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ABSTRACT

DNA methylation has been reported to become a potential powerful tool for cancer 
detection and diagnosis. However, the possibilities for the application of blood-based 
gene methylation as a biomarker for non-small cell lung cancer (NSCLC) detection and 
screening remain unclear. Hence, we performed this meta-analysis to evaluate the 
value of gene methylation detected in blood samples as a noninvasive biomarker in 
NSCLC. A total of 28 genes were analyzed from 37 case-control studies. In the genes 
with more than three studies, we found that the methylation of P16, RASSF1A, APC, 
RARβ, DAPK, CDH13, and MGMT was significantly associated with risks of NSCLC. 
The methylation statuses of P16, RASSF1A, APC, RARβ, DAPK, CDH13, and MGMT 
were not linked to age, gender, smoking behavior, and tumor stage and histology in 
NSCLC. Therefore, the use of the methylation status of P16, RASSF1A, APC, RARβ, 
DAPK, CDH13, and MGMT could become a promising and powerful biomarker for the 
detection and screening of NSCLC in blood in clinical settings. Further large-scale 
studies with large sample sizes are necessary to confirm our findings in the future.

INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for 
approximately 80% of lung cancer which has become 
the top cause of cancer deaths in the world [1]. NSCLC 
includes adenocarcinoma (AC), squamous cell carcinoma 
(SCC), large cell carcinoma, and adenosquamous 
carcinoma [2, 3]. NSCLC is commonly diagnosed by a 
comprehensive evaluation of symptoms, medical imaging, 
assessment of the levels of serum tumor biomarkers, and, 
eventually, cytological examination. Imaging methods, 
such as chest X-rays and computed tomography (CT), are 
widely used, but they do not have sufficient sensitivity 
and specificity to detect the early stages of NSCLC 
[4]. Reportedly, PET imaging has a better potential for 
detection of NSCLC but is characterized by the high costs 
of analysis [5, 6]. Many studies suggest that the combined 

detection of several tumor markers, including CEA, 
PRO-GRP, NSE, SCC-AG, CYFRA21-1, and CA199, is 
more effective than their single detection [7, 8].

In a previous study, epigenetic changes were shown 
to be significantly associated with NSCLC [9]. Moreover, 
genes with aberrant DNA methylation were associated 
with the diagnosis of cancer and treatment prediction and 
prognostication [10–13], and aberrant DNA methylation 
was present in the early tumor stage of many cancer types 
[11, 12]. In addition, aberrantly methylated DNA was found 
in different types of samples, such as plasma, urine, semen, 
and stool, indicating that DNA methylation had the potential 
to become a non-invasive diagnostic biomarker which may 
facilitate the early diagnosis of NSCLC [11, 14, 15].

However, the value of the detection of gene 
methylation in blood samples as a non-invasive biomarker 
in NSCLC remains to be elucidated. There-fore, in our 
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analysis, we aimed to establish a list of genes with altered 
methylation in NSCLC in an attempt to provide molecular 
clues for their use as potential biomarkers.

RESULTS

Study characteristics

A total of 5,572 articles were initially identified 
by a search of PubMed, EMBASE, CNKI and Wanfang 
literature databases. Among the retrieved the titles, 
abstracts, and full-text papers, a total of 37 case-control 
studies published finally met the inclusion criteria based 
on the use of blood samples in NSCLC. We determined 
the correlation between aberrantly methylated genes 
in blood samples and the risk of NSCLC. All eligible 
studies met a score of equal to or above 5. The process 
of study selection is summarized in Figure 1, and the 
detailed characteristics of the included studies are listed in 
Supplementary Table 1.

Association between aberrantly methylated 
genes in the blood and NSCLC

For the analyses of more than three studies on the 
methylation of P16, DAPK, and MGMT (I2 < 50%, P ≥ 
0.1), the fixed-effects model was used. The random effects 
models were applied for methylated RASSF1A, APC, 
RARβ, CDH13, and FHIT (I2 > 50%, P < 0.1).

