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ABSTRACT
Goat peroxiredoxin-5 (gPRDX5) was verified as a good anti-cancer bioactive 

peptide (ACBP) against different tumor cell lines. Considering the immunogenicity 
between species for further therapeutic application, it is necessary to similarly 
investigate the antitumor activity of human peroxiredoxin-5 (hPRDX5) with 89% 
similarity in sequence to gPRDX5. In order to evaluate its antitumor activity, the 
potential anti-neoplastic effect of hPRDX5 on a mouse model was observed directly. 
The results of its in vivo antitumor activity suggested that hPRDX5 could resist 
immunosuppression by promoting lymphocyte proliferation and up-regulating the 
levels of serum cytokines. Meanwhile, PD-L1 was speculated as one of the targets of 
hPRDX5 to inhibit tumor by enhancing the immune activity according to a preliminary 
molecular docking study on the interactions between hPRDX5 and PD-L1. The modeling 
provides a basis for structural modification on hPRDX5/PD-L1 for further biological and 
biochemical study on the pathway blocking mechanism of hPRDX5. In this work, the 
results demonstrate that hPRDX5 displays efficient antitumor and immunoregulatory 
properties in the colon cancer C26/BALB/c and melanoma B16/C57Bl/6 mice tumor 
models, and suggest the potential of developing peptides from hPRDX5 as low 
molecular weight drug candidates for corresponding cancer immunotherapy.

INTRODUCTION

The goat peroxiredoxin-5 (gPRDX5) is an anti-cancer  
bioactive peptide (ACBP), which was first identified 
by Xiulan Su [1] from goat spleen or liver which was 
immunized with human gastric cancer protein extract. 
In long-term animal experiments, this ACBP exhibited 
potential antitumor activities without measurable side 
effects [1–4]. And, its anti-cancer effect was mainly 
exerted by affecting cell cycle and inducing cell 
apoptosis [5]. In combination with Cisplatin, gPRDX5 
also reduced chemotherapy dosage and decreased 
toxicity, thus improving the life quality of xenograft nude 
mice bearing human gastric cancer [5–8]. However, the 
procedure of immunization and purification to acquire 

the peptide was complicated and time-consuming, and the 
yield was low as well. Therefore, we identified the amino-
acid sequence of the peptide by employing 2D-nano-LC-
ESI-LTQ-Orbitrap MS/MS in combination with Mascot 
database search in the goat subset of the Uniprot database 
and purified the corresponding protein by heterogeneous 
expression [9]. Thereafter, the anti-cancer bioactivity of 
gPRDX5 was confirmed with several kinds of tumor-cells 
and indicated that it was a good anti-cancer candidate, 
especially against B16 cells.

Considering the immunogenicity between species 
for further therapeutic applications, the human homologue 
protein of gPRDX5 was designed for further investigation 
on its antitumor activity, based on the speculation that 
homologous proteins in sequence have similar structures 

Research Paper



Oncotarget27190www.impactjournals.com/oncotarget

and thus similar functions. Therefore, the sequence of 
gPRDX5 was analyzed by BLAST on the website http://
blast.ncbi.nlm.nih.gov/Blast.cgi to search its human 
homologue, and the result showed that the human 
peroxiredoxin-5 (hPRDX5) was 89% similar to gPRDX5. 

The peroxiredoxins (PRDXs) are a ubiquitous 
family of antioxidant enzymes which catalyze the 
reduction of hydrogen peroxide, alkyl hydroperoxides 
and peroxynitrite [10]. Mammalian cells express six 
isoforms of PRDXs (PRDX1 to PRDX6), and all these 
six isotypes have been discovered in distinct subcellular 
locations and show a wide tissue distribution [11]. 
Peroxiredoxin 5 (PRDX5), the last isoform identified in 
the peroxiredoxin family, possesses unique properties [12]. 
First, PRDX5 is the only mammalian member of the 
atypical 2-Cysteine (2-Cys) PRDX subfamily [13]. 
Second, PRDX5 exhibits a remarkably wide subcellular 
localization such as mitochondria, cytosol, peroxisomes, 
and nucleus [14]. And third, PRDX5 plays many vital 
roles under physiopathological conditions. For instance, 
overexpression of PRDX5 in human tendon cells induces 
apoptosis following H2O2 treatment [15], up-regulation of 
PRDX5 has been reported in osteoarthritic cartilage and 
in TNF-α or IL-1β treated cartilage explants from patients 
with osteoarthritis [16], and PRDX5 was proven to be 
an anti-fibrotic effector that sustains renal physiology by 
inhibiting stat3 activation in rat kidney interstitial fibroblast 
cells [17]. However, the antitumor effect of PRDX5 has 
not yet been reported substantially. In view of this, we 
investigate the antitumor potential of hPRDX5, triggered 
by the antitumor activities of gPRDX5, herein in details. 

