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The hypoxia signalling pathway in haematological malignancies
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ABSTRACT
Haematological malignancies are tumours that affect the haematopoietic and 

the lymphatic systems. Despite the huge efforts to eradicate these tumours, the 
percentage of patients suffering resistance to therapies and relapse still remains 
significant. The tumour environment favours drug resistance of cancer cells, and 
particularly of cancer stem/initiating cells. Hypoxia promotes aggressiveness, 
metastatic spread and relapse in most of the solid tumours. Furthermore, hypoxia is 
associated with worse prognosis and resistance to conventional treatments through 
activation of the hypoxia-inducible factors. Haematological malignancies are not 
considered solid tumours, and therefore, the role of hypoxia in these diseases was 
initially presumed to be inconsequential. However, hypoxia is a hallmark of the 
haematopoietic niche. Here, we will review the current understanding of the role 
of both hypoxia and hypoxia-inducible factors in different haematological tumours.

HAEMATOLOGICAL MALIGNANCIES 

Haematological malignancies (HMs) are tumours 
characterized by uncontrolled proliferation of cells from 
the immune and the haematopoietic system. In Europe, 
recent analyses show an age-standardized incidence 
rate of 32 tumours per 100.000 persons/year [1]. These 
heterogeneous pathologies are nowadays classified based 
on the affected cell lineage as myeloid or lymphoid. 
Neoplasias of lymphoid origin are the most frequently 
observed (75% of the total HMs) with multiple myeloma 
(MM), small B-cell lymphocytic lymphoma (SBLL) 
/ chronic lymphatic leukaemia (CLL), diffuse large 
B-cell lymphoma (DLBCL) and Hodgkin lymphoma 
(HL) being the most common. Acute myeloid leukaemia 
(AML), myeloproliferative neoplasms (MPN) and 
myelodysplastic syndromes (MDS) account for the highest 
rate among the myeloid malignancies [2, 3]. Despite 
the differences in biology, clinical manifestations and 
outcome between disease subtypes, an overall significant 
progress in terms of diagnosis and cure rates has been 
achieved in the past decades. To date, the majority of 
paediatric acute lymphatic leukaemia (ALL) and chronic 

myeloid leukaemia (CML) cases are indeed cured or 
well controlled. Overall survival at 5 years is over 60% 
and around 80% in patients with non-Hodgkin and 
Hodgkin lymphoma, respectively [4, 5]. In contrast, CLL 
and AML have a high risk of relapse, and MM remains 
mostly incurable [6, 7, 8]. There is compelling evidence 
that a small population of stem-like cancer cells with the 
capacity for self-renewal and differentiation accounts for 
resistance and recurrence in many types of cancer [8, 9]. In 
the context of HMs, these cells are known as leukaemia-, 
lymphoma- or myeloma-initiating cells (from now on 
referred to as haematological cancer stem cells, HCSCs). 
Although there is some controversy on the phenotype of 
such a population(s), HCSCs are certainly involved in the 
initiation and maintenance of HMs [10-14]. 

Cancer research has been mostly focused on cancer 
cells themselves. However, it is now well accepted that 
tumours are complex tissues sustained by the dynamic 
interactions between cancer cells and their environment. 
This environment consists of a number of cell types 
(fibroblasts, endothelial cells, adipocytes, macrophages, 
antigen-presenting cells, etc) and many different 
molecules (growth factors, cytokines, chemokines, 
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extracellular matrix, adhesion molecules, etc), which 
are commonly referred to as the tumour stroma [15]. 
Forty years ago, studies performed in the laboratory of 
Dr John Trentin demonstrated that stromal cells had an 
active role supporting haematopoiesis [16]. Furthermore, 
experimental evidence has demonstrated the interaction 
between stroma and haematologic cancer cells (HCCs) 
[17] (Figure 1). This is especially relevant in the case 
of HCSCs that house in niches contributing to a pro-
tumourigenic environment [18, 19]. Therefore, the 
key challenges of HMs are to decipher in detail who 
participates and how in these complex networks that 
synergize to promote cancer progression.

