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ABSTRACT
Although the metabolic syndrome is a commonplace topic, its potential threats to 

public health is a problem that cannot be neglected. As the living conditions improved 
significantly over the past few years, the morbidity of metabolic syndrome has also 
steadily risen, and the onset age is becoming younger. The hepatocellular carcinoma 
(HCC), is one of the most prevalent life-threatening human cancers worldwide, 
incidence of which is also on the rise, gradually occupied the top of the list associated 
with metabolic syndrome related complication. Despite the advanced improvement 
of HCC management, the lifestyle, environmental factors, obesity, hepatitis B virus 
(HBV) infection have been recognized as risk factors for the development of liver 
cancer. In recent years, genetic studies, especially the genome-wide association 
studies (GWASs) were widely performed, a new era of the human genome research 
was created, which has significantly promoted the study of complex disease genetics. 
These progresses have contributed to the discovery of abundant number of genomic 
loci convincingly linked with complex metabolic feature and HCC. In this review, we 
briefly summarize the association between metabolic syndrome and HCC, focusing 
on the genetic factors contributed to metabolic syndrome and HCC.

INTRODUCTION

Metabolic syndrome is a multi-pathological 
manifestation of syndrome, comprising obesity, 
dyslipidemia, insulin resistance, and type 2 diabetes 
mellitus (T2MD), etc. These diseases are in a close 
connection with increased risk of hepatocellular 
carcinoma (HCC) occurrence and development (Figure 1) 
[1]. Based on the existing study, insulin resistance, along 
with its associated adipocyte cytokines, hyperglycemia, 
and hyperinsulinemia may lead to hypertension and 
abnormal lipid profile, both of which will accelerate 

the progress of HCC [2]. With the wildly performing 
of genome-wide association studies (GWASs) and gene 
sequencing, substantial genetic component compositions 
were proposed [3]. For fat and lean mass in different 
body regions, including whole body and trunk fat mass, 
the heritability have been estimated to about 65% [4]. 
It is supposed that distinction in fat distribution and 
illustration of genetic factors predisposing to adiposity 
could contribute to a further exploration of the phenotypic 
diversity and eventually make a more accurate disease 
sub-classification possible. In the past few decades, 
huge efforts have been made to explore the common 
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genetic factors in metabolic syndrome. However, it is a 
challenging task at last for the extensive heterogeneity. 
Nevertheless, the pattern which have found common 
genetic variations associated with various symptoms 
and diseases, had been broken by the emergence of 
GWASs [5]. Furthermore, pinpointing genes implicated 
in metabolic syndrome could be helpful to discover the 
latent biological pathways, which could be exploited in 
the development of medical treatment. Here, we briefly 
summarize the relationship between metabolic syndrome 
and HCC, focusing on the genetic factors contributed to 
metabolic syndrome and HCC.

ASSOCIATION BETWEEN METABOLIC 
SYNDROME AND HCC

Obesity and hepatocellular carcinoma (HCC)

Over the past few decades, the prevalence of obesity 
has sharp increased [6]. Overweight and obesity have been 
identified as independent risk factors for various cancers 

including liver cancer, breast cancer, endometrial cancer, 
colorectal cancer and esophagus cancer. There is also a 
possible association between obesity and gallbladder, 
pancreas, thyroid and hematologic malignancies [7]. For 
HCC, research showed that the body mass index (BMI) 
more than 30 kg/m2 could increase HCC risk [8]. Besides, 
HCC mortality rates in male with high BMI are 5 times 
higher than men of normal weight [7]. Comprehensive 
analysis including 11 studies from Asia, Europe and 
United States evidenced that both obesity (RR = 1.89) 
and overweight (RR = 1.17) were closely associated 
with the development of HCC [9]. SEER-Medicare data 
analysis showed that adjusted OR of obesity for HCC was 
1.93 [10]. The Metabolic Syndrome and Cancer Project 
(Me-Can) examined 578700 subjects from Austria, 
Norway and Sweden, showed RR of obesity for the 
development of HCC was 1.39 [11]. Danish and Korean 
boffins obtained similar conclusions after analyzing 
large cohorts of overweight patients [12]. In addition, in 
a large retrospective cohort including 342 patients who 
transplanted liver for HCC, BMI was identified as an 
independent predictor of capillaries invasion [13]. 