An intact immune system is capable of recognizing 
and eliminating tumor cells through immune checkpoints. 
However, tumors can adapt to and circumvent these 
natural defense mechanisms [18–20]. The interaction 
between the programmed death 1 (PD-1) receptor and its 
ligand 1 (PD-L1) is a key pathway hijacked by tumors 
to suppress immune control [21–24]. Programmed cell 
death-1 (PD-1), an immunoinhibitory receptor of the 
CD28 family, which plays a major role in tumor immune 
escape [25, 26], is an inhibitory receptor expressed on 
the surface of T cells that physiologically limits T-cell 
activation and proliferation [27]. PD-L1 is one of two 
PD-1 ligands and is expressed on both antigen-presenting 
cells and T cells. Binding of PD-L1 to the PD-1 receptor 
regulates T cells negatively, causing decreased production 
of the effector cytokines, such as IL-2 and IFN-γ [28–30]. 
Therefore, blocking these interactions showed outstanding 
promise in restoring T cells’ activity and reactivating the 
immune system to recognize and eradicate tumor and 
infected cells [31–33].

In our investigation, by taking advantage of 
molecular docking, the PD-L1 was selected as the 
potential target of hPRDX5 in the preliminary modeling 
for two reasons. First, PD-L1 is highly up-regulated in 
many types of tumor cells, such as melanoma, ovarian 

and lung cancers [34]. Second, the preliminary mechanism 
study revealed that hPRDX5 could increase the content 
of IL-2 significantly, which may function by inhibiting 
PD-L1. The potential mechanism by which the binding of 
hPRDX5 to PD-L1 exerts antitumor activity, by blocking 
the pathway of PD-1/PD-L1, was discussed based on a 
predicted structural modeling of hPRDX5-PD-L1 complex 
for further biological investigations.

RESULTS AND DISCUSSION 

Antitumor activity in C26-injected mice

Colorectal cancer (CRC) is the third most common 
cancer worldwide and the fifth leading cause of death 
related to cancer in China [35]. Therefore, we monitored 
the tumor growth in a mouse model of colon cancer. We 
found significant decreases in the tumor growth in mice 
treated with hPRDX5 in a dose-dependent manner. The 
inhibition rate of 150 mg/kg hPRDX5 was 32.16%, which 
demonstrated that hPRDX5 inhibited tumor growth in 
C26-injected mice (Figure 2). In order to preliminarily 
explore the action mechanism of hPRDX5, the effects of 
hPRDX5 on spleen and thymus indices of C26-injected 
mice were evaluated. Both of them were increased 
significantly compared with control group when the mice 
were treated with hPRDX5 in a dose-dependent manner 
(Figure 3), indicating that hPRDX5 was able to counteract 
the effect of immunosuppression on immune organs 
development and protect the immune organs against the 
impairment caused by tumor. Hence, we hypothesize that 
it possesses the capacity of suppressing tumor through 
regulating organism immune function.

Antitumor activity in melanoma B16-bearing mice

To get insight into its activity in tumor immunity 
and function mechanism, we observed the tumor growth 
in melanoma B16-bearing mice, which is commonly 
used to investigate tumor immunity. We found significant 
decreases in the tumor growth in mice treated with 75.0 
mg/kg hPRDX5, which is the optimal dose in preliminary 
experiments, compared with those observed in mice 
treated with IL-2 (25.0 ng/kg), IFN-γ (5.0 μg/kg) or 
PBS. The results demonstrated that the inhibition rate 
of hPRDX5 was above 39% (Table 1), which suggested 
that hPRDX5 was likely to possess broad-spectrum 
anti-tumor activity in vivo. To identify the potential 
underlying mechanism of tumor suppression of hPRDX5, 
its effects on the proliferation of mitogen-induced splenic 
lymphocytes and the levels of cytokines were evaluated 
subsequently.

