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ABSTRACT
Understanding therapeutic mechanisms of drug anticancer cytotoxicity represents 

a key challenge in preclinical testing. Here we have performed a meta-analysis 
of publicly available tumor cell line growth inhibition assays (~ 70 assays from 6 
independent experimental groups covering ~ 500 000 molecules) with the primary 
goal of understanding molecular therapeutic mechanisms of cancer cytotoxicity. To 
implement this we have collected currently available information on protein targets for 
molecules that were tested in the assays. We used a statistical methodology to identify 
protein targets overrepresented among molecules exhibiting cancer cytotoxicity with 
the particular focus of identifying overrepresented patterns consisting of several 
proteins (i.e. proteins “A” and “B” and “C”). Our analysis demonstrates that targeting 
individual proteins can result in a significant increase (up to 50-fold) of the observed 
odds for a molecule to be an efficient inhibitor of tumour cell line growth. However, 
further insight into potential molecular mechanisms reveals a multi-target mode of 
action: targeting a pattern of several proteins drastically increases the observed odds 
(up to 500-fold) for a molecule to be tumour cytotoxic. In contrast, molecules targeting 
only one protein but not targeting an additional set of proteins tend to be nontoxic. Our 
findings support a poly-pharmacology drug discovery paradigm, demonstrating that 
anticancer cytotoxicity is a product, in most cases, of multi-target mode of drug action.

INTRODUCTION

In recent years, the dogma in cancer drug discovery 
has been the design of selective drugs that target a single 
protein believed to be critically important for cancer 
development [1, 2]. Despite an improved understanding of 
cancer biology, and discovery of multiple genes involved 
in cancer development and pathology[3-9], the number 
of successful outcomes for the target-centric approach in 
anticancer drug design remains disappointingly low[10]. 
The reason for this could be that cancer pathology involves 
multiple genes sometimes acting in parallel [11, 12]. From 
this perspective, poly-pharmacology-based strategies 
(multi-target drug strategies) represent an attractive 

alternative [13]. In this case, drugs are specially designed 
to act on multiple targets (a predefined pattern of proteins) 
and, therefore, could offer superior efficiency[14]. 
Although developed to target a specific protein, most 
currently efficient anticancer drugs are, in fact, essentially 
poly-pharmacological: they target multiple off-target 
proteins which might play important, yet unrecognized, 
roles in the mechanism of action [11, 13-15].

Considering the positive and negative features 
of poly-pharmacology paradigm, there has been no 
systematic exploration of whether molecules exhibiting 
anticancer cytotoxic activity act, as a general rule, in 
single or multi target mode. To answer this question we 
undertook a meta-analysis of currently available tumor cell 
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line growth inhibition assays[16]. In total we examined 
about 70 assays generated by several independent groups 
(see Table 1) covering in total approximately 500 000 
unique molecules. By examining PubChem BioAssay[16] 
and DrugBank[17] data repositories, we were able to 
collect experimentally detected protein targets for these 
molecules. Up to 200 000 molecules have at least one 
target, either known from the literature or found to inhibit/
activate the protein in target oriented screening assays. 
More than 50 000 molecules were known to target at least 
5 proteins. This large scale molecule-to-target information 
has been used to explore potential therapeutic mechanisms 
of cancer cytotoxicity in tumor growth inhibition assays.

In the first step we look for “one target” models, i.e. 
for each assay we identified overrepresented targets among 
cytotoxic molecules. The results, at first glance, would seem 
to support the “one target centric” drug discovery paradigm: 
targeting individual proteins significantly increases the 
observed odds for a molecule to exhibit strong cancer 
cytotoxicity. For the top protein targets, depending on the 
assay, odds ratio [18] varies from 10 to 80 (the odds ratio 
shows the increase of odds for the molecule to be cytotoxic 
in the assay if the molecule is known to target the protein 
in comparison to the odds for all other tested molecules). 
Moreover, for the topmost targets the odds ratios are 
relatively consistent across all available assays, despite the 
fact that the assays were generated using different cancer 
models and relatively independent chemical libraries.

