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ABSTRACT
Mutated KRAS plays an important role in many cancers. Although targeting 

KRAS directly is difficult, indirect inactivation via synthetic lethal partners (SLPs) is 
promising. Yet to date, there are no SLPs from high-throughput RNAi screening, which 
are supported by multiple screens. Here, we address this problem by aggregating 
and ranking data over three independent high-throughput screens. We integrate 
rankings by minimizing the displacement and by considering established methods 
such as RIGER and RSA.

Our meta analysis reveals COPB2 as a potential SLP of KRAS with good support 
from all three screens. COPB2 is a coatomer subunit and its knock down has already 
been linked to disabled autophagy and reduced tumor growth. We confirm COPB2 as 
SLP in knock down experiments on pancreas and colorectal cancer cell lines.

Overall, consistent integration of high throughput data can generate candidate 
synthetic lethal partners, which individual screens do not uncover. Concretely, we reveal 
and confirm that COPB2 is a synthetic lethal partner of KRAS and hence a promising 
cancer target. Ligands inhibiting COPB2 may, therefore, be promising new cancer drugs.

INTRODUCTION

KRAS and cancer

KRAS (Kirsten rat sarcoma viral oncogene homolog) 
is a protooncogene, whose constitutive activation through 
point mutations drives the neoplastic transformation in 
many cancers. Somatic KRAS mutations are frequent 
inleukemia, ovarian, colon, thyroid and lung cancers [1]. 
KRAS is one of the most frequently activated oncogenes, 
with 17 to 25% frequency among all human tumors. 90% 
of pancreatic tumors harbor an activating KRAS mutation. 
KRAS is a small GTPase molecule, which acts as a GTP to 
GDP converter in its wild type state. When KRAS is in its 
active or GTP-bound state, it contributes to the propagation 
of growth factor signals from the extracellular environment 

to the nucleus. Growth factors are responsible for 
stimulating processes important to the cell, such as growth, 
proliferation, healing, and differentiation. Normally, KRAS 
is inactivated again by GAP. However, mutated KRAS loses 
this capability and remains locked in its active state. Upon 
activation, KRAS drives the RAS-MAPK pathway leading to 
uncontrolled proliferation. KRAS is considered to be largely 
undruggable [2, 3] and despite recent successes [4] patients 
with KRAS mutations still have very poor prognosis.

Synthetic lethality

Due to the difficulty of directly inhibiting KRAS, it has 
been proposed to repress its synthetic lethal partners [5]. Two 
genes are synthetic lethal if their simultaneous perturbation 
results in death, whereas a perturbation of just one of the two 
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does not [6]. Concretely, a synthetic lethal partner (SLP) of 
KRAS is lethal to the cell if the cell has mutated KRAS, but it 
is not lethal in a cell with wild-type KRAS.

Therapeutic strategies leveraging synthetic 
lethality have recently been brought to clinical trials with 
encouraging first results [5]. The most promising ex-ample 
is the synthetic lethal interaction of PARP and BRCA1/
BRCA2 in cases of ovarian and breast cancer, which was 
very successful in phase II clinical trials [7]. Another 
study has recently demonstrated success in simultaneously 
targeting two genes interacting with KRAS [8], which 
further increases the complexity of the search space for 
new treatment options.

RNAi screens for KRAS SLPs show little overlap

In the past, several knock-down approaches 
identified candidate KRAS SLPs (e.g. [9–14]; see 
Supplementary Information for a complete list). 
Conceptually, all of these screens are similar: several 
genes in cells with and without activating KRAS 
mutations are knocked-down and then screened for 
inhibitions that preferentially kill KRAS mutated cells. 
The major limitation of this approach is the inconsistency 
between the experimental results. Supplementary Table 1 
lists some 70 KRAS SLPs, but there is no SLP confirmed 
by all of the screens and studies. A mere seven SLPs 
(proteasome components APC/C, PSMA5, PSMB5, 
PSMB6 and PSMD14, as well as BIRC5, and GATA2) 
are shared between two studies. Such inconsistencies 
arise due to the use of cell lines with different genetic 
backgrounds, use of different RNAi libraries, or due to 
different assays for quantifying the SLP phenotype. For 
example, different RNAi constructs targeting the same 
genes could differ with respect to their off-target effects 
[15, 16], leading to deviating phenotypes.

Robust SLPs though consistent data integration 
across screens

Despite these inconsistencies, we hypothesize that 
a consistent aggregation and re-ranking can lead to SLP 
candidates, which are supported by multiple screens and 
are hence more robust. Therefore, we set out to combine 
results from multiple screens using a computational 
framework that specifically identifies genes consistently 
showing SLP effects across screens. The framework 
accounts for variable sizes of the screens (numbers of 
genes targeted), variable numbers of cell lines used, 
and different noise levels in the screens and is therefore 
robust. Consider Figure 1: First, we identify three relevant 
screens and normalize and rank screens individually. 
Second, we find 1069 genes common to all three screens. 
Third, we integrate the three rankings minimizing overall 
displacements of genes. Forth, we combine the aggregated 
ranking with other, established methods (Riger and RSA) 

leading to a robust prediction consistent across screens 
and consistent across methods. Finally, the prediction is 
experimentally validated.