The results showed that the methylated P16 (OR = 
17.28, P < 0.001), RASSF1A (OR = 16.41, P < 0.001), 
APC (OR = 14.01, P < 0.001), RARβ (OR = 7.94, P < 
0.001), DAPK (OR = 30.78, P < 0.001), CDH13 (OR = 
12.63, P = 0.001) and MGMT (OR = 15.29, P < 0.001) 
genes were significantly associated with NSCLC in the 
blood samples (Figures 2–8). No significant association 
involving 290 patients with NSCLC and 186 controls was 
found between FHIT methylation and NSCLC (P = 0.073) 
(Table 1).

For the remaining 20 genes investigated in less than 
four studies, 18 genes were shown to be correlated with 
NSCLC (Table 1), more studies are needed to confirm 
these results of gene methylation with fewer four studies 
in the future.

Subgroup analyses

Subgroup analyses of the methylated P16, 
RASSF1A, APC, and RARβ were performed by methylation 
detection methods and ethnic population (Caucasians and 
Asians) (Table 2).

P16 methylation was found to be significantly 
correlated with NSCLC in the MSP, nMSP, and qMSP 
subgroups (all P < 0.01). On the other hand, the subgroup 
analysis by ethnicity indicated that the methylation of the 
P16 gene was significantly associated with NSCLC in 
Caucasians and Asians (P < 0.05).

Varying OR values of RASSF1A methylation were 
obtained in the subgroups of the different methods (MSP: 
OR = 22.17, P < 0.001; nMSP: OR = 12.00, P = 0.04; 
qMSP: P = 0.409; PCR: OR = 76.83, P = 0.003). It is 
noteworthy that the association between RASSF1A 
methylation and NSCLC tended to be stronger in Asians 
(OR = 21.15, P < 0.001) than in Caucasians (P = 0.08).

Based on the subgroup analysis by methods, 
significant association between APC methylation status 
and NSCLC was found in the MSP and PCR subgroups 
(OR = 10.32, P < 0.001; OR = 99.10, P = 0.001; 
respectively), but not in the qMSP subgroup (P = 0.086). 
The further subgroup analysis by ethnicity indicated 
that APC methylation was significantly associated with 
NSCLC in the Asian population (OR = 17.17, P < 0.001), 
but not in Caucasian population (P = 0.103).

A statistically significant relationship was found 
between RARβ methylation status and NSCLC in the MSP 
and qMSP method subgroups (OR = 10.02, P = 0.01; OR = 
4.79, P = 0.02; respectively), but not for the nMSP method 
(P = 0.209). The subgroup analysis by ethnicity revealed that 
the methylation status of RARβ was significantly associated 
with NSCLC in both the Asian and Caucasian populations 
(OR = 7.94, P = 0.003; OR = 5.99, P = 0.002; respectively).

Meta-regression

Considering the evidence of heterogeneity in the meta-
analysis of RASSF1A methylation reported in 11 studies 
(I2 = 50.4%, P = 0.028), meta-regression analyses were 
performed to detect the potential sources of heterogeneity in 
the methylation detection methods, ethnicity (Caucasians and 
Asians), and age status (60 or more years: elderly patients; 60 
or less years: young patients) (Table 3). The testing method 
and ethnicity could not explain the sources of heterogeneity 
(P > 0.1); however, the age factor might have been a possible 
source of heterogeneity (P = 0.025).

Sensitivity analyses

Sensitivity analyses were conducted to assess 
the stability of the overall effects and the change of 
heterogeneity by omitting a single study in the meta-
analysis of the methylated RASSF1A,APC, RARβ, and 
CDH13 (Supplementary Figure 1). The heterogeneity 
of the RASSF1A methylation status was significantly 
decreased by deleting a single study by Li et al. 
(2014), which caused a change of the P-value of the 
heterogeneity from 0.028 to 0.258. The pooled OR did 
not substantially change, with a range from 16.41 (95% 
CI = 6.68– 40.33) to 13.14 (95% CI = 7.55–22.86). The 
omission of another individual study (Begum et al., 
2011) increased the P-value of heterogeneity of the APC 
methylation status from 0.024 to 0.310, with a rise in 
the pooled OR from 14.01 (95% CI = 4.30– 45.67) to 
20.88 (95% CI = 10.04–43.44). The heterogeneity of 
the methylated RARβ was significantly decreased by 
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omitting a single study by Li et al. (2014), with a change 
of P-value of the heterogeneity from 0.001 to 0.129. The 
overall OR did not significantly change, ranging from 
7.94 (95% CI = 2.70– 23.34) to 5.52 (95% CI = 3.37– 
9.04). When the study of Hsuet al, (2007) was excluded, 
the pooled OR remained significant, with a range from 
12.63 (95% CI = 2.90– 55.07) to 23.30 (95% CI = 8.03– 
67.65), and a change of the respective P-value of the 
heterogeneity from 0.025 to 0.483 was observed.