Figure 1: Association between metabolic syndrome and hepatocellular carcinoma (HCC). Metabolic syndrome is in a close 
connection with an increased risk of HCC. In obese patients, adipocyte cytokines may lead to abnormal lipid profile, and the body mass index 
(BMI) more than 30 kg/m2 could increase HCC risk. In type 2 diabetes mellitus (T2MD), its relative hyperinsulinemia and hyper-insulin-like 
growth factor 1 (IGF-1) production, or synergistic actions with other variables, such as viral hepatitis and alcohol, all may contribute to the 
development of HCC. In addition, insulin resistance impaired the ability of insulin to suppress glucose production, and directly accelerate 
hepatocarcinogenesis via promoting cellular proliferation, inhibiting apoptosis and stimulating hepatic neovascularization. Moreover, bout 
27% of non-alcoholic steatohepatitis (NASH)-associated hepatic cirrhosis eventually progresses to HCC.
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Type 2 diabetes mellitus (T2DM) and HCC

For developing chronic liver disease and HCC, 
T2DM act as an independent risk factor [14]. In different 
cohort studies, the morbidity of HCC among those with 
diabetes rose from 1.5 to 4 times [10, 15]. A recent 
meta-analysis of 21 cohort studies demonstrated that the 
summary RR of HCC with T2DM was 1.86 (95% CI: 
1.49-2.31) for patients with chronic liver disease [16]. 
T2DM combined with its relative hyperinsulinemia and 
hyper-insulin-like growth factor 1 (IGF-1) production may 
also accelerate the development of HCC [17]. Diabetes 
seems to increase the risk of liver cancer by cooperating 
with other variables, such as viral hepatitis and alcohol 
[18]. Furthermore, coexistent with diabetes appears to 
make the HCC relapse rate rise after curative therapy [19].

Insulin resistance and HCC

Insulin resistance is characterized by reduced 
sensitivity to insulin and, as a result, impaired ability of 
insulin to reduce peripheral blood glucose concentration 
[20]. It is well established that insulin resistance act as 
a primary dominator that connects all the sections of 
metabolic syndrome [21]. To overcome insulin resistance 
and maintain normal metabolic functions, insulin 
secretion is increased, leading to a state of compensatory 
hyperinsulinemia [22]. Insulin resistance may directly 
accelerate hepatocarcinogenesis via promoting cellular 
proliferation, inhibiting apoptosis and stimulating hepatic 
neovascularization [23]. However, a 10-year prospective 
study from Korea of 1,298,385 patients showed that the 
risk of tumor was influenced by fasting blood glucose 
concentrations rather than insulin resistance, which 
challenges the theory that insulin directly effects on 
promotion of cancers [24].

Non-alcoholic fatty liver disease (NAFLD) and 
HCC

NAFLD is the clinical manifestation in liver 
of metabolic syndrome [6]. In Western countries and 
Asia, NAFLD is considered as the most common cause 
of chronic liver disease [25]. The clinic pathological 
classification of NAFLD include from extensive isolated 
steatosis (a milder form of hepatic adipose infiltration) 
to nonalcoholic fatty liver disease (a more severe form 
of hepatic adipose infiltration). The clinical progress of 
simple steatosis is relatively gentle, but there are about 
one third of non-alcoholic steatohepatitis (NASH) affected 
subjects can develop into liver cirrhosis [26], and about 
27% of NASH-associated hepatic cirrhosis eventually 
progresses to HCC [27, 28]. In recent years, NASH has 
been considered as an important pathogenic factor of 

HCC. Thus, since the prevalence of obesity, diabetes and 
metabolic syndrome continues to rise, a large proportion 
of the population will have a risk of developing NASH 
and cirrhosis, and ultimately liver cancer [29, 30].