RESULTS

Selected screens with minimal experimental 
variation share 1069 genes

Three large-scale RNAi screens were selected for 
prioritizing robust SLP candidate genes [10–12] (see Table 
1 [10–12] and Figure 1).

Subsequently, we refer to these screens based on 
their first author’s names as Luo, Wang, and Steckel. 
These screens were chosen because they were performed 
on isogenic cell lines, which minimizes variance due 
to the genetic background, and because all cell lines 
originate from colorectal cancer with a G13D mutation, 
which further increases the similarity of the targeted 
cells. The Luo and Wang screens measured the impact 
of 1-15 (average 3) and 3 independent shRNAs per gene, 
respectively. Steckel, on the other hand, measured the 
impact of pools of 4 siRNAs per gene on caspase activity 
as a readout for apoptosis. Hence, whereas the Luo and 
Wang screens provide one cell viability score per shRNA 
(i.e. multiple per gene), the Steckel screens only reports 
one value per gene. Further, the Luo and Wang screens 
were performed in three replicates each, whereas only 
one replicate per gene is available from the Steckel screen 
(Table 1). All subsequent analyses were performed using 
the 1069 genes commonly targeted by all three screens. 
Due to the gene selection in the original screens, these 
1069 genes are enriched for druggable kinases and for 
known cancer genes. Data from the Luo and Steckel 
screens had already been normalized by the authors 
using the mean and median absolute deviation (MAD), 
respectively. Data from the Wang screen were normalized 
by us using MAD [17]. Subsequently, individual gene 
scores were computed as follows.

In the case of the Steckel screen, where only 
summarized per sample and per gene measurements are 
available, we selected the genes that induce a KRAS - 
mutant cell specific apoptosis rate, which is higher than 
the median +1 KRAS -mutant apoptosis rate. In case of 
the other two screens, where replicates were available, we 
computed the average difference in cell viability between 
KRAS mutants and KRAS wild type cells (averaged across 
siRNA constructs) and determined the significance of that 
difference using the paired t-test. We refer to this initial 
data processing as Standard Method. More details are 
provided in the Methods section.

Poor consistency between screens

As discussed above, the three screens have a similar 
experimental set- up and they all aim to find SLPs of the 
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G13D KRAS mutation. Yet, when ranking the screens 
individually using the Standard method (see Methods), 
there is poor agreement. The three screens share only three 
genes (BACH2, FOS, COPB2) within the top 10% of their 
rankings. Among any two screens there are between 15 to 
66 genes in common. In fact, only the intersection of the 
Luo and Wang screen is significant (p-value of 0.0123, 
Fisher’s exact test). The intersections of Luo/Steckel and 
Wang/Steckel are not better than chance (p-value greater 
0.08, Fisher’s exact test). The slightly better p-value for 
Luo/Wang might result from replicate measurements, 
which likely improved the stability of the results. 
Nonetheless, the screens do not agree.

Luo ranks known SLPs high, steckel and wang 
don’t

In order to further evaluate the quality of the 
screens we assembled 28 known SLPs from literature 

(Supplementary Table 1). 21 of these SLPs were common 
to all three screens and are subsequently referred to as 
’Gold Standard Genes’ (GSGs). We investigated the 
ranking of these GSG in each screen (Figure 2). In a 
successful screen, GSGs should rank high. However, 
Luo was the only screen enriching GSGs at the top of 
the list. These findings further underline the considerable 
variability inherent in the screens.

Rank aggregation with spearman’s footrule

Consider Figure 1. In the third step, the three 
selected screens are aggregated. In order to obtain such 
an aggregated gene ranking that is maximally consistent 
between the screens, we re-rank the genes such that the 
deviation of the aggregated ranking is minimal with 
respect to the three original rankings. Here, we use 
Spearman’s footrule to quantify differences between 
rankings.

Table 1: RNAi datasetes
Author Genes Isogenic Cell lines
Luo, Cell, 2009 [10] 19569 2 isogenic DLD1 KRAS+/− wild-type  

DLD1 KRAS+/G13D mutant
Steckel, Cell Res., 2012 [11] 7283 2 isogenic HKE3 KRAS+/+ wild-type  

HCT116 KRAS+/G13D mutant
Wang, Oncogene, 2010 [12] 1740 2 isogenic HKE3 KRAS+/+ wild-type  

HCT116 KRAS+/G13D mutant

Three RNAi screens for KRAS synthetic lethal partners serve as base for the present meta analysis.