The sensitivity analysis suggested that our results 
for methylated RASSF1A, APC, RARβ, and CDH13 were 
stable.

Publication bias

Egger’s test was performed to estimate the possible 
publication bias for the methylated P16, RASSF1A, APC, 

and RARβ genes investigated in more than five studies 
(Supplementary Figure 2). The results of the Egger’s test 
provided statistical data of funnel plot symmetry, which 
suggested the absence of publication bias concerning 
the APC methylation (P = 0.088). There was evidence 
of publication bias for the methylation status of P16, 
RASSF1A, and RARβ (P < 0.05). Further, we removed 
one study or two studies to reevaluate whether the 
potential publication bias for the methylated P16 and 
RASSF1A genes was reduced. Our results showed that 
the pooled results regarding P16 and RASSF1A genes 
did not sustainably change, and no obvious evidence of 
publication bias was present (Supplementary Figure 3). 
We further assessed the change of the publication bias by 
deleting one study or two studies on the P16 and RASSF1A 
genes. The pooled results of the P16 and RASSF1A genes 
remained statistically significant, with no substantial 

Figure 1: Flow chart of study selection procedure.
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Figure 2: Forest plot of the association between P16 methylation and NSCLC.

Figure 3: Forest plot of the association between RASSF1A methylation and NSCLC.
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Figure 4: Forest plot of the association between APC methylation and NSCLC.

Figure 5: Forest plot of the association between RARβ methylation and NSCLC.
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Figure 6: Forest plot of the association between DAPK methylation and NSCLC.

Figure 7: Forest plot of the association between CDH13 methylation and NSCLC.
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evidence of publication bias, indicating credibility. 
However, a reason for the potential publication bias in the 
analysis of the low number of studies and/or small sample 
sizes might have been the unequal comparison of the 
sample sizes of cases and controls. Thus, we attempted to 
minimize the bias by using the above-mentioned databases 
as comprehensively as possible.

Relation of methylated P16, RASSF1A, APC, 
RARβ, DAPK, CDH13, and MGMT genes to 
clinicopathological features of NSCLC

We analyzed whether P16, RASSF1A, APC, 
RARβ, DAPK, CDH13, and MGMT methylation status 
was correlated with clinicopathological characteristics 
of NSCLC, including age (≥60 years vs. ≤ 60years), 
gender (male vs. female), smoking behavior (smoking 
vs. nonsmoking), tumor stage (stage 0–2 vs. stage 
3–4), and tumor histology (SCC vs. AC). As depicted 
in Supplementary Figure 4, the methylation status of 
P16, RASSF1A, APC, RARβ, DAPK, CDH13, or MGMT 
was not associated with these clinicopathological 
features (P > 0.05), suggesting that the mentioned genes 
manifested similar methylation properties in the patients 
examined.

DISCUSSION

Tumor-specific DNA methylation can be considered 
a powerful tool for future cancer detection and diagnosis in 
blood samples in clinical settings [13, 16, 17]. The present 
analysis was performed to evaluate the potential value of 
tumor suppressor genes methylation as a feasible biomarker 
for the detection and screening of NSCLC in blood samples, 
more specifically with a focus on eight tumor suppressor 
genes investigated in more than three studies.