In spite of this seemingly impressive statistical 
link between tumour cytotoxicity of a molecule and its 
ability to target a single protein, deeper analysis of the 
data convincingly proves that anticancer cytotoxicity is 
a product, in the majority of cases, of multi-target action 
mechanisms. First we demonstrate that if a molecule 
targets a pattern of multiple proteins (i.e. protein “A” 
and “B” and “C”) then the odds for the molecule to be 
tumour cytotoxic increases up to 500 fold (see Table 5). 
Second, we demonstrated that the observed enrichment of 
“one target” models is just a consequence of the protein 
involvement in several multi-target models. To prove this, 
for each enriched “one target” model we eliminated from 
consideration molecules which target a predefined pattern 
of proteins (i.e. we excluded from consideration molecules 
which target protein A and either of proteins B, C, D, etc. 
where protein A is the enriched target of interest and 
proteins B, C, D are partners of protein “A” in the enriched 
multi-target patterns). In every such case, molecules 
targeting only protein “A” and not targeting proteins (B, 
C, D ..) have not been overrepresented among cytotoxic 
molecules in the assay (i.e. targeting only protein A alone 
does not in general increase chances for a molecule to be 
tumour cytotoxic; to be tumour cytotoxic, it is imperative 
for the molecule to target along with protein A also 
either protein B, C, D etc.). This emphasises that multi-
target drug action mechanisms mostly explain anticancer 
cytotoxic activity of the molecules observed in the assays.

RESULTS

Tumor cell line Growth Inhibition assays

We collected publicly available tumor cell line 
growth inhibition assays. The NCI60 anticancer drug 
screens include 60 different cell lines covering a wide 
range of cancer types[19]. We also included several 
alternative assays developed recently[20, 21]. In total, 
we used assays developed by 6 independent experimental 
groups (different cell line models and chemical libraries 
have been used among assays). The data were downloaded 
from the PubChem BioAssay repository. In each assay, 
molecules are classified (classification according to the 
PubChem BioAssay internal model) into two groups, 
active and inactive. Active molecules are those which 
efficiently inhibit tumor cell line growth at relevant 
concentrations[16]. A summary of these assays is 
presented in Table 1. The last column provides statistics 
on the number of tested and active molecules with at least 
one known protein target.

Large scale integration of small molecules to 
protein target data from public sources

The PubChem BioAssay repository stores results of 
biochemical assays (including HTS), both phenotypic and 
target oriented. Target oriented assays, in simple terms, 
can be interpreted as a subset of small molecules found 
to inhibit (in rare cases to activate) the target protein [2]. 
The abundance of this information from the PubChem 
BioAssay repository [16] can be integrated on a large scale 
to derive binding spectra for approximately one million 
molecules across a panel of several hundred proteins. 
This information, although incomplete (some molecules 
were tested across more than 300 proteins while others 
only across less than a dozen), can be used to identify 
molecular mechanisms which unite groups of compounds 
efficiently inhibiting tumor cell line growth.

We also integrated Drug Bank [17] data for known 
targets as well as known off-targets for the approved 
and experimental drugs (some of the approved and 
experimental drugs are often tested in different assays). 
The diagram in Figure S1 (supplementary material) 
presents the distribution of the number of known targets 
for molecules tested in the assays listed in Table S1 
(supplementary material). For example, 234 939 molecules 
have at least one experimentally validated protein target, 
145 365 of them have at least two, and so on.
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Single protein therapeutic models

Considering only individual targets leads to the 
identification of multiple proteins whose inhibition 
increases by up to 10–20 fold the observed odds for a 
molecule to exhibit cancer cytotoxicity. The list of top 
targets for the IGROV1 Ovarian cell line (NCI60, assay 
ID 101) is presented in Table 3. For example, NCOA3 
was ranked as a top target by p-value of enrichment among 
active molecules: 68 compounds (out of 231 “active” with 
at least one experimentally validated target) are known to 
inhibit NCOA3. In contrast, among the “inactive” group 
only 37 compounds (out of 2004) are known to inhibit 
NCOA3. Thus, the odds for molecules known to target 
“NCOA3” to be “active” in the assay is computed as 
68/37 = 1.84 while the odds for molecules not targeting 
“NCOA3” to be “active” in the assay is computed as 
(231-68)/(2004-37) = 0.08. Thus, the odds ratio is 22.2. 
The odds ratio is a measure which is commonly used to 
estimate the influence of various factors between two 
measured outcomes [18] (in our case the outcomes are 
whether the compound is cytotoxic or not, and the factor 
is whether the compound targets the gene product or not). 
The odds ratio of 22.2 indicates that the observed odds for 
molecules targeting “NCOA3” to be cancer cytotoxic is 
22 times high than for the molecules which are known to 

target genes other than “NCOA3”. From Table 2 we can 
see that targeting individual proteins increases the odds 
for a molecule to be cytotoxic in the IGROV1 Ovarian 
cell line.

