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ABSTRACT

We explored the correlation between single nucleotide polymorphisms (SNPs) 
and susceptibility to cervical cancer (CC) in a Xinjiang Uygur population. Ten SNPs in 
eight miRNA-regulated genes were selected for analysis. Odds ratios (ORs) and 95% 
confidence intervals (95% CIs) were calculated using unconditional logistic regression 
analysis. Multivariate logistic regression analysis was used to detect correlations between 
SNPs and CC. We found that minor allele “C” of rs512715 in NEAT1 was associated 
with an increased risk of CC in the allele, codominant, dominant, overdominant and 
log-additive models. Minor allele “C” of rs4777498 in CELF6 was associated with an 
increased risk of CC in the recessive model. Minor allele “C” of rs3094 in RNASE4 was 
associated with increased risk of CC in the allele, dominant and log-additive models. In 
clinical stage III/IV CC patients, minor allele “C” of rs3094 in RNASE4 and minor allele 
“C” of rs8004334 in JDP2 were associated with increased risk. In subtype squamous 
carcinoma CC patients, minor allele “C” of rs512715 in NEAT1 and minor allele “C” of 
rs3094 in RNASE4 were associated with increased risk. In subtype adenocarcinoma CC 
patients, minor allele “C” of rs3094 in RNASE was associated with increased risk.

INTRODUCTION

Cervical cancer (CC) is the fourth most common 
malignancy in women, with 528,000 occurrences and 
266,000 deaths in 2012 [1]. More than 85% of CC occurs 
in developing regions such as Eastern Africa, Melanesia, 
and Southern and Central Africa, where cervical CC 
accounts for more than 60% of gynecological cancers 
[2]. Cervical cancer is mainly attributable to human 
papillomaviruses (HPVs or PVs), which belong to the 

large Papillomaviridae family [1]. HPV particles include 
an approximately 8000-bp, double-stranded, closed 
circular DNA harboring eight genes [3].

Although previous studies have reported several 
biomarkers of CC, including p16INK4a and Ki-67, few 
have investigated the relationship between CC risk 
and microRNA (miRNA)-regulated genes, including 
CDK6, PTEN and NEAT1, among others. MiRNAs are 
small (~19-25 nucleotides) non-coding RNA sequences 
that regulate gene expression through translational 
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suppression accomplished through direct and/or 
triggered degradation of coding mRNAs mediated 
through binding to complementary sequences in the 3′ 
untranslated region (UTR) [4]. In this way, miRNAs 
play key roles in a variety of biological process, 
including cell apoptosis, proliferation, differentiation, 
development and tumorigenesis, which are involved 
in the pathogenesis of a variety of ailments, including 
cancer, nephropathy and renovascular disease [5–7]. 
Consequently, how miRNA-regulated genes affect 
CC risk would seem to be a potentially meaningful 
investigation. We therefore investigated the 
relationships between single nucleotide polymorphisms 
(SNPs) in miRNA-regulated genes and the risk of CC. 
In the present case-control study, we selected 10 SNPs 
in eight miRNA-regulated genes and performed a 
comprehensive association analysis in a Xinjiang Uygur 
population.

RESULTS

The basic information on the 10 SNPs examined 
in this study is summarized in Table 1. We found that 
rs2285332 (p = 0.008), rs11202607 (p = 0.022) and 
rs680413 (p = 0.013) deviated from the Hardy-Weinberg 
Equilibrium (p < 0.05), and were excluded from our 
analysis. We found two SNPs were significantly associated 
with CC (rs512715, NEAT1, OR = 1.354, 95% CI: 1.039-
1.764, p = 0.025; rs3094, RNASE4, OR = 1.359, 95% CI: 
1.051-1.758, p = 0.019).

We then conducted an unconditional logistic 
regression analysis, and the positive results are illustrated 
in Table 2. We found three SNPs that were associated with 
increased CC risk in different models. The minor allele 
“C” of rs512715 increased CC risk in the codominant (OR 

= 1.56, 95% CI: 1.09-2.24, p = 0.044), dominant (OR = 
1.55, 95% CI: 1.10-2.18, p = 0.012), overdominant (OR = 
1.46, 95% CI: 1.03-2.08, p = 0.032) and log-additive (OR 
= 1.34, 95% CI: 1.03-1.75, p = 0.027) models. The minor 
allele “C” of rs4777498 increased CC risk in the recessive 
model (OR = 2.40, 95% CI: 1.01-5.70, p = 0.041). And 
the minor allele “C” of rs3094 increased CC risk in 
dominant (OR = 1.47, 95% CI: 1.04-2.08, p = 0.027) and 
log-additive (OR = 1.35, 95% CI: 1.04-1.74, p = 0.021) 
models.