HYPOXIA IN HMS AND THE STROMAL 
COMPARTMENT

Hypoxia is, by definition, a state of reduced 
oxygenation that influences biological functions [20]. 
Since the initial indication made by Thomlinson and 
Gray, it is well established that hypoxia is a characteristic 
feature of solid tumours [21]. Unlike the normal 
tissue vasculature, the primitive and chaotic tumour 
neovasculature is unable to meet all the oxygen and 
nutrients demands. Nevertheless, this poor and hostile 
milieu drives cancer cell survival, cancer stem cell 
maintenance, metabolic reprogramming, angiogenesis and 
modulation of immune response, so that tumour hypoxia 
is associated with aggressiveness, metastatic spread and 
relapse [22]. 

Compared to most healthy tissues, the bone marrow 
(BM) environment is characterized by low oxygen 
availability. A relatively low level of oxygen is indeed a 
hallmark of the BM stem cell niche, and hypoxia induces 
the secretion of several growth factors and cytokines such 
as SDF-1/CXCL12 (stromal cell-derived factor), VEGF 

(vascular endothelial growth factor) and interleukin-6 
involved in haematopoietic stem cells (HSCs) maintenance 
[23-27]. In vitro studies have shown that myelomatous 
BM environment is more hypoxic than the normal BM 
[28]. Jensen et al. remarked an increase in BM hypoxia 
during disease progression using a rat AML model [29]. 
Moreover, using pimonidazole staining for measuring 
hypoxia levels, Konopleva et al. elegantly demonstrated 
the high prevalence of hypoxia in human leukaemic BM 
[30]. Therefore, hypoxia certainly affects the different 
components of BM and modulates the highly complex and 
strictly regulated interactions between cancer and stromal 
cells. Hypoxia sustained AML- and CML-initiating cell 
maintenance, although contradictory effects on HCCs 
proliferation have been reported [29, 31-39]. In addition, 
neoangiogenesis and increased release of hypoxia-induced 
angiogenic cytokines such as VEGF, bFGF (basic-
fibroblast growth factor) and angiopoietin 1 & 2 have been 
reported in AML and childhood ALL patients [40-42]. 
In vitro and in vivo studies have shown that angiogenic 

factors favour MM tumour development and lymphoma 
progression [43-53]. Hypoxia induces metabolic changes, 
enhances survival, reduces differentiation and promotes 
self-renewal of mesenchymal/stromal cells [54-56]. 
Furthermore, co-culture with these cells in hypoxia 
promotes maintenance and expansion of normal HSCs 
and human AML cells [39, 56, 57]. Finally, the poorly 
oxygenated niche and the hypoxia-induced glycololytic 
metabolism have been linked to chemoresistance in 
B-ALL, T-ALL, AML, lymphoma and MM cases [58-76]. 

