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ABSTRACT
Esophageal carcinoma (ESCA) is one of the most common malignancies 

worldwide, and its pathogenesis is complex. In this study, we identified differentially 
expressed miRNAs (DEMs) and genes (DEGs) of ESCA from The Cancer Genome 
Atlas (TCGA) database. The diagnostic values of DEMs were determined by receiver 
operating characteristic (ROC) analyses and validated based on data from Gene 
Expression Omnibus (GEO). The top five DEMs with the best diagnostic values were 
selected, and their potential targets were predicted by various in silico methods. 
These target genes were then identified among the DEGs from TCGA. Furthermore, 
the overlapping genes were subjected to protein-protein interaction (PPI) analysis, 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses. The miRNA-transcription factor (TF) regulatory relations were determined 
using CircuitsDB and TransmiR. Finally, the regulatory networks of miRNA-TF and 
miRNA-gene were constructed and analyzed. A total of 136 DEMs and 3541 DEGs 
were identified in ESCA. The top five DEMs with the highest area under the receiver 
operating characteristic curve (AUC) values were miRNA-93 (0.953), miRNA-21 
(0.928), miRNA-4746 (0.915), miRNA-196a-1 (0.906) and miRNA-196a-2 (0.906). The 
combined AUC of these five DEMs was 0.985. The KEGG analysis with 349 overlapping 
genes showed that the calcium signaling pathway and the neuroactive ligand-receptor 
interaction were the most relevant pathways. The regulatory networks of miRNA-TF 
and miRNA-gene, including 38 miRNA-TF and 560 miRNA-gene pairs, were successfully 
established. Our findings may provide new insights into the molecular mechanisms 
of ESCA pathogenesis. Future research will aim to explore the role of novel miRNAs 
in the pathogenesis and improve the early diagnosis of ESCA.

INTRODUCTION

Esophageal carcinoma (ESCA) is one of the most 
common malignancies worldwide. ESCA is the seventh 
leading cause of cancer-correlated mortality in men in 
the United States in 2016 [1]. It accounts for 4% of all 
cancer deaths in men [1]. The five-year survival rate of 
patients with ESCA is currently 20%, but 38% of cases 
are diagnosed at a late stage, for which the five-year 
relative survival rate is 4% [1]. The high mortality rate 

was associated with the late diagnosis and poor treatment 
response [2, 3]. Early diagnosis and treatment can decrease 
the mortality and increase the five-year relative survival. 
Therefore, it is important to identify novel biomarkers for 
the early diagnosis of ESCA and develop new targeted 
therapies.

Large quantities of miRNAs have been observed 
expressing differentially in cancer tissues, which indicate 
prospective diagnostic values. Some studies showed a 
number of miRNAs (miR-21, miR-143, miR-145 [4] and 
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miR-92b [5, 6]) as potential biomarkers for the diagnosis 
of ESCA. However, the clinical value of miRNAs in 
ESCA remains largely unraveled.

The Cancer Genome Atlas (TCGA) provides a new 
source of information to identify novel biomarkers. TCGA 
is a community resource project, and its data have been 
widely used in cancer research. The TCGA dataset contains 
2.5 petabytes of data describing tumor and matched normal 
tissues from 33 types of cancer with more than 11000 
patients. The TCGA ESCA data were updated on May 
16, 2016. The number of miRNA and mRNA expression 
values increased from 1064 to 1881 and 20531 to 60483, 
respectively. There have been only two studies thus far 
that used TCGA data regarding ESCA to investigate the 
expression profiles of miRNAs and genes. Zhan et al. [7] 
found that 45 miRNAs and 2962 genes were differentially 
expressed in ESCA compared with normal esophageal 
tissues, which was based on the TCGA data from July 2014. 
Additionally, Zhao et al. [8] only focused on the differentially 
expressed miRNAs (DEMs) in ESCA and investigated their 
prognostic value, based on the TCGA data from June 2015. 
No study has explored the diagnostic value of DEMs in 
ESCA based upon the TCGA data. Therefore, it is possible 
and urgent to identify sensitive and specific biomarkers to 
identify potential pathogenic mechanisms and improve the 
accuracy of early diagnosis of ESCA based on TCGA data.