The associations between SNPs and different 
clinical stages and CC subtypes were assessed, and the 
positive results are illustrated in Table 3. In clinical stage 
III/IV patients, we found rs3094 (OR = 1.51, 95% CI: 
1.06-2.14, p = 0.021) and rs8004334 (OR = 1.60, 95% CI: 
1.15-2.24, p = 0.006) to be associated with an increased 
CC risk. In subtype squamous carcinoma patients, we 
found rs512715 (OR = 1.37, 95% CI: 1.05-1.79, p = 
0.021) and rs3094 (OR = 1.31, 95% CI: 1.01-1.70, p = 
0.043) to be associated with an increased CC risk. And in 
subtype adenocarcinoma patients, we found rs3094 (OR = 
4.02, 95% CI: 1.11-11.24, p = 0.004) to be associated with 
an increased CC risk.

DISCUSSION

In the present study, we found that four SNPs 
belonging to four miRNA-regulated genes were associated 
with CC risk. These were rs512715 in NEAT1 regulated by 
hsa-mir-342-3p, rs4777498 in CELF6 regulated by hsa-
mir-375, and rs3094 in RNASE4 and rs8004334 in JDP2, 
both regulated by hsa-mir-590-5p.

In humans, miRNAs are transcribed by RNA 
polymerase II in the nucleus as pri-miRNAs, which may 
contain two or more mature miRNAs. Subsequently, 

Table 1: Basic information on the SNPs examined in this study

SNPs MiRNA Gene Chr Band Role Alleles
MAF HWE 

p OR 95% CI p
casae control

rs2285332 hsa-miR-218 CDK6 chr7 7q21.2 3' UTR C/G 0.504 0.437 0.008 1.310 1.029 1.669 0.028

rs701848 hsa-miR-23b PTEN chr10 10q23.31 3' UTR T/C 0.536 0.489 0.192 1.207 0.948 1.536 0.126

rs11202607 hsa-miR-23b PTEN chr10 10q23.31 3' UTR T/C 0.079 0.065 0.022 1.235 0.774 1.969 0.375

rs680413 hsa-mir-342-3p NEAT1 chr11 11q13.1 5' UTR G/T 0.130 0.128 0.013 1.013 0.707 1.452 0.943

rs512715 hsa-mir-342-3p NEAT1 chr11 11q13.1 5' UTR C/G 0.326 0.263 0.221 1.354 1.039 1.764 0.025

rs1133822 hsa-mir-342-3p LOC105372481 chr19 19q13.43 - G/A 0.302 0.328 1.000 0.885 0.682 1.147 0.355

rs4777498 hsa-mir-375 CELF6 chr15 15q23 3' UTR C/A 0.202 0.184 0.693 1.124 0.829 1.525 0.452

rs3094 hsa-mir-590-5p RNASE4 chr14 14q11.2 3' UTR C/T 0.360 0.293 0.476 1.359 1.051 1.758 0.019

rs8004334 hsa-mir-590-5p JDP2 chr14 14q24.3 Promoter C/T 0.435 0.379 0.615 1.263 0.988 1.614 0.062

rs3733839 hsa-mir-590-5p LOC153684 chr5 5p12 5' UTR C/G 0.265 0.273 0.293 0.961 0.732 1.262 0.774

Abbreviations: SNPs: Single nucleotide polymorphisms; MiRNA: microRNA; Chr: chromosome; MAF: Minor allele frequency;  
HWE: Hardy-Weinberg equilibrium; OR: Odds ratio; CI: Confidence interval.
p-values were calculated using Pearson’s χ2 test. Values of p < 0.05 were considered statistically significant.
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Table 2: Unconditional logistic regression analysis of the association between SNPs and CC risk

SNPs Model Genotype Controls n (%) Cases n (%) OR (95% CI) p AIC BIC

rs512715

Codominant
G/G 159 (55.8%) 111 (44.9%) 1

0.044 734.5 747.4C/G 102 (35.8%) 111 (44.9%) 1.56 (1.09-2.24)
C/C 24 (8.4%) 25 (10.1%) 1.49 (0.81-2.75)