CDKN2A, also known as p16/Ink4a and p14/
ARF, is one of the major effectors that participate in the 
oncogenically induced senescence [18–20]. RASSF1A 
may be associated with the transmission of inhibitory 
growth signals. It is inactivated in the presence of a 
tumor, and its methylation was detected in many human 
cancers [21, 22]. APC involves in the cell migration 
and adhesion, transcriptional activation, and apoptosis 
[23]. Its expression was found to be associated with 
colorectal cancer [24]. The retinoic acid receptor-β gene 
(RARβ) is shown to be associated with the embryonal 
development, cell growth, and differentiation [25, 26]. 
The silencing of the RARβ gene expression may lead to 
resistance to retinoic acid treatment [27]. DAPK encodes 
a cytoskeletal-associated protein kinase (DAPK) that can 

Figure 8: Forest plot of the association between MGMT methylation and NSCLC.
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have some functions in apoptosis and tumor suppression 
[28, 29]. The downregulation of CDH13 was linked to a 
poorer prognosis in patients with various cancer types, 
including lung cancer [30]. CDH13 re-expression can 
reduce tumor growth by inhibiting cell proliferation and 
invasiveness [30, 31]. MGMT encodes O6-methylguanine-
DNA methyltransferase (MGMT) that is a DNA damage 
reversal protein [32]. MGMT protect the cell from 
cancer by removing adducts from the O6 position of 
guanine [33]. Some previous studies have shown that 
some genes with methylation status can become useful 

biomarkers for NSCLC diagnosis in the mixed samples 
[34–36]. However, the usefulness of the detection of gene 
methylation in blood samples from NSCLC patients as a 
noninvasive biomarker remains to be elucidated.

Increasing evidence suggests that gene methylation 
may become a potential diagnostic biomarker in NSCLC 
(i.e., P16, RASSF1A, APC, RARβ, DAPK and CDH13) 
[37, 38], and serve as a prognostic biomarker such as 
P16 and RASSF1A [39, 40]. Our findings demonstrated 
that the methylation status of P16, RASSF1A, APC, 
RARβ, DAPK, CDH13, and MGMT in the blood was 

Table 1: Associations between 28 methylated genes detected in blood samples and NSCLC

Gene Studies Overall OR (95% CI) I2; P P-value Cases Controls P (Egger’s test)

