturer’s recommendations 
(TianGen™, Beijing, China). Then, a semi-nested PCR 
targeting T. gondii B1 gene was performed to detect T. 
gondii infection [53]. DNA samples giving positive B1 
amplification were genotyped using PCR-restriction 
fragment length polymorphism analysis as described 
previously [54].

RNA extraction and qualification

Total RNA was prepared individually from the cryo-
preserved liver tissues of the cats using TRIzol Reagent 
according to the manufacturer's instructions (Invitrogen 
Co. Ltd). RNA degradation and contamination was checked 
on 1% agarose gels. RNA purity was evaluated using 
the NanoPhotometer® spectrophotometer (IMPLEN, 
CA, USA). RNA concentration was determined using 
Qubit® RNA Assay Kit in Qubit® 2.0 Flurometer (Life 
Technologies, CA, USA). RNA integrity was assessed using 
the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 
2100 system (Agilent Technologies, CA, USA).

RNA sequencing library preparation and 
transcriptomic analysis

RNA samples from T. gondii-infected and non-
infected livers collected at 7 dpi were sent to Beijing 
Novogene Bioinformatics Institute for Illumina 
sequencing. To analyze miRNAs by sequencing, a total 
of 3 μg RNAs of three pooled samples from each group 
were used for the construction of four small RNA (sRNA) 
libraries, which were subjected to sequencing on a Hi-seq 
2500 platform. Raw data (raw reads) of fastq format were 
firstly processed through custom perl and python scripts. 
In this step, clean reads were obtained by removing reads 
containing ploy-N, with 5’ adapter contaminants, without 
3’ adapter or the insert tag, containing ploy A or T, or G or 
C and low quality reads from raw data. At the same time, 
Q20, Q30 and GC-content of the raw data were calculated. 
Then, we chose a certain range of length from clean reads 
to do all downstream analyses. Next, the small RNA tags 
were mapped to the feline reference genome sequence 
using Bowtie software [55]. The following parameters 
were used: -k [valid alignments per read], 1; -m [number 
of possible alignments], 10; -l [seed length], 25; --best 
[optimal alignments]).

Mapped small RNA tags were used to look for 
known miRNA. miRBase20.0 was used as reference, 
and modified software mirdeep2 [56] and srna-tools-cli 
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were used to obtain the potential miRNA and draw the 
secondary structures. Custom scripts were used to obtain 
the miRNA counts and base bias on the first position of 
identified miRNA with certain length and on each position 
of all identified miRNA, respectively. To remove tags 
originating from protein-coding genes, repeat sequences, 
rRNA, tRNA, snRNA, and snoRNA, small RNA tags were 
mapped to RepeatMasker, Rfam database or those types of 
data from the specified species itself.

The available software miREvo [57] and mirdeep2 
[56] were integrated to predict novel miRNA through 
exploring the secondary structure, the dicer cleavage 
site and the minimum free energy of the small RNA tags 
unannotated in the former steps. miRNA expression levels 
were estimated with TPM (transcript per million) units 
[58]. Differential expression analysis of infected versus 
control groups was performed using the DESeq R package 
(1.8.3). The P-values was adjusted using the Benjamini & 
Hochberg method. Corrected P-value of 0.05 was set as 
the threshold for significantly differential expression by 
default.

Predicting the target gene of miRNA was performed 
by psRobot_tar in miRanda [59]. Gene Ontology (GO) 
enrichment analysis was used to categorize the target 
genes of the differentially expressed miRNAs. GOseq 
based Wallenius non-central hyper-geometric distribution 
[60], which can adjust for gene length bias, was 
implemented for GO enrichment analysis. The enrichment 
of target genes in KEGG pathways were tested by the 
software KOBAS [61].

Validation of miRNA expression

The stem-loop quantitative reverse transcription 
PCR was used to validate the results of miRNA expression 
analysis as described previously [21, 62]. Stem-loop RT-
PCR was performed on ABI PRISM® 7500 Sequence 
Detection System using SYBR Green qPCRSuperMix 
according to the manufacturer's protocol (Invitrogen). All 
qRT-PCR reactions were performed in three replicates. 
Gene expressions were calculated by 2−ΔΔCT relative 
expression method as previously described [63]. snRNA 
U6 was used as normalization control in qRT-PCR.
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