Similar enrichment of individual targets can be 
seen in all other tumour growth inhibition assays. The 
top enriched targets for HCT116 cells with a targeted 
deletion of the PTEN gene are reported in Table 3. 
We can see that MITF, IDH1 and CFTR are among 
the top enriched targets with strikingly high observed 
odds ratios. Results for other assays are reported in 
supplementary material.

Multi-target models

Next we analysed multi-target patterns, i.e. pairs 
and triplets of proteins (which we refer to as poly-
pharmacological models). Multi-target pattern, if targeted 
by a molecule, increases the odds for the molecule to 
exhibit cancer cytotoxicity in comparison to the odds for 
single proteins from the pattern. For example, patterns 
related to “NCOA3” and the IGROV1 Ovarian cell line 
are presented in Table 4. We can see a significant increase 
in the odds for molecules targeting pairs of proteins. For 
example, odds for the pattern “NCOA3 and NR2E3” are 

Table 1: Summary of cancer cell line inhibition assays used in meta-analysis

Assay group ID Assay Title PubChem 
Assay ID

Compounds in 
assay:Active(Tested)

Compounds with 
targets*:Active(Tested)

NCI60 NCI 60 assays (AID: 1 to 145) ~2000
(~40 000)

~220
(~2 000)

HPDE_C7
Fluorescent HTS Cytotoxicity/
Cell viability assay (HPDE-C7K 
cells)

431 1 068
(61 593)

1 032
(~46 000)

H69AR_Lung
Human H69AR Lung Tumor 
Cell Growth Inhibition Assay - 
86K Screen

598 5142
(80 068)

4 844
(~63 000)

Lacking_Gene

Compounds that Suppress the 
Growth of Human Colon Tumor 
Cells Lacking Oncogenic Beta 
Catenin Expression

818 2052
(136 706)

2 011
(~105 000)

Lacking_Gene
Compounds that Suppress the 
Growth of Cells with a Deletion 
of the PTEN Tumor Suppressor

827 1659
(136 779)

1621
(~105 000)

Cancer_Stem_ 
Cells Inhibitors of Cancer Stem Cells 2717 (3 190)

(297 011)
3 100
(~196 000)

Synthetic_ 
lethality

qHTS for induction of synthetic 
lethality in tumor cells 
producing 2HG

686971 7 452
(328 241)

7327
(~230 000)

*compounds with at least one experimentally validated protein target
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Table 2: Top individual targets enriched among molecules producing a cytotoxic effect in the 
IGROV1 Ovarian cell line

P-valueFDR 
corrected

Target 
(Gene 
Symbol)

Odds 
Ratio

The number of 
active compounds 
known to  
target gene

The total 
number of active 
compounds 
(IC50 < 10−6)

The number 
of inactive 
compounds known 
to target gene

The total number of 
inactive compounds 
(IC50 >10−6)

1.82E-42 NCOA3 22.2 68 231 37 2004
2.32E-42 NR5A1 18.1 73 231 50 2004
7.76E-42 NR5A2 17.3 73 231 52 2004
9.26E-38 NCOA1 7.3 57 231 26 2004
3.07E-36 IDH1 24.9 88 231 123 2004
8.29E-34 CFTR 9.4 86 231 128 2004
1.57E-33 PAX8 8.7 71 231 76 2004
1.09E-28 MITF 11.3 81 231 137 2004
2.49E-28 NFE2L2 7.4 77 231 123 2004

Table 3: Top individual targets enriched among molecules producing cytotoxic effects in HCT116 
cells with a targeted deletion of the PTEN

P-valueFDR 
corrected

Target 
(Gene  
Symbol)

Odds 
Ratio

The number of 
active compounds 
known to target 
gene

The total number of 
active compounds 
(IC50 < 10−6)

The number 
of inactive 
compounds known 
to target gene

The total number 
of inactive 
compounds 
(IC50 >10−6)

MITF 1.00e-300 78.6 456 1621 510 102910

GMNN 1.00e-300 13.6 682 1621 5220 102910

IDH1 1.00e-300 22.1 476 1621 1901 102910

ATXN2 1.00e-300 74.2 421 1621 484 102910

EPAS1 1.00e-300 46.0 367 1621 650 102910

CFTR 1.00e-300 32.7 336 1621 816 102910

TDP1 1.00e-300 12.2 1236 1621 21478 102910

SMAD3 2.45e-286 24.5 328 1621 1053 102910

HIF1A 4.75e-261 40.1 248 1621 462 102910

61.5 which is at least 3 times higher than odds for each 
individual protein from the pattern.