This study screened for the presence of DEMs 
and differentially expressed genes (DEGs) in ESCA. We 

also performed a receiver operating characteristic (ROC) 
analysis to investigate the diagnostic value of DEMs in 
ESCA and validated the top five DEMs based on data 
from Gene Expression Omnibus (GEO). The overlapping 
genes, which were largely representative of the potential 
target genes of the DEMs, were assessed using protein-
protein interaction (PPI) analysis, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis. The regulatory networks 
of miRNA-transcription factor (TF) and miRNA-gene 
were successfully established. Our study could provide 
a meaningful contribution to exploring the mechanisms 
of esophageal carcinoma pathogenesis and defining new 
biomarkers for early diagnosis and treatment.

RESULTS

DEMs and DEGs in ESCA based on TCGA data

Altogether, 136 miRNAs were considered as 
DEMs in ESCA based upon a p-value < 0.05, FDR < 
0.05 and |log2FoldChange| > 1 using the edgeR package 
in Bioconductor, including 79 up-regulated and 57 down-
regulated miRNAs (Supplementary Table 1, Figures 1 and 
2). In total, 3541 genes were identified as DEGs in ESCA 
according to similar criteria except for |log2FoldChange| > 
1.5, including 1688 up-regulated and 1853 down-regulated 
genes (Figures 1 and 3).

Figure 1: Volcano plot of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in 
esophageal carcinoma (ESCA) and normal esophageal samples. (A) Volcano plot of differentially expressed miRNAs (DEMs). 
Volcano plot was generated using the gplots package in Bioconductor. DEMs with log2FoldChange (log2FC) > 1 were labeled in red; 
DEMs with log2FoldChange (log2FC) < -1 were in green (P < 0.05). (B) Volcano plot of differentially expressed genes (DEGs). DEGs with 
log2FoldChange (log2FC) > 1.5 were shown in red; DEGs with log2FoldChange (log2FC) < -1.5 were in green (P < 0.05).
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The diagnostic value of DEMs

The ROC analysis of the DEMs was performed 
(Supplementary Table 1). The top five areas under the 
ROC curves (AUCs) for DEMs were 0.953 (miR-93), 
0.928 (miR-21), 0.915 (miR-4746), 0.906 (miR-196a-1) 
and 0.906 (miR-196a-2) (Table 1, Figure 4). We also 
combined these five DEMs to evaluate the potential 
diagnostic value for ESCA, and the pooled AUC reached 
0.985, which provided a higher diagnostic efficiency 
compared to individual DEMs. We next examined the 
expression level of the five DEMs in non-cancerous 
esophageal and ESCA tissues using GraphPad Prism 
(version 6.01, Figure 5). The top five DEMs, including 
five up-regulated miRNAs (miR-93, miR-21, miR-4746, 
miR-196a-1 and miR-196a-2), were selected for further 
analysis.

Validation of the top five DEMs

A total of 11 miRNA microarray datasets were 
included in the present study. The areas under summary 
receiver operating characteristic (sROC) curves were 0.868 

(miR-21), 0.891 (miR-93) and 0.884 (miR-196a). Since 
data from only two microarrays were available for miR-
4746, we could perform the meta-analysis. The original 
AUCs of miR-4746 were 0.849 (GSE43732) and 0.687 
(GSE61047), respectively (Figure 6). Our results suggested 
that the expression levels of miR-21, miR-93, miR-196a 
and miR-4746 were remarkably higher in ESCA specimens 
than those in normal controls (miR-21: standardized mean 
difference (SMD) = 1.51, 95% CI: 0.6~2.4; P = 0.001; 
miR-93: SMD = 0.83, 95% CI: 0.1~1.56; P = 0.025; miR-
196a: SMD = 1.53, 95% CI:1.27~1.79; P < 0.0001; miR-
4746: SMD = 1.35, 95% CI: 1.07~1.63; P < 0.0001), which 
were consistent with our previous results on the basis of 
TCGA (Table 3, Figure 7).