P16 13 17.28 (10.33–28.92) 32.5%; 0.122 < 0.001 903 587 0.018

RASSF1A 11 16.41 (6.68–40.33) 50.4%; 0.028 < 0.001 770 444 0.016

APC 7 14.01 (4.30–45.67) 58.9%; 0.024 < 0.001 563 314 0.088

RARB 7 7.94 (2.70–23.34) 72.5%; 0.001 < 0.001 591 436 0.001

DAPK 5 30.78 (8.86–106.96) 0.0%; 0.618 < 0.001 385 237 NA

CDH13 5 12.63 (2.90–55.07) 64.1%; 0.025 0.001 338 187 NA

FHIT 4 4.23 (0.87–20.49) 79.3%; 0.002 0.073 290 186 NA

MGMT 4 15.29 ( 4.33–54.04) 0.0%; 0.680 < 0.001 267 129 NA

DCC 3 11.44 ( 5.09 - 25.71) 0.0%; 0.531 < 0.001 205 180 NA

P14 2 8.95 (1.70–47.19) 0.0%; 0.738 0.01 199 34 NA

CDH1 2 3.97 (1.66–9.46) 0.0%; 0.795 0.002 96 40 NA

RUNX3 2 45.64 (5.89–353.72) 0.0%; 0.654 < 0.001 82 56 NA

BLU 2 1.63 (0.95–2.78) 12.1%; 0.286 0.073 143 116 NA

SFRP1 1 7.43 (1.69–32.68) NA; NA 0.008 110 50 NA

TMS1 1 27.80 (1.61–479.59) NA; NA 0.022 62 46 NA

TIMP3 1 35.87 (2.12–607.48) NA; NA 0.013 110 110 NA

DLEC1 1 16.73 (2.21–126.86) NA; NA 0.006 110 50 NA

EFEMP1 1 4.37 (1.25–15.29) NA; NA 0.021 110 50 NA

Dkk3 1 27.43 (7.93–94.86) NA; NA < 0.001 75 75 NA

BRMS1 1 45.16 (2.60–784.96) NA; NA 0.009 48 24 NA

KLK10 1 9.85 (2.26–42.96) NA; NA 0.002 110 50 NA

RASSF2 1 59.18 (3.48–1005.20) NA; NA 0.005 62 46 NA

DCLK1 1 6.991 (2.74–17.82) NA; NA < 0.001 46 95 NA

AIM1 1 6.55 (0.82 - 52.21) NA; NA 0.076 76 30 NA

hOGG1 1 3.58 (1.34–9.58) NA; NA 0.011 80 80 NA

KIF1A 1 18.02 (2.29–141.69) NA; NA 0.006 70 80 NA

NISCH 1 2.12 (1.06–4.25) NA; NA 0.034 70 80 NA

SEMA3B 1 11.53 (4.73–28.10) NA; NA < 0.001 80 80 NA

Abbreviations: not applicable.
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correlated with the availability of NSCLC. In addition, 
we found that methylated genes with good sensitivity and 
specificity had differently diagnostic levels for NSCLC, 

such as P16 gene (sensitivity: 62.5%, specificity: 87.5%) 
[41], RASSF1A (sensitivity: 85.7%, specificity: 100%) 
[42], APC (sensitivity: 51.6%, specificity: 100%) [43], 

Table 2: Subgroup analyses of the associations between P16, RASSF1A, APC, and RARβ genes and NSCLC