Figure 1: (1) We identified three KRAS SLP RNAi screens (Luo, Steckel, Wang) and normalized and ranked the genes per screen. (2) The 
three screens share 1069 genes. (3) The three rankings are aggregated by minimal displacement into one new optimized ranking (brown). 
(4) The ranking is combined with the established Riger and RSA ranking methods leading to a novel predicted SLP that is consistently high 
across screens and methods. (5) The predicted SLP is experimentally tested in a knock-down experiment.
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Spearman’s footrule calculates the difference 
between a set of ranked lists by measuring the total 
number of displacements for an element (here gene) across 
the lists. The RankAggreg algorithm aims at minimizing 
Spearman’s footrule between the input lists and the output 
aggregated list [18]. Please see Methods for more details 
on Spearman’s footrule distance.

Weighted rank aggregation on luo, wang, and 
steckel

We ranked the Luo, Wang, and Steckel screens 
using the standard method (see Methods) and applied the 
above rank aggregation procedure. To reflect the screens’ 
performance in recovering known SLP from the gold 
standard list we computed the fraction of gold standard 
genes in the top 10% and normalized the score to 1. Using 
this scheme we assigned the weights 0.6, 0.3, and 0.1 

to the Luo, Wang, and Steckel screens, respectively. We 
ran the Rank-Aggreg method 100 times, because it uses 
heuristics for finding the optimal ranking and therefore 
varies between runs.

Rankings with RSA and riger

Besides the standard method used above, RSA 
(Redundant siRNA Activity) and RIGER (RNAi Gene 
Enrichment Ranking) [19, 20] are two established and 
widely used ranking methods. While the standard method 
is applicable to all screens, RIGER and RSA require 
independent measurements for multiple siRNAs per gene 
and can therefore only be applied to Luo and Wang. RSA 
is considered the most robust gene ranking method in this 
context [17].

RIGER and RSA methods return a p-value for each 
gene, after evaluating the contribution of the different 

Figure 2: How well do rankings from screens recover the 21 known SLPs (gold standard), which were part of the 
screens? Luo (black) performs better than random, while Wang and Steckel perform slightly worst. Thus, more weight will be given to the 
Luo screen than to the Steckel and Wang screens.
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shRNAs that target it. The RIGER algorithm calculates 
a p-value for each gene, indicative of the significance of 
the differential KRAS mutant and KRAS wild type cell 
viability caused by the gene’s knock down. To this aim a 
weighted sum approach based on the signal to noise ratio 
was utilized. For the RIGER method, a simple criteria 
of p-value < 0.05 was sufficient. RSA on the other hand 
assigns a value to each experimental well. The inputs 
provided to RSA are the summarized mutant-wild type 
values per well for Luo and for Wang screens. According 
to RSA, a lower bound LB and an upper bound UB are 
defined, between which hit genes are sought. These 
bounds intuitively correspond to fold changes. Wells 
with lower scores than LB are guaranteed hits, whereas 
wells with larger scores than UB are guaranteed non-
hits. After correspondence with the methods’ developers 
and matching of the LB and UB bounds with fold 
change, we opted for LB = −2 and U B = 0. There was 
increased confidence in favor of their being hits if the 
log transformed and normalized fold change is < −2. The 
ones having a positive fold change (> 0) correspond to 
the surviving cells, thus they were rejected. The most 
significant hits were selected based on two criteria:

The p-value for each gene (p-values are the same 
for all wells corresponding to a gene) should be < 0.05, 
and The gene should have at least two active wells (OP 
I _Rank < 99999 for at least two wells). This is interpreted 
as: at least two shRNAs below threshold.

It has to be noticed that the rank of at least two 
wells, having p-value < 0.05, should be a real number 
(RSA returns infinite if a rank cannot be calculated).

Standard ranking, RSA, and RIGER broadly 
agree and correlate between 60 to 80%

Rankings with the standard method and RSA and 
RIGER differ, but they still correlate very well. For the 
Luo and Wang screen, the ranks of the three methods were 
mapped on three axes in a 3D scatter plot (see Figure 3). 
The pairwise Spearman correlations range from 0.59 to 
0.8. Specifically, the are for the Luo screen: Standard-
RIGER = 0.74, Standard-RSA = 0.7, RIGER-RSA = 
0.8 and for the Wang screen: Standard-RIGER = 0.65, 
Standard-RSA =0.59, RIGER-RSA = 0.76.

Rank aggregation and RIGER and RSA identify 
COPB2 as candidate SLP

The above analysis shows that standard method, 
RSA, and RIGER are not inconsistent and that there is not 
one method that can provide the one and only true ranking. 
At the same time, they are not in perfect agreement. To 
reflect this situation we consider the rank aggregation for 
all three screens as described above together with RIGER 
and RSA for the two screens of Luo and Wang. This is 
summarized as step 4 in Figure 1.