Dominant
G/G 159 (55.8%) 111 (44.9%) 1

0.012 732.5 741.1
C/G-C/C 126 (44.2%) 136 (55.1%) 1.55 (1.10-2.18)

Recessive
G/G-C/G 261 (91.6%) 222 (89.9%) 1

0.5 738.3 746.9
C/C 24 (8.4%) 25 (10.1%) 1.22 (0.68-2.20)

Overdominant
G/G-C/C 183 (64.2%) 136 (55.1%) 1

0.032 734.2 742.7
C/G 102 (35.8%) 111 (44.9%) 1.46 (1.03-2.08)

Log-additive --- --- --- 1.34 (1.03-1.75) 0.027 733.9 742.5

rs4777498

Codominant
A/A 188 (66%) 163 (66%) 1

0.1 736.2 749C/A 89 (31.2%) 68 (27.5%) 0.88 (0.60-1.29)
C/C 8 (2.8%) 16 (6.5%) 2.31 (0.96-5.53)

Dominant
A/A 188 (66%) 163 (66%) 1

0.99 738.8 747.3
C/A-C/C 97 (34%) 84 (34%) 1.00 (0.70-1.43)

Recessive
A/A-C/A 277 (97.2%) 231 (93.5%) 1

0.041 734.6 743.2
C/C 8 (2.8%) 16 (6.5%) 2.40 (1.01-5.70)

Overdominant
A/A-C/C 196 (68.8%) 179 (72.5%) 1

0.35 737.9 746.5
C/A 89 (31.2%) 68 (27.5%) 0.84 (0.57-1.22)

Log-additive --- --- --- 1.12 (0.83-1.51) 0.46 738.3 746.8

rs3094

Codominant
T/T 145 (50.9%) 102 (41.3%) 1

0.067 735.4 748.2T/C 113 (39.6%) 112 (45.3%) 1.41 (0.98-2.03)
C/C 27 (9.5%) 33 (13.4%) 1.74 (0.98-3.07)

Dominant
T/T 145 (50.9%) 102 (41.3%) 1

0.027 733.9 742.5
T/C-C/C 140 (49.1%) 145 (58.7%) 1.47 (1.04-2.08)

Recessive
T/T-T/C 258 (90.5%) 214 (86.6%) 1

0.16 736.8 745.4
C/C 27 (9.5%) 33 (13.4%) 1.47 (0.86-2.53)

Overdominant
T/T-C/C 172 (60.4%) 135 (54.7%) 1

0.18 737 745.6
T/C 113 (39.6%) 112 (45.3%) 1.26 (0.89-1.78)

Log-additive --- --- --- 1.35 (1.04-1.74) 0.021 733.5 742

Abbreviations: SNPs: Single nucleotide polymorphisms; OR: Odds ratio; CI: Confidence interval.
p-values were calculated using Pearson’s χ2 test. Values of p < 0.05 were considered statistically significant.

Table 3: Association between SNPs and different clinical CC subtypes

SNPs

Clinical Stages Subtypes

I-II III-IV squamous carcinoma adenocarcinoma

OR (95%CI) p OR (95%CI) p OR (95%CI) p OR (95%CI) p

rs512715 1.23 (0.90-1.68) 0.187 1.41 (0.98-2.02) 0.060 1.37(1.05-1.79) 0.021 0.93 (0.30-2.94) 0.906

rs3094 1.26 (0.93-1.70) 0.136 1.51 (1.06-2.14) 0.021 1.31(1.01-1.70) 0.043 4.02 (1.44-11.24) 0.004

rs8004334 1.07 (0.81-1.43) 0.624 1.60 (1.15-2.24) 0.006 1.27(0.99-1.63) 0.056 0.98 (0.35-2.74) 0.974

Abbreviations: SNPs: Single nucleotide polymorphisms; OR: Odds ratio; CI: Confidence interval.
p-values were calculated using Pearson’s χ2 test. Values of p < 0.05 were considered statistically significant.
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pri-miRNAs are processed by RNase III to form  pre-
miRNAs exported to the cytosol, carried by exportin 
5, after which the pre-miRNAs are processed by 
Dicer in the cytosol to mature miRNAs. One strand 
of the mature miRNA is then incorporated with RNA-
induced silencing complex (RISC), directing it to target  
mRNA [8].

