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Sequence-based predictive modeling to identify cancerlectins
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ABSTRACT
Lectins are a diverse type of glycoproteins or carbohydrate-binding proteins that 

have a wide distribution to various species. They can specially identify and exclusively 
bind to a certain kind of saccharide groups. Cancerlectins are a group of lectins that 
are closely related to cancer and play a major role in the initiation, survival, growth, 
metastasis and spread of tumor. Several computational methods have emerged 
to discriminate cancerlectins from non-cancerlectins, which promote the study on 
pathogenic mechanisms and clinical treatment of cancer. However, the predictive 
accuracies of most of these techniques are very limited. In this work, by constructing 
a benchmark dataset based on the CancerLectinDB database, a new amino acid 
sequence-based strategy for feature description was developed, and then the binomial 
distribution was applied to screen the optimal feature set. Ultimately, an SVM-based 
predictor was performed to distinguish cancerlectins from non-cancerlectins, and 
achieved an accuracy of 77.48% with AUC of 85.52% in jackknife cross-validation. 
The results revealed that our prediction model could perform better comparing with 
published predictive tools.

INTRODUCTION

Lectins are highly specific proteins which have 
more than one carbohydrate-binding site and are typically 
able to agglutinate certain animal cells and/or precipitate 
glycoconjugates [1, 2]. It should be noted that lectins differ 
greatly from antibodies, although some antibodies bind to 
antigens and cause agglutination reaction in a similar way 
to lectins. Up to present, almost all organisms, including 
viruses, bacteria, plants, vertebrates, invertebrates have 
been found to be able to synthesize and secrete lectins [3]. 
It has also been revealed that lectins are involved in a 
wide variety of biological processes, e.g., the growth, 
differentiation and development of cells, cell adhesion and 
migration, the interaction between cell and extracellular 
matrix, apoptosis, the modulation of immune defense and 
inflammatory response [4–6]. Accordingly, numerous 
researches in many fields of cell biology, biochemistry, as 
well as immunology often utilize lectins as diagnostic and 
therapeutic tools [7].

Cancerlectins are a group of lectins that are 
inseparably linked with cancer and known to play various 
important roles in cancer initiation, survival, growth, 
metastasis and spread [8–11]. They have been widely 
applied in cancer study from fundamental research to 
clinical application [12]. For instance, sialic acid-binding 
immunoglobulin-type lectins-9 (Siglecs-9), which 
demonstrates neutrophilic granulocyte specific expression, 
can bind to the glycans presenting on tumor cell surfaces 
and regulate immune response, and then facilitate or 
inhibit cancer progression [13]. A wide array of studies 
have indicated that cancerlectins can be considered 
as diagnostic and molecularly therapeutic markers for 
tumor, or as molecular tools of cancer prevention and 
prognosis [1, 14, 15]. Therefore, it’s significant to screen 
the particular cancerlectins from multitudinous lectins for  
better understanding and even conquering cancer.

Experimental assays have identified and functionally 
annotated a lot of cancerlectins, overwhelming majority 
of which are archived and integrated in the database of  
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CancerLectinDB [16]. These experimental detections 
of cancerlectins are extremely accurate and reliable. 
Nevertheless, they are customarily low-efficiency and 
high-cost. With the continuously rapid advancement 
of sequencing technology, more and more cancerlectin 
protein sequences are stored, and the computational 
prediction of cancerlectins emerges naturally. Thus, 
various models have been proposed to identify 
cancerlectins based on the sequence similarity, amino acid 
or dipeptide composition and evolutionary information of 
these cancerlectins [17–19]. Machine learning techniques 
such as Support Vector Machine (SVM) [20, 21], Artificial 
Neural Network (ANN), decision tree and random forest 
have been utilized to perform classification and regression  
[17–19, 22–24]. However, the predictive power of the 
above-mentioned methods is limited and the accuracies 
are not particularly high. There is still much room for 
improvement in prediction accuracy, hence, this work 
puts forward a novel feature extraction method, which has 
stronger capability of predicting in some degree.