HIF, THE MASTER HYPOXIA-SIGNALLING 
MEDIATOR: IMPLICATIONS IN HMS AND 
THE STROMAL COMPARTMENT

The hypoxia-inducible transcription factors 
(HIFs) are central regulators of the cellular response to 
hypoxia [77]. HIF is a heterodimer composed of one of 
three oxygen-regulated HIF-α subunits (HIF-1α, HIF-
2α and HIF-3α) and the constitutively expressed HIF-β 
subunit [78, 79]. HIF-1α and HIF-2α, also known as 
endothelial PAS protein (EPAS1), are the major activators 
of hypoxia-induced gene transcription, but, to date, little 
is known about expression and function of HIF-3α [80]. 
HIF-α proteins share similar structural domains such as 
an N-terminal basic helix-loop-helix (bHLH) domain 
involved in DNA binding, two Per-ARNT-Sim (PAS) 
domains allowing dimerisation, an oxygen-dependent 
degradation domain (ODDD), and the transactivation 
domain (TAD). While HIF-3α contains only one TAD, 
HIF-1α and HIF-2α contain an N-terminal (NTAD) and a 
C-terminal (CTAD) transactivation domain for recruitment 
of transcriptional coactivators [81]. In well-oxygenated 
cells, HIF-α subunits are hydroxylated by the family of 
prolyl hydroxylase domain-containing proteins (PHDs) 
on two conserved proline residues (Pro402 and Pro564 
in the Human HIF-1α sequence) within the ODDD [82]. 
The hydroxylated motif allows the binding of the von 
Hippel-Lindau (VHL) protein, which mediates HIF-α 
ubiquitination and the further targeting to the proteasome 
for degradation [83]. While the PHD family consists 
of four PHDs, PHD1, 2 and 3 have been characterized 
much more extensively than PHD4, which is bound to 
the membrane of the reticulum endoplasmic [84-86]. 
Moreover, PHD2 has been described to be the main PHD 
controlling HIF-1α stability and levels in normoxia [87]. 
PHDs act as intracellular molecular sensors that use O2 as 
a substrate, and thus, their activity is compromised upon 
hypoxia [88, 89]. Thereby, HIF-α evades PHD/pVHL-
mediated degradation, dimerises with HIF-1β and the HIF 
complex binds to specific HIF-response elements (HRE) 
of target genes. The oxygen-dependent hydroxylation of 
an asparagine residue in the CTAD of HIF-α (Asn803 in 
the Human HIF-1α sequence) by Factor Inhibiting HIF 
(FIH) negatively regulates HIF-target gene expression by 
impairing the recruitment of the co-activators CBP/p300 
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[90]. 
In addition to hypoxia, a number of studies have 

reported HIF-α sustained protein expression independently 
of oxygen availability. Growth factors and cytokines such 
as EGF (epidermal growth factor), FGF-2, heregulin, 
insulin, IGF1&2 (insulin-like growth factor 1 and 2), 
IL-1β, TNF-α (tumour necrosis factor α) and factors 
specifically involved in haematopoiesis such as SCF 
(stem cell factor) and thrombopoietin positively regulate 
HIF activity [91-98]. In addition to loss of function 
mutations in von Hippel-Lindau (VHL) and PTEN, or 
gain of function mutations in Myc, Ras and Raf [99-
102], prevalent mutations found in HMs also promote 
HIF expression and activity. Hence, activating mutations 
of FLT3 (Fms-like tyrosine kinase 3), recognized as the 
most common molecular abnormality in AML [103], 
increase HIF-α accumulation via the PI3K/AKT/mTOR 
pathway [104, 105]. Bcr/Abl, an oncoprotein present in 

most CML cases but also found in ALL and AML patients, 
induces HIF-1α similarly to FLT3 [106]. Src, another 
proto-oncogen with a relevant role in HMs, activates HIF 
through the NADPH oxidase/Rac pathway [107]. NPM 
(nucleophosmin or nucleolar phosphoprotein B23), which 
is mutated and chromosomally translocated in many HMs, 
stimulates HIF activity by inactivating p14ARF [108, 
109]. Moreover, contradictory results have been observed 
regarding IDH mutations and HIF-α accumulation [110-
112]. 

HIF drives the transcription of genes involved in 
many pathways promoting angiogenesis and vascular 
remodelling, proliferation, survival and invasion of 
cancer cells and stem cell maintenance [113] (Figure 2). 
Overall, increased HIF-α expression is correlated with 
tumour growth and therapy resistance and, therefore, 
with disease relapse [114, 115]. Accordingly, sustained 
expression of HIF-α is a marker of poor prognosis not 