Overlapping genes from DEGs and predicted 
targets

Different numbers of predicted target genes were 
obtained for each DEM (Figure 8), and the total number 
of the target genes was 6115. The intersections between 
the target genes of the four up-regulated miRNAs 
(miR-93, miR-21, miR-4746 and miR-196a) and 1853 

Table 1: The top five  differentially expressed miRNAs (DEMs) in esophageal carcinoma (ESCA)
miRNA ID LogFC* p-value FDR** AUC***

miR-93 1.394654953 4.44E-08 3.18E-06 0.953
miR-21 1.246193842 2.81E-08 2.12E-06 0.928
miR-4746 1.896011225 1.72E-07 9.94E-06 0.915
miR-196a-1 1.993005619 0.000557766 0.007777738 0.906
miR-196a-2 1.943227278 0.000604741 0.008131613 0.906

*FC: fold change   **FDR: fault detection rate   ***AUC: area under the ROC curve  

Figure 2: Heatmap of differentially expressed miRNAs (DEMs) in esophageal carcinoma (ESCA) and normal 
esophageal samples. Heatmap was generated using the gplots package in Bioconductor. DEMs with log2FoldChange (log2FC) > 1 were 
labeled in red; DEMs with log2FoldChange (log2FC) < -1 were in green (P < 0.05).
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Figure 3: Heatmap of differentially expressed genes (DEGs) in esophageal carcinoma (ESCA) and normal esophageal 
samples. Heatmap was drawn using the gplots package in Bioconductor. DEGs with log2FoldChange (log2FC) > 1.5 were shown in red; 
DEMs with log2FoldChange (log2FC) < -1.5 were in green (P < 0.05).
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Figure 4: The receiver operating characteristic (ROC) curves of the top five differentially expressed miRNAs (DEMs) 
in esophageal carcinoma (ESCA). ROC curves were drawn using MedCalc software. AUC: area under the ROC curve. (A) miR-93, 
(B) miR-21, (C) miR-4746, (D) miR-196a-1, (E) miR-196a-2, (F) Combination of the five DEMs.
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down-regulated DEGs are shown in Figure 8A–8D 
and Supplementary Table 2. We also examined the 
combination of all overlapping genes and 349 genes were 
identified.

PPI network construction

PPI network was constructed with nodes 
representing the proteins and edges depicting associated 

Figure 5: Expression of the top five differentially expressed miRNAs (DEMs) in esophageal carcinoma (ESCA). The 
scatter diagrams showed the expression level of DEMs in the 187 cases of ESCA and 13 normal esophageal samples. The scatter diagrams 
were drawn using the GraphPad Prism software. (A) miR-93, (B) miR-21, (C) miR-4746, (D) miR-196a-1, (E) miR-196a-2.



Oncotarget35687www.impactjournals.com/oncotarget

interactions. PPI network was established with 349 
overlapping genes containing 349 nodes and 213 edges 
(Figure 9).

Validation of the top five DEMs target genes

PPI network was performed to the overlapping genes 
of each DEM (miR-93, miR-21, miR-196a-1 and miR-
196a-2). The correlation between the top five hub genes 
and each DEM was negative and the top three were shown 
in Figure 10. The negative correlations between protein 
kinase cAMP-activated catalytic subunit beta (PRKACB), 
protein phosphatase 1 regulatory subunit 12B (PPP1R12B) 
and miR4746 were evidently presented in Figure 10 too.

GO and KEGG pathways of overlapping genes

To gain insight into the biological roles of the 349 
overlapping genes encoding the four DEMs in ESCA, we 
performed GO annotation and KEGG pathway analyses. 
The results of GO annotation suggested that the main 

functions of these overlapping genes were related to the 
plasma membrane, while the results of KEGG analysis 
indicated that the overlapping genes were mainly 
correlated with the calcium signaling pathway and the 
neuroactive ligand-receptor interaction (Figure 11).

The regulatory networks of miRNA-
transcription factor (TF) and miRNA-gene

We predicted the target TFs of the four DEMs using 
CircuitsDB and TransmiR. The 38 pairs of the miRNA-
TF network were constructed with the DEMs and 37 TFs 
(Table 2). The miRNA-TF and miRNA-gene regulatory 
networks were established with the 38 miRNA-TF pairs 
(Figure 12) and 560 miRNA-gene pairs (Figure 13) using 
Cytoscape software.