The minor allele “C” of rs512715 increased CC risk 
in the allele, codominant, dominant, overdominant and 
log-additive models. Rs512715 belongs to NEAT1, which 
is regulated by hsa-mir-342-3p. We know of no other 
study relating NEAT1 to CC risk, though a Chinese study 
found a relationship between NEAT1 and bladder cancer 
[9, 10]. In addition, an American study found hsa-mir-
342-3p to be related to irritable bowel syndrome [11]. In 
a German study, significant upregulation of hsa-miR-342-
3p was detected in the brains of macaques infected with 
bovine spongiform encephalopathy, and in a pilot study 
they also showed that hsa-miR-342-3p was upregulated in 
brain samples from humans with type 1 or type 2 sporadic 
Creutzfeldt-Jakob disease [12]. We have so far detected 
no direct evidence of a specific relationship between hsa-
miR-342-3p and CC, and we suggest that this miRNA 
likely plays a general role in the regulation of multiple 
target genes in disease. However, the detailed mechanism 
by which hsa-miR-342-3p exerts gene effects in CC 
deserves further investigation.

The minor allele “C” of rs4777498 increased CC 
risk in the recessive model. Rs4777498 belongs to CELF6, 
which is regulated by hsa-mir-375. An American study 
found that CELF6 is highly expressed in diencephalic 
nuclei and neuromodulatory cell populations of the 
mouse brain [13]. Previous studies also reported hsa-
mir-375 to be related to pancreatic cancer and early stage 
breast cancer [14, 15]. In breast cancer, higher levels of 
hsa-mir-375 were expressed in ER-α-positive than ER-
α-negative or normal cells, which led to the suggestion 
that hsa-miR-375 up-regulation is a key driver of cell 
proliferation and an early event in tumorigenesis in ER-
α-positive tissues [16]. However, a detailed understanding 
of the mechanism by which hsa-mir-375 affects CC risks 
will require further investigation.

The minor allele “C” of rs3094 increased CC risk in 
the allele, dominant and log-additive models. In clinical 
stage III/IV patients, the minor allele “C” of rs3094 and 
minor allele “C” of rs8004334 were associated with 
increased CC risk. Rs3094 belongs to RNASE4 while 
rs8004334 belong to JDP2, and both are regulated by 
hsa-mir-590-5p. Previous studies showed RNASE4 to 
be associated with high-altitude adaptation, metabolic 
syndrome and neuron degeneration [17–19], while JDP2 
was associated with heart failure [20]. Hsa-mir-590-5p 
is reportedly related to cardiac differentiation through 
down-regulation of TGFB signaling [21]. TGFB1-induced 