Lymphocytes are the key effector cells of 
mammalian adaptive immune system. Lymphocyte 
proliferation is the direct indicator reflecting the state 
of immunity in animal. Cell-mediated immunity can 
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Figure 1: Coomassie stained SDS-PAGE gel of purified hPRDX5. The DNA fragment of hPRDX5 was constructed to expression 
vector pET-28a(+) and the plasmid was then transformed to BL21 (DE3) for  heterogeneous expression. The hPRDX5 was purified by 
Affinity Chromatography and the molecular weight was about 17 kDa.

Figure 2: The anti-cancer bioactivity of hPRDX5 in C26-injected mice. (A) Tumors were harvested after treated with hPRDX5 
and controls (TPT and PBS). (B) The inhibition rate of tumor was evaluated by measuring the tumor weight compared with solvent control. 
The tumor growth was decreased significantly in mice treated with hPRDX5 in a dose-dependent manner. The highest inhibition rate was 
32.16 %, which demonstrated that hPRDX5 was likely to a potential tumor suppressor. (P < 0.05 compared to control group).
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exert the actions of anti-infection, antitumor, helping 
lymphocyte produce antibody by sensitized lymphocyte 
against corresponding antigen [36]. In contrast, 
humoral immunity refers to antibody production and 
the accessory processes that accompany it, including: 
Th2 activation, germinal center formation and 
isotype switching, affinity maturation and memory 
cell generation. As generally known, concanavalin A 
stimulates lymphocyte T cells, which are involved in 
cell-mediated immunity, and LPS stimulates B cell 
proliferation are responsible for humoral immune 
response. Therefore, we investigated the effect of 
hPRDX5 on lymphocyte proliferation with mitogen 
stimulation. As illustrated in Figure 3, the proliferative 
responses of splenic lymphocytes to concanavalin A 
and LPS were enhanced significantly compared with 
the control group. The proliferation of lymphocytes 
were enhanced by hPRDX5 with the stimulation 
index of 1.75, 2.53, 2.51 and 2.96 in the presence of 
LPS at 1, 5, 10, 20 μg/ml, respectively (Figure 4A). 
Likewise, in the presence of concanavalin A at 5, 10, 
20 μg/ml hPRDX5 elicited an increase in lymphocytes 
proliferation by 1.67, 1.91 and 1.87, respectively 
(Figure 4B). These results suggested that hPRDX5 
improved both cellular and humoral immunity in 
melanoma B16-bearing mice by enhancing both T cell 
and B cell proliferation.

Cytokines play an important role in cell-cell 
communication in the immune system. Thereupon, 

we determined the effects of hPRDX5 on the 
levels of cytokines. The levels of interleukin-2 
(IL-2), interleukin-4 (IL-4), interleukin-6 (IL-
6), interleukin-10 (IL-10), tumor necrosis factor-α 
(TNF-α) and tumor necrosis factor-β (TNF-β) increased 
significantly except interferon-γ (IFN-γ) reduced 
slightly (Figure 5), which indicated that hPRDX5 
could promote the secretion of IL-2, IL-4, IL-6,  
IL-10, TNF-α and TNF-β. Therefore, we speculate that 
hPRDX5 has regulatory effects on inflammation and 
lymphocyte functions through these cytokines secretion 
to possess its anti-cancer activities.