DISCUSSION

It is well-known that TCGA, which has profiled 
a large number of malignancies at the DNA, RNA and 

Figure 6: Summary receiver operating characteristic (SROC) plots of miR-21, miR-93 and miR-196a and the receiver 
operating characteristic (ROC) curves of miR-4746. SROC curves were drawn using Meta-DISc software. ROC curves were 
drawn using MedCalc software. (A) miR-21, (B) miR-93, (C) miR-196a, (D) miR-4746 (GSE43732), (E) miR-4746 (GSE61047).
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protein levels, provides an excellent tool for cancer 
research. Considering the miRNA profile in ESCA, Zhan 
et al. [7] utilized the TCGA data from July 2014. The 
cohort only consisted of 70 cases of ESCA with mRNA 
data and 72 cases with miRNA data. They identified 
2962 DEGs and 45 DEMs in ESCA. Subsequently, they 
performed gene function and signaling pathway analyses 
using GO and KEGG methods. They also established 
the TF-miRNA-gene network and observed that core 
promoter-binding protein (CPBP), nuclear factor of 
activated T-cells (NFAT-1), and miR-30c-5p, were 
located in the central hub of the network. However, Zhan 
et al. [7] did not explore the clinical significance of the 
DEMs, their prognostic value or their diagnostic values. 
Additionally, Zhao et al. [8]also screened for the presence 
of DEMs in ESCA based on the TCGA data from June 
2015, consisting of 187 ESCA and 13 normal esophageal 
samples, which included 1046 miRNA expression values. 
They investigated the prognostic value of DEMs but 
not their diagnostic value. Thus, no study has explored 

the diagnostic value of DEMs in ESCA from TCGA 
data. Compared with previous studies by Zhan et al. [7] 
and Zhao et al. [8], the latest update of TCGA data with 
high throughput analysis of miRNAs was retrieved and 
assessed in the current study. Herein, 187 cases of ESCA 
and 13 cases of normal esophageal tissues with 1881 
miRNAs detected with miRNA-seq were analyzed in the 
current study, which increased the reliability of our results. 
More importantly, we highlighted the diagnostic values of 
several core DEMs for ESCA, including miR-93, miR-21, 
miR-4746, miR-196a-1 and miR-196a-2.

Early diagnosis plays a critical role in the prevention 
and treatment of cancer, including ESCA. Using an ROC 
analysis, we found that the aforementioned five DEMs 
could be considered biomarkers for the diagnosis of ESCA. 
Importantly, the diagnostic values of these DEMs could 
be validated based on independent microarray data from 
GEO, as shown by rROC and SMD. More interestingly, 
combining these five miRNAs resulted in an extremely 
high diagnostic value with the AUC of 0.985. This miRNA-

Figure 7: Forest plots of the top five differentially expressed miRNAs (DEMs ) in esophageal carcinoma (ESCA). Forest 
plots were drawn using STATA software (version 12.0). (A) miR-21, (B) miR-93, (C) miR-196a, (D) miR-4746.
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pool offers a great potential for the clinical detection and 
early screening of ESCA. In addition, we also attempted to 
assess the prognostic value of the top five DEMs in ESCA. 
Kaplan-Meier survival analysis was performed to estimate 
the prognostic values of the top five DEMs. Unfortunately, 
the top five DEMs did not gain any significant prognostic 
significance (Supplementary Figure 1).

Among these five DEMs, the one with the highest 
AUC was miR-93, which has been reported to be 
frequently dysregulated in various cancers, including 
gastric [9], liver [10], colorectal [11], breast [12], ovarian 
[13], cervical [14], prostate [15], bladder cancer [16] and 
bone sarcoma [17]. MiR-93 acts as a tumor promoter and 
may also be used as a potential biomarker for esophageal 
squamous cell carcinoma (ESCC) [18, 19], which was 
in complete agreement with the current finding based on 
TCGA data. 

In addition, miR-21 has also been well studied in 
cancers, and several meta-analyses have reported its 
clinical value [20–29]. The up-regulation of miR-21 can 
predict an unfavorable prognosis in ESCA, as confirmed 
by three independent meta-analyses [30–32]. Several 
studies also found that the up-regulation of miRNA-21 
could serve as a potential diagnostic biomarker [33–36], 
which is consistent with our result using TCGA data. 