Table 2 shows the top three genes for this 
integrated ranking: coatomer protein complex, subunit 
beta 2 (COPB2), sprouty homolog 1, antagonist of FGF 
signaling (SPRY1), and nuclear receptor corepressor 
1 (NCOR1). These three genes ranked consistently 
among the top 10% of all RankAggreg runs, with 
COPB2 ranking 98 times, NCOR1 100 and SPRY1 88 
times among the top 10%. Further, these genes were 
the only ones among the top 10% ranks of RankAggreg 
that also ranked high according to RIGER and RSA. 
The functionalities of all three genes were explored 
and associated with the nine ’hallmarks of cancer’ : the 
nine properties that are shared among cancer cells, and 
are necessary for tumor initiation and expansion [21]. 
The function of NCOR1 relates to the ’Resisting Cell 
Death’ property. The functions of SPRY1 and COPB2 
are associated with the ’Sustaining Proliferative 
Signaling’ property. Information on the genes’ function 
was collected from GeneCards and Pubmed (www.
ncbi.nlm.nih.gov/pubmed/) and Gene Cards (www.
genecards.org) [22]. Silencing of SPRY1 has been found 
to trigger complete regression of RAS mutant cells in 
the human childhood rhabdomyosarcoma (RMS) [23]. 
COPB2 ranked best when the cumulative rank across all 
methods was considered, thus we focused on COPB2 in 
our experimental validations.

We examined the expression levels of KRAS, 
COPB2, NCOR1 and SPRY1 across the five colorectal 
adenocarcinoma cell lines available in TCGA’s cBioPortal 
(www.cbioportal.org) [24, 25] (Supplementary Figure 2). 
The expressions of COPB2 and NCOR1 have a much 
higher median than the KRAS expressions but wider 
standard deviation. This adds to our finding that they 
are potential KRAS synthetic lethal partners; their high 
expressions may sustain oncogenic KRAS signaling and 
knocking them down can have a big effect in cancer cell 
lines’ viability. On the other hand, SPRY1 has in average 
lower expressions than KRAS.

We further examined the mutation status of 
KRAS and its three candidate synthetic lethal partners 
in published colorectal and pancreatic cancer cell lines  
[24, 25]. We are expecting that KRAS is very rarely 
mutated together with the three genes, which sustains the 
cell line’s viability. The results shown in Table 3 prove that 
this hypothesis holds.

Cell lines for COPB2 knock-down

To validate the above finding, we knocked down 
COPB2 in the human pancreatic cancer cell lines shown 
in Table 4. We chose these cell lines, because they are 
well-known standard cells, easy to handle, suitable for 
transfection experiments and have different genotypes. We 
examined the effects of COPB2 knock down on selected 
protein levels to find a link between COPB2, fewer living 
cells, and autophagic cell death.
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Western Blot analysis (see Figures 4, 5, 6) revealed 
effects of COPB2 knock-down on the cellular level of proteins 
involved in KRAS signaling, apoptosis and autophagy in all 
pancreatic tested cell lines. These figures are duplicated from 
the original for presentation and explanation purposes. The 
original western blot is provided in Supplementary Figure 1.

COPB2 knock down and signalling

We first examined the phosphorylation of 
downstream effectors of KRAS, Protein kinase B (Akt) 
and extracellular-signal-regulated kinases ERK1/2, in order 
to see if the downstream KRAS pathway was silenced. 
Indeed, the phosphorylation levels of the selected proteins 
were lower after COPB2 knock-down only in MIAPaCa2 
and Hs766T cells (homozygous KRAS mutant).

COPB2 knock down and apoptosis

We then examined how cell apoptosis is affected 
by COPB2 knock down. A good indicator for apoptosis 
induction is Poly (ADP-Ribose) Polymerase (PARP) 
cleavage. Enhanced levels of cleaved PARP were detected 

after COPB2 knockdown in all cell lines compared to 
their negative control, except KRAS wild type BxPC3. 
Therefore, apoptosis, which could contribute to the 
reduction of living cells, was induced in those cell lines. 
Anti-apoptotic proteins like cFLIP, XIAP and BCL-XL 
showed a decreased expression after COPB2 knock-down 
in Hs766T cells. Importantly, Signal Transducer and 
Activator of Transcription 3 (STAT3), a key transcription 
factor of cell growth and apoptosis, showed a reduction of 
its phosphorylated form in cell lines MIAPaCa2, Hs766T 
and PaCaDD165, meaning that downstream pro-survival 
functions might be inhibited.

COPB2 knock down and autophagy

Finally, conversion of Microtubule-associated 
protein light chain 3 I (LC3) to LC3 II is a marker 
of autophagy with the amount of LC3 II negatively 
correlating to the number of autophagosomes. In our 
comparison of the negative control to the COPB2 knock-
down there was a clear increase of LC3II level in Hs766T, 
PaCaDD165, Panc1 and MIAPaCa2, thereby exhibiting an 
increase in autophagy after COPB2 knock-down.