Interaction between hPRDX5 and PD-L1 
through molecular modeling

Based on the previously proposed sites of PD-L1 
residues important for the inhibitor binding [37, 38], we 
carried out a modeling study to investigate the potential   
interaction between hPRDX5 and PD-L1. In the predicted 
model, almost all the key interactions between hPRDX5 
and the binding site of PD-L1 are conducted by the four 
conservative residues (Glu16, Asn21, Glu27 and Lys30) 
in hPRDX5 (Figure 6): For example, there are three 
hydrogen bonds between Lys30 of hPRDX5 and Tyr123 
of PD-L1, Asn21 of hPRDX5 and Pro24 of PD-L1,  
and Arg95 of hPRDX5 and Asp122 of PD-L1. The 
conservative nature of these residues in hPRDX5 and 
other PRDX enzymes suggests that their important roles 

Figure 3: Effects of hPRDX5 on spleen and thymus indices in C26-injected mice. The spleen and thymus indices were 
increased significantly compared with control group when the mice were given intraperitoneal injection of hPRDX5 at 12.5, 25.0, 50.0, 
75.0 or 150.0 mg/kg, respectively (P < 0.05 compared to control group).
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Table 1: The anti-cancer bioactivity of hPRDX5 in a melanoma B16/C57Bl/6 mice tumor model
Group Dose Number of animals Tumor weight (g) Inhibition rate (%)

Solvent control 10/10 2.70 ± 0.26

IL-2 25.0 ng/kg 8/8 1.77 ± 0.57*** 34.47

IFN-γ 5.0 μg/kg 8/8 2.09 ± 0.59* 22.71

hPRDX5 75.0 mg/kg 8/8 1.63 ± 0.36*** 39.44

The inhibition rate of 75 mg/kg hPRDX5 was above 39 %, whereas the inhibition rates of IL-2 and IFN-γ were about 34% and 22%, 
respectively (*P < 0.05, ***P < 0.001 compared to control group). Data are means ± SD of eight animals. 

Figure 4: Effect of hPRDX5 on mitogen-induced splenic lymphocyte proliferation. (A) LPS; (B) ConA. The proliferative 
responses of splenic lymphocytes to concanavalin A and LPS were enhanced significantly as compared with the control group. The 
proliferation of lymphocytes were enhanced by 75.0 mg/kg hPRDX5 with the stimulation index of 1.75, 2.53, 2.51 and 2.96 in the presence 
of LPS at 1, 5, 10, 20 μg/ml, respectively. Likewise, in the presence of concanavalin A at 5, 10, 20 μg/ml hPRDX5 elicited an increase in 
lymphocytes proliferation by 1.67, 1.91 and 1.87, respectively. (P < 0.05 compared to control group) 

Figure 5: Effect of hPRDX5 on the levels of cytokines. The levels of IL-2, IL-4, IL-6, IL-10, TNF-α and TNF-β were increased by 
75.0 mg/kg hPRDX5, but IFN-γ was reduced slightly. The secretion of IL-2 was promoted most significantly. Data are means ± SD of eight 
animals (P < 0.05 compared to control group).
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in forming the binding interface with PD-L1. Based on 
the current modeling results, the in vivo investigation on 
the potential interaction between hPRDX5 and PD-L1 
is being carried on, which will be published in the near 
future. Furthermore, the identified residues of hPRDX5 
are important to help in designing small peptides which 
can act as protein-protein interaction inhibitors with lower 
manufacturing costs and higher stability (Figure 7) for 
clinical therapeutic applications. This model provides 
the tool to fully use this unique immunotherapeutic 
pathway and rationally develop more effective and safer 
peptide inhibitors to block the protein-protein interactions 
involved in this pathway.

MATERIALS AND METHODS

Materials and reagents

Escherichia coli Trans 5α and BL21(DE3) strains 
and affinity chromatography ProBond resin (Ni2+) were 
bought from TransGen Biotech (Beijing, China) and 
Promega (Madison, WI), respectively. Trypsase, BamHI 
and HindIII were merchandised from New England 
Biolabs (Beijing, China). Tris base of molecular biology 
grade, NaCl, CaCl2, anhydrous Na2CO3, NH4HCO3, 
NaHCO3, and NaOH were purchased from Sigma-Aldrich 
Co. (St Louis, USA). HCl solution (37%), acetonitrile, 

Figure 7: Schematic representation of de novo peptide design.

Figure 6: Overall structure of the hPRDX5/PD-L1 complex (right). hPRDX5 and PD-L1 are shown in green (ribbon diagram) 
and pink (surface representation), respectively; Close-up views of interfaces. Residues involved in hydrogen bonds (green dashes) are shown.
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formic acid (FA), glacial acetic acid were obtained from 
Thermo Fisher Scientific (Billerica, USA). 