MiR-4746 was discovered by Persson et al. [37] using 
the first extensive next-generation sequencing analysis of 
miRNA expression in breast cancer. However, the clinical 
role of miR-4746 in cancers remains largely unknown. 
Hence, as a new member of the miRNA family, miR-
4746 needs to be further studied, especially in terms of its 
clinical value in cancers, including ESCA. In our study, 
we identified two prospective target genes of PRKACB 
and PPP1R12B for miR-4746. PRKACB has been found 

Table 2: Relevant transcription factors (TFs) regulated by eight differentially expressed miRNAs 
(DEMs)

miRNA ID TransmiR CircuitsDB
miR-93 E2F1,MYC  NF-Y, TEF-1, EGR, SRF
miR-21 SMAD3, IL1B, TGFB1, AP-1,BMP6,

ERS1, Gfi1, NFIB, PTEN, REST, STAT3,
AKT, Foxo3a, RAS/ERK, BMPR1a,
BMPR1b, EGFR, NFKB1, DDX5,
TCF7L2, ETV5, REL, RELA

TEF-1

miR-4746 / /
miR-196a-1 / MYB, HSF2, GATA, STAT5A, ER, T3R,

RORALPHA2
miR-196a-2 HMGA1 /

Table 3: The standard mean deviation (SMD) of the top five differentially expressed miRNAs 
(DEMs) in ESCA

Group Cancer type Number of 
patients SMD* 

SMD (95%CI)
P value

Heterogeneity
Lower Upper I²(%) P value

miR-21 Overall 11 1.51 0.61 2.40 0.001 94.7 < 0.0001
ESCC** 7 1.74 0.61 2.88 0.003 96.6 < 0.0001

ESCA*** 4 1.09 −0.35 2.52 0.138 74 0.009
miR-93 Overall 10 0.83 0.10 1.56 0.025 90.1 < 0.0001

ESCC 6 0.84 −0.10 1.79 0.08 93.8 < 0.0001
ESCA 4 0.83 −0.41 2.06 0.189 68.7 0.022

miR-196a Overall 5 1.53 1.27 1.79 < 0.0001 0 0.755
ESCC 2 1.49 1.23 1.76 < 0.0001 0 0.352
ESCA 3 1.97 0.99 2.96 < 0.0001 0 0.911

miR-4746 Overall 2 1.35 1.07 1.63 < 0.0001 0.5 0.316
ESCC 1 1.49 1.23 1.76 < 0.0001 / /
ESCA 1 0.63 −0.80 2.06 0.389 / /

*SMD: standard mean deviation **ESCC: esophageal squamous cell carcinoma ***ESCA: esophageal carcinoma 
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Figure 8: Venn diagrams of overlapping genes from differentially expressed genes (DEGs) and predicted target genes. 
Blue: Down-regulated DEGs, Light purple: predicted target genes of each miRNA, Dark purple: overlapping genes. (A) miR-93, (B) miR-
21, (C) miR-4746, (D) miR-196a.
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to be a critical effector of the cAMP/PKA-related signal 
pathway and thus participate in several cell processes such as 
cell proliferation, differentiation, apoptosis, metabolism and 
gene transcription. Chen et al. [38] detected the expression 
of PRKACB in non-small lung cancer and adjacent non-
cancer tissues using qRT-PCR, and found that PRKACB 
was down-regulated in cancerous tissues. The authors also 
demonstrated that PRKACB was a tumor suppressor gene 
through promoting tumor cells apoptosis and inhibiting 
tumor cells proliferation and invasion. Sigloch et al. [39] 
discovered that PRKACB was a direct target of miR-
200c, and the down-regulated PRKACB could suppress 
the breast cancer cell migration. Zhou et al. [40] proposed 
that PPP1R12B was down-expressed in colorectal cancer 
tissues and might be a tumor suppressive gene. However, 
the molecular mechanisms of PRKACB and PPP1R12B in 
ESCA were still unknown, and the correlation between miR-
4746 and PRKACB as well as PPP1R12B has either not 
been validated so far. In our investigation, miR-4746 was 
up-regulated, while PRKACB and PPP1R12B were down-

regulated in ESCA  and clear inverse correlations between 
miR-4746 and PRKACB, PPP1R12B could be noted 
(Figure 10E). We hypothesized that the overexpression 
of miR-4746 could repress the expression of PRKACB 
and PPP1R12B and further promote the occurrence and 
development of ESCA. Further and stricter experiments are 
warranted to confirm our speculation. 