RESULTS AND DISCUSSION

Prediction performance

As described in the section of feature description, 
each sample lectin sequence was translated into a vector 
of 8000 over-represented tripeptides. Using too many 
features with low confidence level to train a predictive 
model will be relatively time-consuming and have a 
strong likelihood of establishing an overfitting model. On 
the contrary, if the number of feature tripeptides is too 
small, they will not afford enough information. They can 
only describe part of cancerlectin properties even though 
every one of them may have a high confidence level and 
be extremely informative. Both of these two situations 
will result in poor prediction [25]. For example, 6594 
tripeptides with > 50% confidence level produced an 
accuracy of 64.6% for identifying cancerlectins. Similarly, 
by using > 99.99% as the confidence level, we obtained 
the top 53 tripeptides, but the overall accuracy was only 
67.08% in 7-fold cross-validation. Thus, it is crucially 
important to choose an appropriate number of features for 
the construction of a robust and efficient prediction model. 

On the basis of binomial distribution, a novel 
feature selection technology was proposed in this work 
(see in section of Method). Then the SVM classifier was 
employed. The 7-fold cross-validated results (Figure 1) 
showed that the maximum overall accuracy of 78.96% 
was achieved when the top 1465 tripeptides was used. 
However, the total number of sample proteins is 404, 
which is much less than the number of feature dimension. 
For the purpose of establishing a credible and robust 
model, we should take into the number of features and the 
accuracy simultaneously. Ultimately, we chose the top 360 
tripeptides which could produce an overall accuracy of 

77.23% which was just slightly lower than the maximum 
accuracy (78.96%) produced by the top 1465 features. 
Therefore, the 360 tripeptide compositions served as the 
optimal feature subset to construct the final classifier in 
this study. 

The jackknife cross-validation was conducted for 
performance assessment owing to the imbalance between 
positive dataset and negative dataset. And the final values 
of the two SVM parameters are c = 211 and g = 2–13. The 
statistical analysis indicated that our predictor have a 
relatively excellent prediction performance with an overall 
accuracy of 77.48%. And the sensitivity and specificity of 
the proposed model are 75.28% and 80.53%, respectively. 
We also draw the ROC curve in Figure 2. It shows that the 
AUC reaches to 0.855, suggesting an excellent prediction 
capability of our model.

Comparison with existing methods

To estimate whether a novel prediction model is 
good enough, it is necessary to compare it with other 
published methods. In the past, some computational 
models have been developed using diverse methods 
based on the same sample dataset. The comparison results 
were recorded in Table 1. Kumar et al. firstly developed 
prediction models using amino acid compositions, 
dipeptide compositions, split compositions, evolutionary 
and domain information. The analytic results showed 
that the SVM model based on the integration of 
PROSITE domain information and position specific 
scoring matrix(PSSM) achieved the maximum accuracy 
of 69.09% [17]. Lin et al. developed a model to predict 
cancerlectins by g-gap dipeptides and obtained a higher 
accuracy of 75.19% [18]. Our lectin sequence-based 
predictive modeling can identify cancerlectins with the 
highest accuracy, sensitivity and specificity of 77.48%, 
75.28%, 80.53%, respectively. These comparison results 
indicate that our new predictor is more powerful in 
discriminating cancerlectins from non-cancerlectins.

MATERIALS AND METHODS

A positive dataset containing 385 experimentally 
validated and non-duplicated cancerlectin sequences was 
collected from the work of Lin [18], and the raw data of 
which was downloaded from the CancerLectinDB [16]. 
This database has retrieved cancer-related lectins 
and their corresponding sequence, structure, function 
information from literatures [16]. The application of the 
keyword “lectin” in searching the UniProt database (http://
www.uniprot.org/) created the negative samples, which 
consisted of 820 proteins after eliminating sequences 
labeled with “similar”, “fragment”, “putative”, “probable”. 
In order to get rid of the influence of the data redundancy 
on prediction results, the CD-HIT program [26] was 
applied to filter the highly similar samples by setting 
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50% as cut-off. Consequently, we gained a total of 178 
cancerlectin and 226 non-cancerlectin sequences. 

Feature description

A comprehensive review of protein attribute 
prediction [27] stated that besides a reliable and 
objective benchmark protein sequence dataset, the 
perfect formulation of protein sample is necessary for the 
development of a high-throughput automated predictive 
tool. The simplest and also most popular approach to 

formulate protein sequences is amino acid composition 
(AAC) [28, 29] which uses the normalized frequency of 
each amino acid in one protein sample. The conjoint triad 
feature [19, 28] encodes each protein sequence by using a 
triad frequency distribution. In present research, in order to 
get the sequence-order information, the adjacent tripeptide 
composition was used instead of the classical AAC to 
represent a protein sample. A variety of proteins in an 
organism are made up of 20 standard amino acids, hence 
there are total 20 × 20 × 20 = 8000 possible tripeptides. 
Thus, we transformed a cancerlectin or non-cancerlectin 

Figure 2: The ROC curve for cancerlectin prediction using the optimal 360 tripeptides.