Ten percent sodium dodecyl sulfate (SDS) 
solution, ammonium persulfate, tricine, 5× sample 
buffer, glycine, 30% acrylamide/bis (29:1), and 
N,N,N’,N’ -tetramethylethylenediamine (TEMED) are 
electrophoresis purity reagents purchased from Bio-Rad 
Laboratories Inc. (Hercules, USA). Exact-Pro broad range 
(11-180kDa) pre-stained protein ladder was from Genstar 
(Beijing, China). Na2S2O3, Coomassie brilliant blue were 
purchased from Sigma-Aldrich Co. (St Louis, USA). 
Iso-propyl-thio-β-galactoside (IPTG), kanamycin and 
imidazole were purchased from Sigma (St Louis, USA). 
Bacto-yeast extract and Bacto-tryptone were obtained 
from OXOID (UK).

Expression and purification of recombinant 
Human PRDX5

Human PRDX5 (GenBank Accession No. 
NM_012094), the short form without its mitochondrial pre-
sequence, was expressed in Escherichia coli BL21(DE3) 
strain as 6×His-tagged fusion protein using pET28a(+) 
expression vector and purified as described previously 
(gPRDX5) [9]. Eventually, a pure protein of about 17 kDa 
was acquired by heterogenesis expression (Figure 1).

Animal models and treatment

All animal experiments were conducted in 
accordance with The Standards for Laboratory Animals 
(GB14925-2001) and The Guideline on the Humane 
Treatment of Laboratory Animals (MOST 2006a) 
established by the People’s Republic of China. And our 
protocols confirmed to the guidelines of Chinese Academy 
of Medical Sciences for experimental animal care and use.  

The model of C26-injected mice

Cachexia was induced by subcutaneous grafting of a 
0.5 mm3 fragment of colon carcinoma (C26, obtained from 
the Institute of Basic Medical Sciences, Chinese Academy 
of Medical Sciences) in the dorsal region of 6- to 8-week-
old BALB/c female mice. Mice were housed in standard 
conditions with day/night cycles of 12 hours and assigned 
to experimental and control groups (8 mice per group). 
Different concentrations of hPRDX5 (12.5, 25.0, 50.0, 75.0, 
150.0 mg/kg) in sterile PBS (100 μl) were subcutaneously 
injected into the mice once a day for 20 days starting 
on day 5 prior to the inoculation of tumor. Control mice 
received the same volume of topotecan hydrochloride 
(TPT) (3.0 mg/kg), is of a wide range of applications in 
chemotherapy against various malignancies [39, 40], once 
three days after tumor transplantation (positive control) or 
PBS (solvent control) as described in hPRDX5.

The model of melanoma B16-bearing mice

Experiments were performed using the model of 
melanoma B16 developed in C57Bl/6 male mice aged 
6–8 weeks. The model of primary tumor growth (hereafter 
“subcutaneous melanoma”) was induced by subcutaneous 
inoculation of B16 cells (2 × 105 cells per mouse, obtained 
from the Institute of Basic Medical Sciences, Chinese 
Academy of Medical Sciences) into the withers of each 
mouse. After tumor transplantation, the animals were 
assigned to experimental and control groups (8 mice per 
group) and were then kept in their compartments until 
the end of the experiment. The hPRDX5 of 75.0 mg/kg 
in sterile PBS (100 μl) was subcutaneously injected into 
the mice once a day for 20 days starting on day 5 prior 
to the inoculation of tumor. Control mice received the 
same volume of IL-2 (25.0 ng/kg) [41], IFN-γ (5.0 μg/kg) 
[42] once three days after tumor transplantation (positive 
control) or PBS (solvent control) as described in hPRDX5. 

On 15th day after the tumor transplantation the 
mice were euthanized, tumor weight was measured, and 
the peripheral blood, thymuses and spleens were isolated 
for further analysis. The inhibition rate of tumor was 
calculated by the following equation: Inhibition rate (%) 
= (1-Tumor weighttest/Tumor weightsolvent control)×100%.