MiR-196 as a cell death-related microRNA was 
involved in the processes of apoptosis and autophagy 
[41]. MiR-196a binding-site SNP was reported to regulate 
RAP1A expression, which contributed to ESCA risk and 
metastasis [42]. A functional variation in pre-microRNA-
196a has been correlated with the susceptibility of Chinese 
Han to ESCA risk [ 43]. MiR-196a has also been related 
to the development of Barrett’s esophagus to esophageal 
adenocarcinoma [44, 45]. However, its expression level 
and clinical significance have not been reported in ESCA, 
which remains to be further investigated. 

The circulating level of miRNAs has great clinical 
significance as non-invasive biomarkers for the early 

Figure 9: Protein-protein interaction (PPI) network of overlapping genes. PPI network was drawn using STRING online tool. 
The minimum required interaction score was 0.7 (high confidence). Disconnected nodes were hidden in the network. The bar graph showed 
the number of connected nodes for the top 30 genes.
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Figure 10: The correlation between the top three hub genes and each differentially expressed miRNA (DEM). Pearson’s 
correlation plots were drawn using R language. (A) miR-93 (PRKACB, AR and CXCL12), (B) miR-21(AR, DLG2 and PRKACB), (C) 
miR-196a-1 (AR, AQP4 and KCNJ10), (D) miR-196a-2 (AR, AQP4 and KCNJ10), (E) miR-4746 (PRKACB and PPP1R12B).
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Figure 11: Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 
overlapping genes. GO Annotation and KEGG Pathways were generated using the ggplot2 package in R language. The horizontal 
axis represented the number of genes. Column color represented the -log10(P-Value). Blue: high degree of enrichment, red: low degree of 
enrichment. (A) GO annotation of overlapping genes, (B) KEGG pathways of overlapping genes.

Figure 12: The regulatory network of miRNA-(transcription factor) TF. The regulatory network of miRNA-TF in esophageal 
carcinoma (ESCA) was drawn with Cytoscape software. The red rectangles and yellow triangles represented the miRNAs and TFs, 
respectively. The solid lines denoted the regulatory links among these factors.
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detection of ESCA. Some studies showed plasma/
serum miR-21 was upregulated in ESCA patients than 
controls by using RT-PCR, and the area under the curve 
(AUC) were 0.812 [36], 0.690 [46] and 0.618 [47]. 
Moreover, upregulated miR-21 was detected in saliva 
supernatants with the AUC of 0.698 [48] and exosomes 
[49]. Not only miR-21, but also miR-23a [50], miR-506 
[51], miR-718 [52] and miR-216a/b [53] were found as 
circulating biomarkers for diagnosis of ESCC. A meta-
analysis [54] including 27 studies reported that circulating 
miRNAs with a combined AUC of 0.87 could be used 

as a biomarkers for early diagnosis of ESCC. MiRNAs 
presented in blood or other tissue fluid in a stable form 
[55]. Therefore, circulating miRNAs can be candidates for 
noninvasive diagnosis of ESCA. However, the circulating 
level of miR-93, miR-4746, miR-196a-1 and miR-196a-2 
remains un-reported and needs to be detected in the future. 

To further explore the possible molecular 
mechanisms of the five DEMs in the progression of 
ESCA, we performed PPI analysis, GO and KEGG 
pathway analysis of the overlapping genes. The top 
10 hub genes (ADCY5, PRKACB, CXCL12, GPR17, 