Figure 1: The 7-fold cross-validated accuracies of different predictive models constructed with different number of 
features.
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protein sample P with L amino acids into an input vector 
of 8000 dimensions, F8000, defined as follows.

8000 1 2 8000     [ , , , , , ]iF f f f f= … … T  (1)

In Eq. (1), the symbol T represents the transposition 
of a vector and fi is the frequency of the i-th tripeptide 
appearing in a cancerlectin or non-cancerlectin sequence. 
These frequencies can be calculated using the formula (2),
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where ni means the number of occurrences of the i-th 
tripeptide in a protein composed of L amino acid residues.

The optimal feature subset selection

The feature set contains 8000 features, which may 
lead to the curse of dimensionality. This large feature 
set undoubtedly contains some redundant or irrelevant 
features and those should be excluded for improving 
efficiency and robustness of model. It is worth picking 
out those relevant features which are the most useful for 
prediction model construction. The optimal feature subset 
will shorten the training and utilization times, reduce the 
measurement and storage requirements, avert overfitting 
and improve prediction performance [30]. Up to date, 
many effective feature selection techniques such as the 
analysis of variance [31], max-relevance-max-distance 
[32], minimum redundancy maximum relevance [33], 
principal component analysis [34] and recursive feature 
elimination algorithm [35, 36] have been proposed to 
reduce effects from noise or irrelevant features and 
provided good prediction results.

In current study, we introduced a new feature 
selection technique based on binomial distribution to 
screen the informative tripeptides [37, 38]. In order to 
judge whether it is an essentially random event that one 
certain tripeptide occurs in one kind of protein, first, we 
calculated the prior probability qj which is formulated with 
the form of Eq. (3).
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where mj represents the number of tripeptides in the 
j-th category of sample, where j = 1, 2 and M is the total 
occurrence number of all tripeptides contained in the both 
positive and negative data sets.

Second, we calculated the probability P(nij) of the 
i-th tripeptide occurring in the j-th category of sample nij 
or more times by using Eq. (4)
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where the sum in Eq. (4) is taken from nij to Ni. 
The total occurrence numbers of a given i-th tripeptide 
in the j-th class of protein and in the benchmark dataset 
are denoted by nij and Ni, respectively. If the i-th tripeptide 
occurring in the j-th category of protein is not random and 
biologically significant, the P(nij) will be very small. Thus, 
we may define the confidence level of this statement as CLij:

( )1   CL P nij ij= −  (5)

Accordingly, each of the 8000 tripeptides has two 
CL  values because of the two kinds of proteins considered 
in this work. Then, we assigned the lager one to be the CL 
of the i-th tripeptide, like this:

1 2( ,  )i i iCL max CL CL=  (6)

Then the feature subsets were listed in descending 
order according to their CLs. 

Finally, we applied the incremental feature selection 
strategy to determine the optimal number of feature 
subset, the process of which is described as follows: the 
first feature subset was composed of the tripeptides with 
the biggest CL value, followed by the producing of a new 
feature subset by adding the tripeptides with the second 
biggest CL value into the first feature subset. Repeating 
the aforementioned second step from higher CL values to 
lower CL values until all the candidate tripeptides were 
added. Consequently, for every newly generated feature 
subset, a predictive model was trained on the basis of 
SVM and was assessed by 7-fold cross-validation. The 
optimal feature subset can be picked out according to its 
maximum prediction accuracy.

Support vector machine

The support vector machine (SVM) was invented 
by Vapnik et al. based on the study of statistical learning 
theory [39]. In the field of machine learning, SVM is a 
supervised learning model and is usually used for pattern 
recognition, classification and regression analysis. The 

Table 1: Performances of various existing predictive models
Methods Sn (%) Sp (%) Acc (%)