Similar improvements in the odds ratios are found 
in other assays using different cancer models (targeted 
gene deletion, cancer stem cells, etc.) and employing 
independent chemical libraries. Table 5 reports the top 
enriched multi target models in growth inhibition assay 
for HCT116 cells with a targeted deletion of the PTEN 
gene. The single top model is related to MITF with an 
impressive odds ratio of 78.6. However, targeting the 
pair “MITF and ATXN2” increases the odds ratio to 240. 
Finally, targeting triplet “MITF and ATXN2 and SMAD3” 
increases the odds ratio still further to 500; 117 molecules 
which are known to target all 3 genes have demonstrated 
anticancer cytotoxicity while only 16 molecules targeting 
the same pattern have been inactive.

Essential polypharmacology of molecules 
exhibiting anticancer properties

Here we show that the observed odds ratios related 
to a single protein are, in most cases, a consequence 
of essentially multi-target mechanisms of action. To 
demonstrate this, we applied the following procedure. For 
each significant “one target” model (referred to as protein 
“A”) we filtered out from consideration molecules which 
also target one (or several) proteins from those that form 
significant polypharmacological patterns with protein 
“A” (referred to as proteins “B”, “C”, …). The aim of the 
procedure is to see whether molecules targeting protein 
“A” but not targeting either of the proteins “B”, “C”, .. 
retain high odds of cytotoxic predictability.
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Table 4: Top-enriched multi-target patterns with “NCOA3” among molecules producing cytotoxic 
effects in the IGROV1 Ovarian cell line

P-valueFDR 
corrected

Target(Gene 
Symbol) OddsRatio

The number 
of active 
compounds 
known to target 
gene

The total 
number of active 
compounds 
(IC50 < 10−6)

The number 
of inactive 
compounds 
known to  
target gene

The total 
number 
of inactive 
compounds 
(IC50 >10−6)

8.43e-40 NCOA3 and 
NR5A2 31.6 60 231 22 2004

1.43e-39 NCOA3 and 
NFE2L2 46.7 54 231 13 2004

5.40e-34 NCOA3 and 
CFTR 32.3 50 231 17 2004

1.52e-29 NCOA3 and 
PAX8 36.9 42 231 12 2004

6.19e-28 NCOA3 and 
NR2E3 61.5 36 231 6 2004

2.26e-09 NCOA3 and 
MC4R 59.7 13 231 2 2004

Table 5: Statistics for MITF-related poly-pharmacological patterns in HCT116 cells with a targeted 
deletion of the PTEN gene

P-valueFDR 
corrected

Target/
pattern 
(Gene 
Symbol)

OddsRatio

The number 
of active 
compounds 
known to target 
gene/pattern

The total 
number of active 
compounds 
(IC50 < 10−6)

The number 
of inactive 
compounds 
known to target 
gene/pattern

The total 
number 
of inactive 
compounds 
(IC50 >10−6)

< 1.00e-286 MITF 78.6 456 1621 510 102910
< 1.00e-286 ATNX2 74.2 421 1621 484 102910
< 1.00e-286 SMAD3 24.5 328 1621 1053 102910

6.55e-279 MITF and 
SMAD3 188.5 189 1621 72 102910

< 1.00e-300 MITF and 
ATXN2 240.1 247 1621 77 102910

< 1.00e-230
MITF and 
ATXN2 and 
SMAD3

500.2 117 1621 16 102910

The top single protein model (“NCOA3”) for 
IGROV1 Ovarian cell line (Table 3) gives an odds 
ratio of 22 with 68 active molecules and only 37 
inactive molecules targeting “NCOA3”. However, 60 
active molecules also target “NR5A2” while only 22 
inactive molecules do so. The odds ratio for molecules 
targeting “NCOA3” but not targeting “NR5A2” drops to 6  
(8 active molecules and only 15 inactive molecules). 
Finally, if we filter out molecules targeting “NFE2L2” 
then the odds ratio drops further to 1.1 with only 1 active 
and 11 inactive molecules known to target (“NCOA3”) 

but not either “NR5A2” or “NFE2L2”. This discloses that 
molecules targeting only “NCOA3” show no increase in 
potency to inhibit tumour cell growth.