Gene Studies Overall OR 95% CI I2; P P value Cases Controls

P16

Method

MSP 10 13.09 (5.77–29.71) 29.0%; 0.178 < 0.001 655 386

nMSP 2 67.21 ( 9.15–493.61) 0.0%; 0.578 < 0.001 185 165

qMSP 1 6.77 (1.87–24.51) NA; NA 0.004 63 36

Race

Caucasians 2 14.28 (6.93–29.42) 0.0%; 0.965 0.022 146 29

Asians 11 15.92 (6.88–36.83) 44.5%; 0.055 < 0.001 757 558

RASSF1A

Method

MSP 7 22.17 (6.77–72.60) 50.9%; 0.057 < 0.001 473 300

nMSP 2 12.00 (1.12–129.03) 61.8%; 0.105 0.04 159 68

qMSP 1 2.49 (0.29–21.57) NA; NA 0.409 76 30

PCR 1 76.83 (4.53–1302.49) NA; NA 0.003 62 46

Race

Caucasians 2 4.77 (0.83–27.50) 2.8%; 0.310 0.08 166 44

Asians 9 21.15 (7.62–58.71) 55.6%; 0.021 < 0.001 604 400

APC 

Method

MSP 3 10.32 (4.38–24.32) 0.0%; 0.732 < 0.001 260 134

qMSP 3 14.85 (0.68–322.24) 81.4%; 0.005 0.086 241 134

PCR 1 99.10 (5.85–1679.50) NA; NA 0.001 62 46

Race

Caucasians 3 10.44 (0.62–174.92) 77.7%; 0.011 0.103 256 94

Asians 4 17.17 (7.79–37.87) 24.5%; 0.264 < 0.001 307 220

RARβ

Method

MSP 4 10.02 (1.75–57.37) 79.5%; 0.002 0.01 338 200

nMSP 2 13.65 (0. –805.76) 86.8%; 0.006 0.209 183 156

qMSP 1 4.79 (1.28–17.93) NA; NA 0.02 70 80

Race

Caucasians 2 5.99 (1.97–18.27) 0.0%; 0.526 0.002 162 94

Asians 5 7.94 (2.70–23.34) 81.7%; < 0.001 0.003 429 342

Abbreviations: not applicable; MSP: methylation specific PCR; PCR: polymerase chain reaction; qMSP; quantitative 
methylation specific PCR; nMSP: nested methylation specific PCR.
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RARβ (sensitivity: 80.4%, specificity: 100%) [42], 
DAPK (sensitivity: 37.1%, specificity: 100%) [44], 
CDH13 (sensitivity: 54.8%, specificity: 100%) [45], 
and MGMT (sensitivity: 32.8%, specificity: 100%) [46], 
which suggested that RASSF1A and RARβ genes can be 
better promising noninvasive biomarkers for the clinical 
detection and screening of NSCLC. Further, we analyzed 
whether the methylation status of P16, RASSF1A, APC, 
RARβ, DAPK, CDH13, and MGMT there were differences 
in the characteristics of gene methylation in different 
tumor stages (early stage vs. advanced stage) and tumor 
histotypes (SCC vs. AC). The results showed that the 
methylation features of these genes could not facilitate 
the distinction between early NSCLC and advanced 
NSCLC, nor between AC, and SCC. One study reported 
that RASSF1A methylation was correlated with overall 
survival in blood samples of patients with NSCLC, but 
other genes (P16, RARβ and DAPK) were not found to 
be linked to overall survival [38]. Two studies reported 
that APC methylation was not associated with survival in 
blood samples [38, 47].

The current study revealed that the methylation 
status of FHIT detected in blood samples was not 
associated with NSCLC. In contrast to a previous meta-
analysis conducted by Yan et al. [48], this study found that 
FHIT methylation was correlated with NSCLC in tissue 
samples, but this meta-analysis did not analyze whether 
FHIT methylation was linked to NSCLC in blood samples. 
Additional studies with larger subjects are necessary to 
further assess the role of FHIT methylation in blood 
samples of patients with NSCLC.

The subgroup analysis by ethnicity regarding the 
methylation of P16, RASSF1A, APC, and RARβ genes 
showed that the methylation of the P16 and RARβ genes 
was associated with the occurrence of NSCLC in the 
Asian and Caucasian populations with, suggesting that 
the methylation of P16 and RARβ genes can be used 
as biomarkers for NSCLC detection in both ethnical 
groups. Methylated RASSF1A and APC were correlated 
with NSCLC in the Asian population, but not in the 
Caucasian population. Nevertheless, this finding could 
be due to the small sample sizes used in this analysis, 
especially for the Caucasian population, and thus more 
studies with larger sample sizes are needed to confirm 
that result in blood samples from Caucasians with 
NSCLC.

Further, subgroup analyses by detection methods 
of P16, RASSF1A, APC, and RARβ methylation were 

conducted. Association between NSCLC and the MSP 
method was found, suggesting that MSP (n ≥ 3 studies per 
gene) was a sensitive method for detection of methylated 
P16, RASSF1A, APC, and RARβ. The qMSP method had 
sensitivity for the detection of P16 and RARβ, but not for 
RASSF1A and APC. On the other hand, the nMSP method 
was sensitive to identification of P16 and RASSF1A 
methylation, but not to that of RARβ. In addition, we found 
that PCR was sensitive to the methylation of RASSF1A and 
APC. However, the findings of the subgroup analyses for 
qMSP, nMSP, and PCR should be interpreted cautiously 
due to the small sample sizes of the studies included 
herein.

The meta-regression analysis of RASSF1A 
methylation revealed that testing method and ethnicity 
failed to the sources of heterogeneity, but age factor 
can be a potential source. Sensitivity analyses were also 
conducted for the RASSF1A, APC, RARβ, and CDH13 
genes with significant heterogeneity. The data based on the 
omission of one study indicated that the pooled results for 
the genes investigated remained statistically significant, 
with absence of heterogeneity, confirming the stability of 
our findings.

Full-text papers with eligible studies published 
in English or Chinese were included in this analysis. 
Nonetheless, investigation in other languages and of 
other types, such as unpublished studies and conference 
abstracts, were excluded due to the insufficient availability 
of information. In addition, studies with positive results 
are more often and more easily published than those with 
negative results, which might have contributed to the 
omission of some examinations. Therefore, in the present 
meta-analyses, publication bias was detected for the 
genes investigated in fewer studies and/or such with small 
sample sizes. Further large-scale studies and well-matched 
research design with equal comparisons between cases and 
controls are required in the future to confirm the role of 
gene methylation as a noninvasive biomarker for NSCLC 
detection and screening in blood samples, especially for 
FHIT.