Figure 13: The regulatory network of miRNA-gene in esophageal carcinoma (ESCA). The regulatory network of miRNA-
gene was analyzed using Cytoscape software. The round rectangles and ellipses represented the miRNAs and genes, respectively. The red 
and green colors represented the relatively high and low expression, respectively.
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NMUR1, AR, CNR1, CHRM2, GNAZ and PTGER3) 
were identified from the PPI network. Among these hub 
genes, CXCL12 expression has been shown to stimulate 
ESCC proliferation and associated with poor prognosis 
[56]. CXCL12 was also highly associated with ESCC 
development based upon graph-clustering and GO-term 
analysis [57]. Sato et al. reported that DNA methylation 
of ADCY5 was correlated with recurrence of lung 
adenocarcinoma [58]. Harten et al. found that Neuromedin 
U (NMU) combined with NMUR1 to stimulate migration 
of renal cancer cells [59]. Furthermore, we discovered 
that these overlapping genes were mainly involved in 
the plasma membrane, calcium signaling pathway and 
neuroactive ligand-receptor interaction, which gave us a 
direction to explore the molecular mechanisms of these 
DEMs in the tumorigenesis and deterioration of ESCA. To 
preliminarily validate the potential targets of the DEMs, 
we observed inverse relationships between DEMs and 
some of the hub genes, however, the exact validation 
needs to be performed with experiments in vitro in the 
future. 

The development of ESCA is a complex biological 
process. We summarized the target TFs and constructed 
the regulatory network of miRNA-TF. TGF-β1 and EGFR, 
known TFs, may play significant roles in the progression 
of ESCA. TGF-β1 promotes the invasion and migration 
of sphere-forming stem-like cells in esophageal cancer 
[60]. TGF-β1 also induced the epithelial to mesenchymal 
transition (EMT) via the regulation of PTEN/PI3K 
signaling pathway in ESCC [61]. EGFR/AKT signaling 
pathway may play a crucial part in promoting ESCC 
development [62]. In addition, the expression of EGFR 
has been related to the prognosis of esophageal cancer 
[63–65]. Thus, DEMs may influence the TFs and then 
regulate the tumor development in ESCA. However, the 
function of miRNA-TF also requires further verification 
with in vitro and in vivo experiments.

MATERIALS AND METHODS

DEMs and DEGs of ESCA from TCGA data

The ESCA miRNA-Seq and RNA-Seq data were 
downloaded from the TCGA database using The GDC 
Data Portal (https://gdc-portal.nci.nih.gov/). The number 
of miRNA and mRNA expression values were 1881 and 
60483. The miRNA expression data included a total of 
200 samples consisting of 187 ESCA (90 esophageal 
adenocarcinoma (EAC) and 97 ESCC) and 13 normal 
esophageal samples. The mRNA expression data included 
a total of 173 samples consisting of 162 ESCA (80 EAC 
and 82 ESCC) and 11 normal esophageal samples. The 
sequencing data were all publicly available; therefore, 
no ethical issues were involved. The edgeR package in 
Bioconductor was used to screen the DEMs and DEGs 
in ESCA and normal esophageal tissue samples. The 

edgeR package is based on the negative binomial (NB) 
distribution, which can correct the overdispersion problem 
in RNA-seq data by using a Poisson model and a Bayes 
procedure [66, 67]. The data with expression values of 
zero were removed. The miRNAs and genes were deemed 
to be DEMs and DEGs if |log2FoldChange| > 1 [68] 
and |log2FoldChange| >1.5 [69], respectively, both with 
p-value < 0.05 and false discovery rate (FDR) < 0.05.
Analysis of the diagnostic role of DEMs

We evaluated the differential expression level of 
DEMs using the scatter diagram software by GraphPad 
Prism (version 6.01) and employed t-test for statistical 
comparison. The ROC analysis of the DEMs was 
performed using MedCalc software [70]. The top five 
DEMs with the highest diagnostic performances were 
selected for further analysis. The sROC curves for the 
top five DEMs were generated using Meta-DISc software 
[71]. The AUC was calculated for the individual DEMs 
and their combination.

Validation of the top five DEMs based on GEO 
miRNA microarray datasets

The ESCA miRNA microarray datasets were 
collected from GEO (http://www.ncbi.nlm.nih.gov/
geo/) on the basis of the search terms: (esophageal OR 
esophagus OR esophag* OR ESCC OR ESCA OR EC 
OR EA) AND (cancer OR carcinoma OR tumo* OR 
neoplas* OR malignan* OR adenocarcinoma) AND (miR 
OR miRNA OR microRNA OR “non coding RNA” OR 
“non-coding RNA”). The search date was up to February 
15, 2017.