Our predictor 75.28 80.53 77.48
Lin et al. [18] 69.10 80.10 75.19

Kumar et al. [17] 68.00 69.90 69.09
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basic idea of SVM is: 1) to transform the non-linearly 
separable sample data, namely the input sample space, into 
a new feature space which is a high-dimension and linearly 
separable Hilbert space via a non-linear mapping; 2) to 
construct an optimal hyperplane which maximizes the 
degree of separation between the two classes. One of the 
potential advantages of SVM is that it is still effective in 
cases that the number of features is greater than that of 
samples. Additionally, SVM is versatile that different 
Kernel functions can be specified for the decision function. 
Thus, the classifier has been widely applied to solve 
bioinformatics problems, e.g., identification of bacterial  
secreted proteins, recognition of phosphothreonine sites 
in human proteins, prediction of microRNA targets, 
classification of disease drugs, identification of tumor 
subtypes, and so forth [40–43]. In this study, we utilized the 
LibSVM 3.21 software which can be freely downloaded 
from https://www.csie.ntu.edu.tw/~cjlin/libsvm/ to 
implement SVM to discriminate cancerlectins from non-
cancerlectins. The two pivotal parameters for SVM, the 
regularization parameter c and the kernel width parameter g, 
were optimized using grid search based on cross-validation 
test. The search spaces of these were [215, 2–5] and [2–5, 2–15] 
with steps being 2 and 2–1, respectively. 

Performance assessment

In statistical prediction, various cross-validation 
methods are generally utilized for evaluating the 
performance of a predictor, such as independent dataset 
test, subsampling test and jackknife cross-validation 
test [27]. Jackknife cross-validation can always yields a 
unique outcome for a given benchmark dataset [44, 45]. 
Generally, jackknife test has two evident advantages: 1) 
the estimated generalization error is more reliable, because 
in each iterative process of jackknife test, almost all of 
the samples are used to train the model; 2) in the testing 
procedure, no random factors will affect the testing data 
and ensure that testing procedure can reproduce. Thus, 
the jackknife cross-validation was used to examine the 
performance of final model.

The performance of classification between 
cancerlectins and non-cancerlectins was evaluated by 
three indexes, including accuracy (Acc), sensitivity 
(Sn) and specificity (Sp). Acc is the overall accuracy 
of the discrimination between cancerlectins and non-
cancerlectins. Sn and Sp reflect the sensitivity and 
specificity of the SVM prediction model, which mean the 
ability to correctly identify cancerlectins and correctly 
recognize non-cancerlectins, respectively. The general 
formulations of these measures are as following:

TP TN
Acc

TP TN FP FN

+
=

+ + +
 (7)
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In the above formulas, TP (Ture positive) and TN 
(Ture negative) denote the numbers of correctly predicted 
cancerlectins and non-cancerlectins, respectively. And, FP 
(False positive) and FN (False negative) are the number 
of known non-cancerlectins but predicted as cancerlectins 
and the number of known cancerlectins but predicted 
as non-cancerlectins, respectively. We further plotted a 
receiver operating characteristic (ROC) curve by using 
sensitivity as the X-axis and 1-specificity as Y-axis. The 
value of the area under ROC curve (AUC) is useful for 
assessing the performance of model across the entire range 
of decision values.

CONCLUSIONS

More and more researchers have focused on the 
roles of cancerlectins or the microarray profiling of them 
in the prevention, detection, therapy and diagnosis of 
various human cancers such as breast cancer, pancreatic 
cancer, hepatocellular carcinoma [46–48]. Therefore, 
it is significant to recognize cancerlectins. On the basis 
of the consideration that there is still much room for 
improvement in prediction accuracy, we designed a 
predicted model based on optimal tripeptide composition 
statistically obtained by binomial distribution to improve 
prediction accuracy. Although the new method got 
better results for distinguishing cancerlectins from non-
cancerlectins when comparing with the existing predictors, 
the accuracy is still far from satisfactory.

In the future, we shall seek and gather more 
cancerlectin data and update the benchmark sample set. 
Furthermore, some powerful and flexible DNA\RNA or 
protein sequence analysis tools based on the concept of 
pseudo nucleotide or amino acid composition [49–52] 
may inspire us to develop another ensemble learning 
approach. It shall also consider the physicochemical 
properties, secondary structures and other characteristics 
of lectins which may contribute to improving the 
accuracy of distinguishing between cancerlectins and 
non-cancerlectins. In order to improve the efficiency of 
applying a new prediction/classification method, a user-
friendly and publicly accessible web-server is often 
established [53–57]. Therefore, we will also make efforts 
to provide a flexible web-server for that method which 
may bring some convenience for the vast majority of 
experiment scientists and medical researchers.
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