Some other limitations of the present research 
should be carefully considered. First, owing to the 
limited number of studies with obvious heterogeneity, 
meta-regression analysis could not be performed for 
the methylated APC and RARβ. Moreover, meta-
regression and subgroup analyses were not conducted for 
CDH13 methylation. Second, the results of some genes 
methylation and a part of the subgroup analyses should 

Table 3: Meta-regression analysis of the RASSF1A methylation

Subgroup Coefficient (95% CI) t P-value

Method -0.901 (-2.467, 0.665) -1.33 0.221

Ethnicity 0.441 (-2.727, 3.610) 0.32 0.756

Age 2.752 (0.458, 5.046) 2.84 0.025
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be interpreted with caution as only one or two studies 
with small subjects were included in our analysis. Finally, 
gene methylation is shown to be correlated with cigarette 
smoking factor in mixed samples of patients with NSCLC, 
including CDKN2A, RASSF1, MGMT, RARB, DAPK, 
WIF1 and FHIT [35]. Based on the small sample sizes, 
our study showed that theses methylated genes was not 
correlated with smoking behavior in the blood. More 
large-scale studies are essential to further validate our 
findings in blood samples of patients with NSCLC.

In conclusion, the use of the P16, RASSF1A, 
APC, RARβ, DAPK, CDH13, and MGMT methylation 
are exceedingly promising and could become useful 
biomarkers for blood-based screening and detection of 
NSCLC in the clinical practice. More studies with larger 
numbers of blood samples are required to further confirm 
the diagnostic and screening value of gene methylation in 
NSCLC.

MATERIALS AND METHODS

Literature selection

A comprehensive search was performed in PubMed, 
EMBASE, CNKI and Wanfang literature databases 
up to November 26, 2015, using the following search 
keywords and terms: (lung cancer OR lung tumor OR lung 
carcinoma OR lung neoplasm OR pulmonary carcinoma) 
AND (methylation OR epigenetic silencing). No language 
restriction was employed, and the titles and abstracts were 
independently assessed by two authors.

The eligible studies had to meet the following 
criteria: (1) NSCLC patients had to be diagnosed by 
histopathological examination; (2) gene methylation was 
evaluated in blood samples in case-control studies, and 
the control blood samples were collected from individuals 
with no history of cancer or from healthy subjects; (3) 
the frequency of gene methylation had to be sufficient 
to evaluate the associations between gene methylation 
and NSCLC; (4) the studies were published in English 
or Chinese. In the case of the presence of more than one 
published article that had used the same sample data, only 
the most recent paper or the publication with the larger 
sample size was selected. Only studies containing data 
on the histological type of lung cancer were included for 
inclusion in the current analysis.

Data extraction and quality assessment

The data extracted from the articles included the 
following information: the names of the first author, 
publication year, country, ethnicity, histology, method 
for the detection of methylation, methylation status. 
Information on patients’ characteristics was also collected, 
such as age, gender status, smoking behavior, tumor 
stage, and pathological subtypes. A cancer stage of ≤ 2 

was defined as early, and stages of 3 and 4 were referred 
to as advanced. The quality assessment of the included 
studies was performed based on the Newcastle–Ottawa 
Scale (NOS), with a range from 0 to 9. Each study with a 
NOS score of more than or equal to six was considered as 
high quality, and a NOS score of less than or equal to three 
was considered as low quality [49, 50] (Supplementary 
Table 1).

Data analysis

The pooled odds ratio (OR) with the corresponding 
95% confidence interval (95% CI) was calculated using 
Stata software (STATA version 12.0, Stata Corporation, 
College Station, TX, USA) to evaluate the relationships 
between gene methylation and risk of NSCLC. The 
statistical heterogeneity among the studies included in 
the meta-analysis was assessed by Cochran’s Q statistic 
and I2 test [51]. The fixed-effect model was applied for 
the meta-analysis with moderate or lack of heterogeneity 
(I2 < 50% and P ≥ 0.1); otherwise, the random-effects 
model was employed [52, 53]. Meta-regression 
analysis was used to identify the potential sources of 
heterogeneity. Subgroup analyses were conducted to find 
the variations among the different subgroups. Sensitivity 
analysis was also performed by omitting one study to 
assess the influence of an individual study on the overall 
OR [54]. P < 0.05 was considered significant. Egger’s 
test was used to estimate the potential publication bias 
for the methylated genes investigated in more than five 
studies [55].
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