We selected available datasets in accordance with 
the following inclusion criteria: (1) the samples in each 
datasets must be from human beings; (2) the patients must 
be diagnosed as esophageal carcinoma pathologically; 
(3) the records must provide miRNA expression data for 
both cancerous and non-cancerous specimens; (4) both the 
cancer and non-cancer groups must include at least three 
samples, respectively [72].

Two reviewers (Jiang-hui Zeng and Dan-dan 
Xiong) independently extracted detailed information from 
included datasets, with any divergence was confirmed by 
conversation with a third and fourth researchers (Gang 
Chen and Dian-zhong Luo). The following characteristics 
were collected: data source, platform, first author, 
publication years, region, cancer type, sample source, 
number of patients for both cancer and normal groups and 
expression values of the top five DEMs.

The mean and standard deviation of the top five 
DEMs expression values in cancer and non-cancer groups 
were calculated using SPSS 20.0 (IBM, New York, 
USA). The pooled standard mean deviation (SMD) and 
its corresponding 95% confidence interval (95% CI) were 
further evaluated using STATA, version 12.0 (StataCorp, 
College Station, TX, USA). The SMD > 0 demonstrated 
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that the DEMs were highly expressed in cancer samples. 
The P < 0.05 (two-sided) was considered statistically 
significant.

Collection of potential target genes for DEMs

We predicted the potential target genes of the top 
five DEMs using miRWalk 2.0 [73], which included 12 
databases (miRWalk [74], Microt4 [75], miRanda [76], 
mirbridge [77], miRDB [78], miRMap [79], miRNAMap 
[80], Pictar2 [81], PITA [82], RNA22 [83], RNAhybrid 
[84] and TargetScan [85]). The genes predicted by six or 
more databases were regarded as potential target genes for 
each DEM. We also combined all predicted genes together 
as a group, which could reflect the known potential targets 
in ESCA in general. Then, the intersection between the 
above predicted genes and the DEGs of TCGA was 
determined using Venn diagram online tool. For those 
four up-regulated DEMs (miR-93, miR-21, miR-4746, 
miR-196a), we selected the down-regulated DEGs for 
the intersection due to the negative relationship between 
the miRNA and its target gene based upon sequence 
complementation. 

PPI network construction

PPI network of the overlapping DEGs was 
established using the Search Tool for the Retrieval of 
Interacting Genes (STRING) database (http://www.
string-db.org/). The interactions procured included known 
interactions and predicted interactions. 

Validation of the top five DEMs target genes 
based on TCGA datasets

PPI network was performed to the overlapping 
genes of each DEM (miR-93, miR-21, miR-196a-1 and 
miR-196a-2). Pearson’s correlation between the top five 
hub genes and each DEM was performed by R language.

Functional annotation

The Database for Annotation Visualization and 
Integrated Discovery (DAVID) online tool (https://david.
ncifcrf.gov/) was used to conduct the functional and 
pathway enrichment analyses in our study. We performed 
GO and KEGG pathway enrichment analyses to detect 
the potential biological functions and pathways of the 
overlapping genes of the four DEMs in ESCA.

Identification of miRNA-transcription factors 
(TFs)

CircuitsDB is a web-server established to search 
human and mouse mixed miRNA/TF Feed-Forward 
regulatory circuits [86]. The transcription factor-miRNA 

regulation database (TransmiR) provides a valuable 
resource for the study of TF-miRNA regulation [87]. 
We thus obtained miRNA-TF regulatory relations using 
CircuitsDB and TransmiR.

Networks of miRNA-TF and miRNA-gene

Based on the miRNA-TF pairs and miRNA-gene 
pairs, we constructed the regulatory networks of miRNA-
TF and miRNA-gene in ESCA, which we visualized using 
Cytoscape (v3.4.0) software.

CONCLUSIONS

In the current study, we screened for the presence 
of DEMs and DEGs in normal esophageal and ESCA 
samples in the genome-wide miRNA expression profiles 
from TCGA and GEO. We selected the top five miRNAs 
with the highest AUC value to construct the networks of 
miRNA-TF and miRNA-Gene. Our study may provide 
a meaningful contribution to exploring the role of novel 
DEMs in ESCA pathogenesis and improving the early 
diagnosis of ESCA.
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