The same is true for all other single protein models 
in all considered tumour growth inhibition assays. For 
example, in spite of much more impressive statistics for 
the MITF model (odds ratio 78, see Table 5) in HCT116 
cells with a targeted deletion of the PTEN gene, the same 
analysis revealed underlying multi-target mechanisms. 
For example, filtering out molecules which target both 
MITF and ATXN2 resulted in a drop in odds ratio from 
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78 to 42 with 209 active and 433 inactive molecules. 
Next, filtering GMNN and IDH1 resulted in a fall in 
odds ratio to 20 (67 active and 259 inactive molecules). 
Finally, repeating the iterative procedure for MAP4K2, 
SMAD3, CXCR6, EHMT2, KCNJ1, HCRTR1, CTDSP1, 
CHRM5, NCF1, GSTO1, CASP1, ARRB1, INS, NPSR1 
and PTBP1 reduced the final odds ratio to 1.6 with only  
3 active and 160 inactive molecules which target MITF 
and target none of the 18 other targets. Therefore, despite 
the initial impressive odds ratio for MITF, as a single 
target, after dissecting those molecules which are known 
to target one or several proteins from the list of 18 proteins 
(MITF polypharmacological partners in the assay), we see 
that the remaining molecules which target only MITF are 
not overrepresented among molecules that inhibit HCT116 
cell growth.

Similar results are observed in the other assays used 
in our study. We present a similar analysis for assay 2717 
(inhibitors of cancer stem cell growth) and assay 431 (cell 
viability assay with HPDE-C7K cells) in supplementary 
material. In the first case, we considered EPAS1 as a 
single target and provided similar statistics for multi-
target patterns with EPAS1 (supplementary material, 
Tables S2 and S3) as described above for MITF. Similar, 
molecules targeting EPAS1 but not targeting 5 other genes 
tend to be nontoxic (supplementary material, Table S4). 
The same analysis was performed for IDH1 gene with 
the similar outcome (supplementary material, Tables S5, 
S6 and S7).

Polypharmacology of currently approved 
anticancer drugs

Although many of the currently approved anticancer 
agents were designed within a single target oriented 
approach they, in fact, target multiple proteins. We 
summarise data for several anticancer agents in Table 6. 
As can be seen, most anticancer agents inhibit the activity 
of hundreds of proteins. In these cases, the efficacy of the 
drugs could be attributed to the fact that all of them target 
multiple proteins with very diverse functions. Thus, even 
being designed to affect a single target, the efficiency of 
the agent is a consequence of a cryptic multi-target action 
mechanism. Indeed, the targeted poly-pharmacology 

pattern has not even been presumed to be targeted.
For example, Sunitinib is an oral, small-molecule, 

multi-targeted receptor tyrosine kinase inhibitor that was 
approved initially by the FDA for the treatment of renal 
cell carcinoma [22]. Though it was developed as multi-
targeted drug, Sunitinib was presumed to target tyrosine 
kinases specifically [17]. However, as is apparent from 
PubChem target oriented screens (approved drugs are 
frequently present in various chemical libraries and, 
thus, could be screened versus a wide range of targets), 
Sunitinib efficiently targets more than 150 proteins with 
a very diverse functional background. Again, Tamoxifen 
is assumed to be a selective estrogen receptor modulator 
[23]. Like Sunitinib, Tamoxifen has been tested in multiple 
target oriented screens and has demonstrated the ability to 
modulate up to 70 other proteins. This shows clearly that 
most of the currently approved anticancer agents are, in 
fact, essentially poly-pharmocological.

DISCUSSION

Multi-target based strategies are attracting increased 
attention as an alternative approach to discover potent 
anticancer agents. In contrast to the one target centred 
approach, which concentrates on promiscuous drugs 
inhibiting/activating exclusively one protein (or a group of 
very functionally related proteins), the polypharmocology 
paradigm is based on multi-target-oriented drugs able to 
inhibit/activate a predefined pattern of multiple proteins. 
However, there has been no systematic exploration whether 
multi-target molecules would demonstrate high efficiency. 
Here we have undertaken a first large scale analysis of 
available tumor cell line growth inhibition assays with the 
primary aim of understanding whether efficient anticancer 
molecules target a single protein or have multi-target 
mechanisms of action. Our analysis convincingly proves 
that inhibition of only one target (if we exclude molecules 
which also target other proteins) results in no increase of 
odds for a molecule to be an efficient inhibitor in tumor 
cell line growth inhibition assays, while inhibition of 
multi-target patterns of proteins drastically increases the 
odds for anticancer activity up to 500 fold (see Table 5).