Lymphocyte proliferation test

Cell proliferation was assessed as described by 
Swamy SM et al [43]. Splenocytes were obtained by 
gently placing the organ in RPMI-1640 medium (Sigma, 
USA) under aseptic conditions, followed by filtration and 
centrifugation (1000 rpm for 5 min) at room temperature. 
The erythrocytes were removed by hemolytic Gey’s 
solution, while the remaining cells were centrifuged at 
1000 rpm for 5 min. After two washes, the splenocytes 
were re-suspended in RMPI-1640 medium containing 10% 
fetal bovine serum (FBS), and adjusted to 1 × 107 cell/ml.  
100 μl of splenocyte suspension (1 × 107 cell/ml) in a 96-
well culture plate was cultured in RPMI-1640 medium 
containing 10% fetal bovine serum (FBS) with the addition 
of mitogens (LPS at 5, 10, 20 μg/ml or concanavalin A at 1, 
5, 10, 20 μg/ml) (Sigma, USA). After incubation for 72 h 
at 37°C in a humidified 5% CO2 incubator, the number 
of proliferating cells was determined after centrifugation 
(1500 rpm for 10 min) by MTT assay [44] at a wavelength 
of 570 nm. The stimulation index was calculated by the 
following equation: Stimulation index = ODtest/ODcontrol.

Determination of serum cytokine levels by the 
ELISA assay

The levels of IL-2, IL-4, IL-6, IL-10, TNF-α, TNF-β 
and IFN-γ in the serum of the mice from experimental 
and solvent control groups were determined using the 
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mouse ELISA kits (Beyotime, China) according to the 
manufacturer’s protocols. 

Molecular modeling

Discovery Studio 2.5 (Accelrys) was used for the 
modeling study and structure analysis. The representative 
crystal structures of hPRDX5 (1hd2) and PD-L1 
(4z18) were obtained from the Protein Data Bank [45]. 
The potential interaction of hPRDX5 and PD-L1 was 
minimized and determined using the ZDOCK program 
[46, 47]. ZDOCK performs a fast Fourier transform search 
of all possible binding modes for proteins based on shape 
complementarity, desolvation energy, and electrostatics. 
Docking was carried out without specifying the binding 
residues so that the docking results will reflect the most 
possible interaction patterns without any arbitrary restrain. 
Of the 3600 poses generated, only the top 100 poses 
were retained. By manual analysis of the complexes, the 
important residues of Phe19, Asp122 and Tyr123 of PD-L1  
involving in the interactions with PD-1 mentioned by 
Horita S et al. [37], were found in the complex that is 
ranked fifth on the basis of docking Z-Score.

Statistical analysis

All statistical comparisons were carried out using 
one-way ANOVA test followed by Tukey’s test (data are 
expressed as mean ± SD). P-values less than 0.05 were 
considered to be a statistically significant difference.

CONCLUSIONS

In summary, the amino-acid sequence of gPRDX5, 
which is one of anti-cancer bioactive peptides (ACBPs), 
was identified in our lab. Meanwhile, we confirmed the 
anti-cancer bioactivity of gPRDX5 in vitro [9]. In this 
study, to overcome the immunogenicity between species 
for further therapeutic application, we got the sequence 
information of hPRDX5 by BLAST according to 
gPRDX5’s sequence, and expressed the hPRDX5 protein 
with synthetic DNA sequence. Whereafter, the anti-cancer 
bioactivity of hPRDX5 was evaluated in colon cancer 
C26/BALB/c and melanoma B16/C57Bl/6 mice tumor 
models, and the results suggest that hPRDX5 could 
resist immunosuppression by promoting immune organs 
development, lymphocyte proliferation and up-regulation 
of the levels of serum cytokines. Moreover, the molecular 
docking study on hPRDX5/PD-L1 allows for a theoretical 
interpretation of PD-L1 immune blockade pathway by 
hPRDX5. In a word, our results provide a promising basis 
for getting more insights into PD-1/PD-L1’s immune 
regulation and future development of the corresponding 
immunomodulating peptides related to hPRDX5 as drug 
candidates against corrcancers. 
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