Table 2: Hit gene ranks
Gene Sum RankAggreg RIGER RSA

Luo Wang Luo Wang
COPB2 300 18 223 5 43 1
SPRY1 431 49 266 12 84 20
NCOR1 957 2 527 188 118 124
The ranks of COPB2, NCOR1 and SPRY1 by all methods. RIGER and RSA can only be calculated for the Luo and Wang 
screens. In this case, the ranks  range from 1 to 1423, which is the number  of common genes between Luo and Wang  
screens. RankAggreg ranks range from 1 to 1069.

Table 3: Co-occurring mutations of the hit genes across publicly available pancreatic and colorectal 
cancer cell lines
Study Samples % KRAS % COPB2 % NCOR1 % SPRY1
DFCI, Cell Reports 2016 [26] 619 28% 2.3% 2.9% 0.5%
Genentech, Nature 2012 [27] 72 51% 4% 4% 1.4%
MSKCC, Genome Biol 2014 [28] 138 55% 0 0 0
TCGA, Nature 2012 [29] 276 42% 2.20% 4% 1.3%
Colorectal Adenocarcinoma, TCGA 
Provisional [30]

633 43% 2.2% 4% 1.3%

ICGC, Nature 2012 [31] UTSW, 99 95% 0 0 0
Nat Commun 2015 [32] QCMG, 109 93% 2.8% 6% 6%
Nature 2016 [33] UTSW, 383 90% 0.3% 0.5% 0
Nat Commun 2015 [32] Pancreatic 109 93% 2.8% 6% 6%
Adenocarcinoma, TCGA Provisional [30] 149 91% 0.7% 2.7% 0
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Figure 3: Comparison of standard (x-axis), RSA (y-axis), and RIGER (z-axis) ranking for the Luo (left) and Wang 
(right) screens. Rankings differ, but agree broadly with correlation coefficients from 0.59 to 0.8.
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COPB2 knock down and living cell counts

More importantly, the change in expression levels 
of relevant genes is complemented by changes in living 
cell counts (see Figures 7 and 8) Homozygous pancreatic 
KRAS mutated cell lines MIAPaCa2 and Hs766T, show a 
high reduction of living cells after COPB2 knock down 
onto 16.93% (± 4.34%) and 24.22% (± 2.19%) compared 
to the negative control (nc). The number of living cells in 
the KRAS wild type cell lines BxPC3 and PaCaDD165, 
was reduced to 63.74% (± 7.64%) and 65.44% (± 
5.53%). Heterozygous KRAS mutated cell line Panc1 
also had a cell count of 68.81% (± 4.62%). These results 
show that there is a significant difference regarding the 
reduction of living cells after COPB2 knock down in 
homozygous KRAS mutated cell lines, MIAPaCa2 and 
Hs766T, compared to the KRAS wildtype cell lines, 
BxPC3 and PaCaDD165, and KRAS heterozygous 
mutated Panc1.

In addition, there is a significant difference regarding 
the reduction of living cells after COPB2 knock down 
in the heterozygous colorectal cancer cell line DLD-1,  
compared to negative control (Figure 8).

The above results confirm our speculation about a 
correlation between KRAS mutation status and COPB2 
sensitivity on the selected pancreatic and colorectal 
carcinoma cell lines.

Single inhibition of KRAS or simultaneous 
inhibition of both KRAS and COPB2, to further support 
our finding, has not been conducted. However, we 
recently performed a similar experiment where we 
inhibited KRAS and the anti-apoptotic genes BCLXL, 
FLIP, MCL1L, SURVIVIN and XIAP in a panel of 
murine and human pancreatic cancer cell lines, including 
the ones that we employed in the current work. Single 
inhibition of KRAS had little effect in cell apoptosis. 
Simultaneous inhibition of KRAS and the anti-apoptotic 
proteins significantly induced apoptosis and inhibited 
proliferation of the cell. This finding was validated in vivo 
on mice. Given the role of COPB2 in apoptosis signaling, 
as shown by our experiments (see Figure 5), we suspect 
that the simultaneous inhibition of COPB2 and KRAS in 
pancreatic cancer cells will be more effective than COPB2 
silencing alone.

DISCUSSION

In this work, we analyzed three different RNAi 
screens that are designed to detect KRAS synthetic 
lethal partners and combined them using a computational 
framework. Our methodology detected COPB2 as the 
most promising KRAS synthetic lethal partner, which was 
further experimentally evaluated.

Our experimental data, comparing pancreatic and 
colorectal cancer cell lines with different KRAS genotypes 
after COPB2 knock down, implicate that this knock down 
has a higher negative impact on the number of living cells 
in the case of homozygous pancreatic KRAS mutated cells 
and heterozygous colorectal cells, with respect to the 
KRAS wild type cells (Figures 7 and 8).