The improved efficiency of multi-target drugs is 
likely, in part, to result from their ability to prevent cell 

Table 6: Polypharmacology of currently approved anticancer drugs
Drug Indication Drug Bank Targets PubChem Off-Target

Sunitinib renal cell carcinoma 8 ~150

Sorafenib advanced renal cell carcinoma, 
liver cancer 7 ~120

Tamoxifen breast cancer 2 ~70

Paclitaxel lung, ovarian, and breast cancer 2 4
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compensatory mechanisms in response to inhibition of a 
single protein. Cancer cells can readily switch on alternative 
pathways, thus reducing the drug efficiency achieved by 
inhibition/activation of a single protein. The same response 
in the case of inhibition of multiple proteins would be 
predicted to be much less efficient. In principle, our 
approach can be used to identify multi-target protein patterns 
whose inhibition leads to a high probability that a molecule 
is cytotoxic for cancer cells. In addition, targeting several 
targets can cause selective cytotoxicity of the molecule to 
cancer cells, while sparing normal cells [24, 25].

Finally, we would like to emphasise that although 
we have collected almost all available information 
regarding experimentally validated protein targets for 
small molecules which have been tested in tumor cell line 
growth inhibition assays, the information is obviously 
incomplete as only roughly 400 proteins are covered 
and even for those the information is not systematic 
(some molecules were tested against several hundred 
proteins while most against only a few dozen). This only 
strengthens the conclusion of the paper that, in most 
cases, anticancer cytotoxicity is a product of multi-target 
action mechanisms. Because the missing information can 
only reduce the number of active molecules which target 
only one protein, we would therefore probably see no 
molecules at all which can produce anticancer cytotoxic 
effects by targeting only one protein.

MATERIALS AND METHODS

Tumor cell line Growth Inhibition assays

We collected publicly available tumor cell line 
growth inhibition assays (ftp://ftp.ncbi.nlm.nih.gov/
pubchem/Bioassay/). The summary of assays used in 
our study is presented in Table 1. We used the Pubchem 
Bioassays model which classifies molecules tested in an 
anticancer assay into active (producing tumour growth 
inhibition) and inactive.

Molecule- to- protein target data: Pubchem 
Bioassays and Drug Bank

We have integrated two sources of data regarding 
protein targets of small molecules. Pubchem Bioassays 
(ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/) deposits 
target oriented compound screens (including high 
throughput and literature derived information) across a 
wide range of protein targets [16]. Molecules in Pubchem 
Bioassays target oriented screens are classified as active, 
inactive and inconclusive. In simple terms, molecules 
classified as active have demonstrated inhibition/activation 
of the protein at relevant concentrations. Active molecules 
are considered here as molecules which target the protein. 

Drug Bank [17] is a database of currently accepted 
drug protein targets and drug off targets. The data were 
downloaded from http://www.drugbank.ca/downloads. 
Overall statistics for the number of targets for molecules 
(including data both from DrugBank and Pubchem 
Bioassays) tested in tumor cell line growth inhibition 
assays are presented in supplementary material (Table S1 
and figure S1).

Inference of Therapeutic models of cancer 
cytotoxicity

To identify single target therapeutic models for each 
assay we repeated the following procedure [26, 27]. Let 
us denote KA to be the number of active molecules in 
the assay and KB to be the number of inactive. For each 
protein “Z” we calculated two numbers, kA is the number 
of active molecules which are known target “Z” and kB 
is the number of inactive molecules which target Z. Odds 
for the molecules (to be active) targeting “Z” is (kA/kB) 
while the same odds for the molecules which do not target 
“Z” is ((KA-kA)/(KB- kB)). The odds ratio is (kA/kB) / 
((KA-kA)/(KB- kB)) and indicates the increase/decrease 
of odds of a molecule to be cytotoxic if the molecule is 
known to target protein “Z”. The odds ratios for all targets 
are computed. Significance of the odds ratio is computed 
using X2-distribution and adjustment of p-values for 
multiple testing (each target is one hypothesis) and is 
performed by the FDR procedure[28].

Similarly, to identify multi-target therapeutic 
models, we computed similar statistics (kA and kB) but 
in this case for all pairs (triplets, etc) of targets. In this 
case, for each pair of targets “Z1” and “Z2”, kA is the 
number of active molecules which are known to target 
both “Z1 and Z2” and kB is the number of inactive 
molecules which target both “Z1 and Z2”. The number 
of tested hypothesis is equal, in this case, to all possible 
pair (triplet, etc) combinations of targets. The p-values are 
adjusted accordingly [27, 29, 30].
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