Table 4: Primers used for this study

SNP_ID 1st-PCRP 2nd-PCRP UEP_SEQ

rs2285332 ACGTTGGATGTGAGCTGC 
TTCAGTGTAACC

ACGTTGGATGCTTTG 
CCAAAAGCTAAGCAG gGCCAAAAGCTAAGCAGTGGTGAA

rs701848 ACGTTGGATGATAGTGCTC 
CCCCGAGTTG

ACGTTGGATGCTCCG 
CTTAAAATCGTATGC TGATTTTTTTTAAGAAGTGAAATTGA

rs11202607 ACGTTGGATGTATTTATG 
ACCTGGCCCTCC

ACGTTGGATGTTACAA 
TTTCGGGCACCGCA cTTCGGGCACCGCATATTAAAA

rs680413 ACGTTGGATGCCTAGA 
CCTAGTCTCCTTGC

ACGTTGGATGGGGAG 
AGATGACTGAGTTAG ggTGACTGAGTTAGATGAGAC

rs512715 ACGTTGGATGAACAG 
CCACTCGGCTTACTG

ACGTTGGATGCCCTT 
CTTCCTCCCTTTAAC AACTTATCCATTCACTTAAAACATTA

rs1133822 ACGTTGGATGCCTTC 
GTTCTCCTTCGTTTG

ACGTTGGATGTTTC 
TCTGCTCTGGCAGACC gGGGCACCACTTGTCACGG

rs4777498 ACGTTGGATGGGATTG 
TGGATTGTGGGTTC

ACGTTGGATGTGAG 
GTCTAGGCTCACATGC GCTCACATGCAGGTAAT

rs3094 ACGTTGGATGGATTATC 
GCGAGTGGTTGAC

ACGTTGGATGAATGAG 
CTGAGGAGACAGAG ccGCTGAGGAGACAGAGCCTGGG

rs8004334 ACGTTGGATGACTAAA 
GGCCTCCCAAGTCA

ACGTTGGATGTCCTA 
CTGGGCCTTTGCTTC aTTTGCTTCCCCCACAAATTAAAT

rs3733839 ACGTTGGATGCCATGC 
AACCAATTCCATCC

ACGTTGGATGGTCTCC 
TGACTTGTCAAGGC TCCTCTGCACCTGTCCT
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activation of Smad 2, -3, -4 leads to direct inhibition of 
STAT5 transactivation and STAT5-mediated transcription 
of downstream target genes, including miR-590 [22]. 
TGFB1 inhibits STAT5 expression at the protein level 
with no effect on mRNA expression. Whether there is a 
relationship between the mechanism of hsa-mir-590-5p-
mediated effects on CC risk and TGFB signaling warrants 
further investigation.

There are two intrinsic limitations to this study. 1) 
The sample size was not large enough to obtain illative 
combinatory associations between SNPs and CC. 2) 
Selection bias may be unavoidable since this was a 
hospital-based study. Therefore, larger well-designed 
studies combined with CC classification are needed to 
confirm the observed associations and clarify the potential 
biological mechanisms of these SNPs in CC.

In summary, we have identified significant 
associations between rs512715 (NEAT1), rs4777498 
(CELF6), rs3094 (RNASE) and rs8004334 (JDP2) and CC 
risk in Xinjiang Uygur population.

MATERIALS AND METHODS

Study participants

A total of 532 subjects, including 247 patients with 
cervical cancer and 285 healthy women were recruited at 
the People's Hospital of Xinjiang Uyghur Autonomous 
Region between January 2014 and Jun 2016. The included 
patients were recently diagnosed with primary CC based 
on cervical biopsy with histopathological confirmation. 
We excluded patients with other cancers who underwent 
radiotherapy or chemotherapy. Controls were healthy, 
unrelated individuals selected randomly from the medical 
examination center of the hospital. All participants were 
women at least 18 years old in good mental condition 
who had at least three generations of paternal ancestry 
in their ethnicity (Xinjiang Uygur population). Tumors 
were staged according to International Federation of 
Gynecology and Obstetrics (FIGO) classification. 
Informed consent was obtained from all participants, and 
the study protocols were approved by the institutional 
review board of the People's Hospital of Xinjiang Uyghur 
Autonomous Region.

SNP selection and genotyping

Candidate SNPs were selected from among 
previously published polymorphisms associated with CC. 
Validated SNPs were selected with a MAF > 5% in the 
HapMap Asian population [23]. Venous blood samples (5 
ml) were collected from each patient during laboratory 
examination. Genomic DNA was extracted from whole 
blood samples using a Gold Mag-Mini Whole Blood 
Genomic DNA Purification Kit (version 3.0; TaKaRa, 
Japan) [24] and stored at -80°C after centrifugation. DNA 

concentrations were evaluated using spectrometry (DU530 
UV/VIS spectrophotometer, Beckman Instruments, 
Fullerton, CA, USA). We used Sequenom MassARRAY 
Assay Design 3.0 Software to design the Multiplexed 
SNP MassEXTEND assays [25]. SNP genotyping was 
done with a Sequenom MassARRAY RS1000 using the 
standard protocol recommended by the manufacturer [25]. 
The primer sequences used for genotyping are listed in 
Table 4. Data management and analyses were performed 
using Sequenom Typer 4.0 software as previously 
described [25, 26].

Statistical analysis

Statistical analyses were performed using 
Microsoft Excel (Redmond, WA, USA) and the SPSS 
17.0 statistical package (SPSS, Chicago, IL, USA). All 
p values in this study were two-sided, and p ≤ 0.05 after 
Bonferroni correction was considered the statistical 
significance threshold [27]. An exact test was used 
to assess the departure of each SNP frequency from 
Hardy-Weinberg equilibrium (HWE) in the controls. 
We compared allele frequencies between cases and 
controls using the χ2 test. To assess the association of 
single SNPs with the risk of CC, five genetic models 
(codominant, dominant, recessive, over-dominant 
and log-additive) were applied using PLINK software 
(http://www.cog-genomics.org/plink2/). Odds ratios 
(ORs), 95% confidence intervals (95% CIs), and p 
values were calculated using unconditional logistic 
regression analysis [28–30].
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