Knock down approaches and western blot analysis in 
pancreatic cell lines demonstrated that COPB2 influences 
KRAS signaling, apoptosis and autophagy (see Figures 
4, 5, and 6). Pancreatic tumor cells depend on KRAS 
signaling, on evasion of apoptosis and on autophagy to 
sustain themselves and proliferate [34], [21], [35]. Thus, 
when the above are impaired, pancreatic tumor cells 
are put under stress and are more susceptible to death. 
Regarding autophagy, we noticed an increase in LC3 
protein after COPB2 knock down (Figure 6), which is 
interpreted as a decrease in autophagy [36]. In the past, it 
has been shown that COPB2 (COPI subunit) knock down 
disables autophagy [37], which in turn leads to abortive 
autophagy [38]. With respect to pancreatic cancer, it is 
known that pancreatic tumor growth relies on autophagy 
[35], especially in KRAS mutated cells where metabolism 
is deprogrammed. Thus when autophagy is decreased, 
tumor growth is inhibited. Further investigations could 
involve measurement of the exact amount of apoptotic 
cells, the cause of cell death, qPCR to determine the effects 
on mRNA level, migration assays and proliferation assays.

Knock down approaches and western blot analysis in 
colorectal cell line DLD-1 demonstrated that COPB2 was 
efficiently knocked-down whereas KRAS remained intact. 
This knock-down resulted in significantly reduced number of 
colorectal cancer living cells (Figure 8). Although we have 
not tested the levels of LC3 protein after COPB2 knock-down 
in DLD-1 cells, we suspect that autophagy is one of their 
survival mechanisms too, based on existing literature [39, 40].

Table 4: Experimental cell lines
Cell line KRAS status

MIAPaCa2 KRASG12C/G12C mutant
Hs766T KRASQ61H/Q61H mutant
Panc1 KRAS+/G12D mutant
BxPC3 KRAS+/+ wild type
PaCaDD165 KRAS+/+ wild type
DLD-1 KRAS+/G13D mutant
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Figure 5: Apoptosis: Top western blot row shows that COPB2 is effectively knocked down in all cell lines. The rest show 
the effects of COPB2 knock down on apoptosis signaling. GAPDH is used as control.

Figure 4: KRAS signaling: Top western blot row shows that COPB2 is effectively knocked down in all cell lines. The rest 
rows show the effects of COPB2 knock down on downstream KRAS signaling. GAPDH is used as control.
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Expression of COPB2 maybe linked to KRAS 
signaling as follows: Activated KRAS activates 
downstream RalGDS signaling [41]. As a consequence, 
the small GTPases RALA and RALB are activated. 
They play a major role in vesicular trafficking and 

tumor proliferation [42]. It is noticeable that RALB also 
promotes autophagy. In mammals, the coatomer sub-
unit, which contains COPB2, can only be recruited when 
activated small guanine triphosphatases (GTPases) attract 
coat proteins to specific membrane export sites, thereby 

Figure 6: Autophagy induction: Top western blot row shows that COPB2 is effectively knocked down in all cell lines. 
The rest show the effects of COPB2 knock down on down on autophagy-related proteins. GAPDH is used as control.

Figure 7: COPB2 knock down reduces number of living cells in pancreatic cancer cell lines depending on their KRAS 
genotype. Each cell line’s KRAS genotype is shown in Table 4. After 72 h of transfection using 72 nM non-coding siRNA (negative 
control, nc), KIF11 siRNA (positive control, pc) and COPB2 siRNA (COPB2) cell number was quantified in KRAS wildtype (wt) and 
mutated pancreatic cancer cell lines. The p−value is p < 0.01 in cell line specific comparison.
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linking coatomers to export cargos [43]. We believe 
that the involvement of RALA and RALB in vesicular 
trafficking, in which COPB2 is also involved, and the co-
localization of KRAS transcripts in the Golgi complex [44] 
may support the positive feedback loop: GTP KRAS → 
COPB2 → GTP KRAS.

We note here that, according to Ihle et al., the Ral-GDS  
pathway is enabled only when the activated KRASG12C 
binds to it [45]. KRASG12D, on the other hand, activates 
PI3K signaling. In our experiment, Panc1 heterozygous 
mutant KRASG12D cell line exhibits similar behavior with 
wild type KRAS pancreatic tumor cells. We believe that 
in this case the PI3K pathway is activated instead of the 
Ral-GDS. In contrast, COPB2 knock-down significantly 
decreases the viability of the homozygous KRASG12C 

MIAPaCa2 cell line, probably due to the activation of 
Ral-GDS. Another possible reason for the behavior of 
Panc1, is that Panc1 has high latency period before tumor 
progression, comparable to that of the wild type BxPC3 
cell line [46]. So maybe the behavior of Panc1 after 72 h 
of treatment, which we examined, is closer to wild type 
cells. In regards to why this happens, it seems that the fate 
of a cell that contains both oncogenic and wild type KRAS, 
depends on the type of the wild type allele (RAS -GDP or 
RAS -GTP) and on the status of other tumor suppressor 
and cell cycle inhibitor genes [47].