Figure 1: Picture of normal haematopoietic stem cells (HSCs) and haematological cancer stem /initiating cells (HCSCs) 
niches in the bone marrow. Both HSCs and HCSCs niches are composed of a collection of different cell types, growth factors and 
cytokines, which are localized close to the endosteum and sinusoids. Oxygen levels decrease from the sinusoids to the endosteum. HCSCs 
expand within the hypoxic endosteal niche while take advantage of the vascular niche to colonize distant organs. 
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only in several types of solid tumours but also in HMs 
[116-129]. Therefore, inhibition of HIF-α (either by RNAi 
or small molecules) resulted in a failure of primary cells to 
form in vitro colonies and significantly increased disease-
free survival in vivo [36, 118, 130-136]. However, the 
specific role of HIFs in HMs seems to be controversial 
and contradictory data have also been published. Thus 
HIF-1α has been reported to induce cell differentiation in 
AML, and loss of HIF-1α resulted in faster development 
of the disease and reduced survival [137-142]. Similarly, 
HIF-1α overexpression associated with increased survival 
in patients with diffuse large B-cell lymphoma [143]. 
Such an apparent controversy could be explained by 
the different system used (mouse versus human), the 
unspecificity of shRNA/drugs compared to knock-out 
models or the hypoxic exposure. Therefore, further studies 
will be certainly needed to clarify the oncogenic and/or 
tumour suppressor activity of HIF signalling in HMs, and 
particularly within HCSCs. 

Homing and subsequent adhesion of cancer stem 
cells to the vascular and the endosteal niche triggers the in 
vivo tumour-stroma interactions. The chemokine receptor 
CXCR4 (C-X-C chemokine receptor type 4) and its ligand 
SDF-1/CXCL12 mediate this process and it is well known 
that HIF-1α regulates the expression of both [144, 145]. 
Moreover, the involvement of this axis in chemoresistance 
has been deeply demonstrated in HMs [146-151]. In 
this regard, it has been recently published that HIF-1α 
increases the interaction of CLL cells with the stroma 
and that stromal cells protect mantle cell lymphoma cells 
from the cytotoxic effect of chemotherapeutic agents 

[152, 153]. Furthermore, aberrant expression of HIF-1α 
in bone marrow endothelial cells has been linked to drug 
resistance and recurrence in patients with MM [126]. 

HYPOXIA AND/OR HIFS AS TARGETS 
TO TREAT HMS

All the previously reported data emphasize the 
relevance of fighting against hypoxia and HIF signalling 
in HMs. Not only HCCs but also the stromal compartment 
should be targeted to fully frustrate the pro-tumourigenic 
environment promoted by their interaction. The therapeutic 
strategy aiming to directly target hypoxic cells within 
tumours remains a challenging approach, while success 
in clinical trials has so far proved elusive [154]. This 
approach relies mostly on the use of hypoxia-activated 
prodrugs (HAPs) or bioreductive drugs. The prodrugs are 
inactive medications that require metabolization before 
exhibiting pharmacological effects. In particular, HAPs 
require activation by oxygen-inhibited enzymes (typically 
by 1 or 2 electron oxidoreductases) to generate cytotoxic 
compounds [154]. One of the most extensively examined 
HAPs is evofosfamide (TH-302), the reductive activation 
of which generates bromo-isophosphoramide mustard 
(Br-IMP), a potent alkylating agent. TH-302 exhibited 
specific hypoxia-dependent cytotoxicity when tested in 
primary ALL and AML samples in vitro and reduced the 
AML stem cell pool in vivo [155, 156]. Similarly, TH-
302 induced cell cycle arrest and triggered apoptosis in 
severely hypoxic conditions in MM, while had no effect 
at similar doses in normoxic conditions [38]. A phase I/

Figure 2: O2-dependent and -independent HIF signalling pathway. In well-oxygenated cells, the hydroxylation of HIF-α 
catalyzed by PHDs triggers VHL-mediated ubiquitination and subsequent degradation into the proteasome. In contrast, low oxygen 
availability stabilizes HIF-α by compromising PHD activity. Moreover, activation of oncogenes, loss of tumour suppressors, growth 
factors, specific prevalent mutations found in HMs and factors involved in haematopoiesis are also able to upregulate HIF-α independently 
of oxygen availability. Once stabilized, HIF-α translocates to the nucleus, binds to HIF-β and regulates the expression of genes promoting 
tumour progression.
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II clinical trial in relapsed or refractory ALL or AML has 
been carried out using PR-104, which also results in the 
generation of a DNA-damaging metabolite. In this study, 
PR-104 demonstrated measurable clinical activity but 
also significant toxicity at the doses administered in the 
trial [30]. It is worth nothing that novel HAPs designed 
to release targeted therapeutics (pioneered by TH-4000 
that releases EGFR tyrosine kinase inhibitor) have been 
recently developed, though to our knowledge no data 
related to HMs are available [154]. 