The current findings agree with past studies, as there 
is supportive evidence from literature that COPB2 knock 
down undermines survival of KRAS mutant cells, meaning 
that survival of cells is decreased by the knock down; 
experiments on non small cell lung cancer (NSCLC) cells 
show that there is a COPI addiction in KRAS and LKB1 
mutated cell lines [48].

As a last note, we used RNAi knock-down 
technology to silence the gene of interest because the 
original screens, from which we derive our hypotheses, 
use RNAi. For the sake of comparability we decided for 
RNAi and not CRISPR/Cas9 which is another promising 
gene-editing technology. Unniyampurath et al. explain that 
RNAi and CRISPR/Cas9 are two different technologies, 
of which the outcome does not necessarily overlap [49]. 
This mainly happens because CRISPRs regulate gene 
transcription by altering the DNA (pre-transcription level) 
whereas RNAi regulates gene transcription by acting 
posttranscriptionally. siRNA and shRNA approaches are 
excellent as the first attempt to understand the function 
of the gene of interest. CRISPR/Cas9 system is the next 
logical step to fully elucidate the function of the gene 
and to validate phenotypes observed by knock-down 
approaches.

This study has shown that consistent data integration 
identified a novel synthetic lethal partner of KRAS, which 
could be experimentally confirmed in our knock-down 
experiments. However, future work has to be done to 
validate our finding in vivo and in vitro, with additional 
knock-down experiments with other RNAi constructs and 
more cell lines.

MATERIALS AND METHODS

Standard RNAi screen ranking method

Luo and Wang screens contain three replicate 
measurements for each cell line. Having only three 
replicates per cell line, normal distribution was safely 
assumed. All the shRNAs targeting a gene were included 

Figure 8: Left Knockdown of COPB2 in DLD-1 cells, indicating a knock-down of COPB2, but no significant loss of 
KRAS expression in this cell line. Right Knockdown of COPB2 in DLD-1 cells leads to a reduction in cell number after 72 h of 
transfection (p < 0.01). nc stands for negative control, pc stands for positive controltion of the gene of interest.



Oncotarget34294www.impactjournals.com/oncotarget

and ranked based on their differential effect on the 
viability of the KRAS mutant versus KRAS wild type 
cells. This was captured by the paired t-test. The null 
hypothesis tested was that depletion of a specific shRNA 
has no significant effect on the viability between KRAS 
mutant and KRAS wild type cell lines. The respective 
alternative hypothesis was that the viability of the KRAS 
mutant cells decreases more than the viability of their 
isogenic wild type counterparts. A gene was reported as 
hit when the best-ranking of all the shRNAs that target it 
was below threshold. Our assumption at this point is that 
if one shRNA depletes the target gene, then the observed 
phenotype is cell death. Regarding the Steckel screen, no 
replicate data were provided. Thus, only the difference of 
the z-scores (mutant-wild type) was considered. This is an 
apoptosis screen, so the result has been inverted in order to 
be comparable to the other two viability screens. The rank 
r in this case was calculated as:

r = −rank(z.scoremut − z.scorewt ) 
The p-value threshold for the Standard method and 

for the Luo and Wang screens was set to 0.05. The z-score 
threshold for the standard method and for the Steckel 
screen was set to -1.

Rank aggregation

We aggregated the common gene rankings from the 
individual screens to a global ranking, which best reflects 
the ordering of the input lists. Rank aggregation is an 
optimization problem and one possible way to generate 
the final list is by using heuristic functions. To this aim, 
the RankAggreg R method was used, which supports the 
Genetic Algorithm (GA) and Cross Entropy Monte Carlo 
(CE) heuristics [18].

Both heuristics are iterative. The methods converge 
when the optimal super-list remains optimal for a number 
of consecutive iterations, based on the distance between 
each iteration’s output list with each of the input lists. This 
distance has to be as small as possible. Spearman’s footrule 
distance was chosen because it can quickly be computed 
in linear time and is a non-trivial 2-approximation of 
Kemeny’s local optimization, as proven by the Diakonis-
Graham inequality: For any two full lists σ, τ : K (σ, τ) 
≤ F (σ, τ ) ≤ 2K (σ, τ ), where K is the Kemeny local 
optimization and F the Spearman footrule distance [50].

Spearman’s footrule distance

We want to compare an aggregated ranking r against 
m rankings r1,..., rm. All of the rankings range from 1 to n. 
We use Spearman’s footrule to compare the displacement 
between r and rk and then we sum up these displacements 
for all m rankings. Formally, the displacement D between 
r and rk is defined as

D i ir k k
i

n

( ) | ( ) | .σ σ= −
=
∑
1

 1

where σk is a permutation of n elements, such that 
the element at position i in the ranking r is at position σk 
(i) in the ranking rk. I.e. Spearman’s footrule sums up the 
differences in position in r and rk for all elements i. Note, if 
the rankings r and rk are identical, then Dr (σk ) = 0.

To evaluate the distance of a ranking r to r1 , . . . , 
rm we simply sum up:

D Dr r k
k

m

=
=
∑ ( )σ
1

 2

Now we can optimize. For rank aggregation 
we search for a ranking r, that minimizes Dr. This 
minimization step is implemented in the RankAggreg 
algorithm [18].

COPB2 knock down

Cell culture

The human pancreatic cancer cell lines DLD-1, 
BxPC3, MIAPaCa2 and Panc1 were obtained from the 
American Type Culture Collection. Hs766T was kindly 
provided by Tatjana Crnogorac-Jurcevic (Centre for 
Molecular Oncology, Barts Cancer Institute, UK). The 
primary cell line PaCaDD165 was established following 
the Dresden Outgrowth protocol [51].

DLD-1, BxPC3 and Panc1 cells were cultivated 
in RPMI-1640 supplemented with 10% fetal calf serum 
(FCS), MIAPaCa2 cells in DMEM with 10% FCS and 
2.5% horse serum and Hs766T in DMEM with 10% 
FCS. Primary cells were cultured in DMEM with 20% 
FCS and 50% K-SFM. All cell lines were maintained in a 
humidified 5% C O2 incubator at 37°C.

Transfection

For each transfection, 72 nM siRNA were 
transfected using OligofectamineTM Transfection Reagent 
(Invitrogen) according to the manufacturer’s protocol. 
Transfected cells were analyzed after 72 h. SiRNA against 
COPB2 was acquired from QIAGEN (FlexiTube siRNA 
Cat. No. 1027415) with the following target sequence: 
CAGGTTTCAAGGGTAGTGAAA. Noncoding siRNA 
Allstars provided by QIAGEN was used as a negative control. 
SiRNA against essential cytoskeletal motor protein coding gene 
KIF11 with the sequence AACUGAAGACCUGAAGACAAU 
served as a positive control. Gene silencing was confirmed by 
Western Blot analysis.

Western blot analysis

Transfected cells were washed and homogenized in 
a protein lysis buffer (RIPA buffer). Protein concentrations 
were quantified using BCA Protein Assay Kit (Pierce). 
10 µg of each sample were denaturized at 95°C for  
10 min and further processed using the NuPAGE 
SDSPAGE Gel System (Invitrogen). Proteins were 
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transferred electrophoretically to a nitrocellulose 
membrane (Hybond ECL, GE Healthcare), which was 
treated afterwards with 5% skimmed milk powder in 
TBS Tween 0.1%. Primary antibodies were applied to the 
membrane according to manufactures’ protocol: anti-p-
AKT Ser473 (Cell Signaling), anti-AKT (Cell Signaling), 
anti-BCL-X S/L (Santa Cruz Biotechnology), anti-cFLIP 
S/L (Adipogen) anti-COPB2 (novus Biologicals), anti-p-
ERK1/2 Thr202/Tyr204 (Cell Signaling), anti-ERK1/2 
(Cell Signaling), anti-GAPDH (Cell Signaling), anti-
KRAS (Santa Cruz Biotechnology), anti-LC3 (Cell 
Signaling), anti-pSTAT3 (Tyr705) (Cell Signaling), anti-
STAT3 (Cell Signaling), anti-PARP (Cell Signaling), anti-
XIAP (BD Biosciences). The membrane was washed and 
incubated with the appropriate horseradish peroxidase-
conjugated antiMouse or anti-Rabbit secondary antibodies 
(Cell Signaling). The chemiluminiscent reaction was 
initialized using Immobilon Western Chemiluminescent 
HRP Substrate (Millipore) and detected by G:Box Chemi 
XT4 (Syngene) (Figures 4, 5, 6).

Quantification of living cells

A reduction of living cells can refer to proliferation 
inhibition as well as apoptosis induction. Transfected cells 
were trypsinized following standard cell culture practices 
and counted by TC-20 Automated Cell Counter (BIORAD). 
Count of COPB2 siRNA treated cells (COPB2) were 
normalized to its noncoding siRNA control (nc).

CONCLUSIONS

In this work we aim at the detection of reliable 
and robust KRAS Synthetic Lethal Partners, though 
combination of exiting datasets. In summary, we have 
shown that a meta analysis consistently integrating large 
scale RNAi data is able to generate new hypotheses, which 
were not prominent in the individual screens. Here, we 
identified COPB2 as such candidate that was screened 
three times and missed three times. However, in the meta 
analysis, COPB2 ranks top and experimental validation 
confirms its role as synthetic lethal partner for KRAS. 
Evidence from literature and COPB2’s role in autophagy 
and apoptosis further support the experimental finding.
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