Regarding the use of drugs directly targeting HIF, 
several chemical inhibitors have been tested in different 
models. Echinomycin (NSC-13502) is an antibiotic 
derivative from the quinoxaline family, which inhibits 
HIF-1α/DNA binding activity. This inhibitor has been 
previously evaluated in clinical trials in solid tumours, 
though with disappointing results [157]. Interestingly, 
echinomycin abrogated in vitro and in vivo lymphoma 
and AML growth through preferential targeting of HCSCs 
[132, 133, 158]. HIF-1α inhibition by 2-methoxyestradiol 
(2ME2), and endogenous metabolite of oestrogen 
that disrupt microtubule architecture, and YC-1(3-
(5’hydroxymethyl-2’-furyl)-1-benzy-lindazole) induced 
cell death in different HMs [159]. L-ascorbic acid was 
also able to specifically inhibit the proliferation of human 
CML cells via downregulation of HIF-1α transcription 
[135]. EZN-2968, a small 3rd generation antisense 
oligonucleotide against HIF1A mRNA, delayed acute 
promyelocytic leukaemia (APL) and MM progression 
[160, 161]. EZN-2968 has also been reported to block 
the interaction between MM cells and BM stromal 
cells through HIF-1α inhibition [161]. Furthermore, 
the combination of EZN-2088, a polyethylene glycol 
conjugate of irinotecan (PEG-SN38), with all-trans retinoic 
acid (ATRA) synergized to eradicate preclinical models 
of PML-RARα (promyelocytic leukaemia protein-retinoic 
receptor antagonist alpha) and PLZF (promyelocytic 
leukaemia zinc finger)-RARα-driven leukaemia [160]. 
More recently, it has been shown that chetomin, a small 
molecule able to disrupt HIF-1α binding to the p300 
coactivator, exhibited antitumor activity in primary 
MM cells from patients [162]. Similarly, acriflavine, 
another FDA-approved HIF inhibitor, has demonstrated 
specificity towards CML stem cells [163]. Moreover, it 
should be pointed out the relevance of bortezomib (PS-
341), a proteasome inhibitor, in the treatment of MM 
and mantle cell lymphoma patients. Relapse/refractory 
but also newly diagnosed cases benefit of bortezomib 
either as single agent or combined with other therapies 
[164, 165]. Indeed, bortezomib has been reported to 
repress HIF-1 (and not HIF-2)-dependent transcriptional 
activity by reinforcing FIH-mediated inhibition of p300 
recruitment [166]. Supporting combinatorial therapeutic 
options, TH-302 together with bortezomib induced MM 
cell cycle arrest and triggered apoptosis in severe hypoxic 
conditions, while having no effect at similar doses in 

normoxic conditions [167]. More recently, PT2385 has 
been developed as a selective agent that blocks HIF-2α 
with potent anti-cancer activity in preclinical models of 
advanced clear cell renal cell carcinoma (ccRCC) [168-
170]. However, this inhibitor has not been still tested for 
the treatment of HMs. Finally, it is worth mentioning that 
several agents in current clinical practice to treat HMs 
directly inhibit HIF-α, which might contribute to their 
therapeutic efficacy. This is indeed the case for imatinib or 
the topoisomerase I inhibitor, topotecan. Furthermore, the 
potential impact of rituximab on HIF1α expression levels 
might argue its favorable prognostic value in patients with 
DLBCL treated with this monoclonal antibody [123].

CONCLUSION

Data reported from several research laboratories 
claim that hypoxia and HIF-mediated signalling favour 
haematologic and lymphoid tumour progression and 
relapse. The results using hypoxia-activated prodrugs 
and HIF-α inhibitors in different preclinical and clinical 
models are really promising. Hence, these data give 
exciting perspectives to define new and better therapeutic 
approaches that may benefit patients suffering from HMs.
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