SUSCEPTIBILITY LOCI FOR METABOLIC 
SYNDROME AND HCC

The advances in genome technology, human 
genome deep sequencing, and the establishment of human 
variation cataloging, which helped the human genome 
analysis to create a new era, have further promoted the 
complex disease genetics research. It was not until 2007 
that the genetic map of complex diseases, such as obesity 
and HCC, had been preliminarily studied by genetic 
linkage analysis and candidate gene association studies. 
But for the potential limitations of the design, their 
application was limited. However, since 2007, through 
genome-wide association studies, there is a rocket increase 
in our understandings of specific genetic risk factors for 
adiposity, insulin resistance, T2MD, NAFLD and HCC. 
These advances contributed a lot of convincing genetic 
loci related to the complex metabolic symptom and HCC 
[31].

Obesity

The inheritance of obesity has been paid large 
attention and the genetic research of obesity has been 
the focus of research. The heritability of obesity is 
now universally thought to be range from 40% to 70% 
[32]. In general, as of 2016, GWASs have successfully 
identified about 400 different loci associated with 
adiposity phenotypes [http://www.ebi.ac.uk/gwas/]. The 
discoveries are mainly derived from individual studies and 
meta-analysis based on BMI as an indicator of obesity. 
Through GWAS, Frayling et al. reported the first BMI 
gene locus with significant statistical significance, which 
is a byproduct of the study for FTO gene associated 
with T2MD by GWAS [33]. In 2008, a meta-analysis 
of GWASs from 16,876 European individuals replicated 
the FTO finding and also found another strong signal 
188 kb downstream of the MC4R locus [34]. In 2009, a 
paper reported a meta-analysis of GWASs from GIANT 
consortium, which included more than 32,000 individuals 
with independent replication from >59,000 individuals. 
They replicated the MC4R and FTO loci and reported 
six novel loci: TMEM18, SH2B1, GNPDA2, KCTD15, 
NEGR1, and MTCH2 [35]. In 2012, a meta-analysis 
of GWASs for BMI in East Asians was performed. 
They replicated seven previously identified loci (FTO, 
SEC16B, MC4R, GIPR-QPCTL, ADCY3-DNAJC27, 
BDNF and MAP2K5) and identified three additional loci 
in or near the CDKAL1, GP2, and PCSK1 genes [36]. In 
2013, Monda et al. conducted a meta-analysis in African 
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individuals and identified two new loci in GALNT10 
and MIR148A-NFE2L3 [37]. Then, Pei et al. carried 
out a meta-analysis of seven GWASs for BMI-related 
traits from diverse ethnic populations. They confirmed 
three previously reported obesity susceptibility loci in 
FTO, MC4R and TMEM18; and identified two novel 
loci in CTSS and NLK associated with fat body mass 
[38]. Recently, another meta-analysis among Asians was 
conducted by Wen et al. and four loci near the KCNQ1, 
ITIH4, NT5C2 and ALDH2/MYL2 genes were identified 
[39]. FTO is a common susceptibility gene for BMI in 
Asian, African and European populations. And it remains 
the most influential gene, imposing an allelic 0.39 kg/m2 
increase in BMI [34].

Besides, in 2011, Heid et al. published a meta-
analysis of 32 GWASs of Waist-hip ratio (WHR) adjusted 
for BMI with follow-up of 16 loci in an additional 29 
studies. They identified 13 novel loci in or near RSPO3, 
NFE2L3, VEGFA, TBX15-WARS2, ITPR2-SSPN, 
GRB14, DNM3-PIGC, HOXC13, ADAMTS9, LY86, 
ZNRF3-KREMEN1, CPEB4, and NISCH-STAB1 and 
the known signal at LYPLAL1 unique to fat distribution 
independently of BMI. In 2013, a GWAS of WHR in up to 
27,350 African individuals was performed and rs6931262 
at RREB1 was identified for WHR adjusted for BMI [40]. 

T2DM

Having a sibling with T2DM will increases the risk 
of T2DM by two to three times [41], suggesting genetic 
factors play an important role in T2DM. As of 2016, 
more than 200 genetic loci have been identified as T2DM 
risk loci [http://www.ebi.ac.uk/gwas/]. In 2006, the risk 
variant in TCF7L2 was discovered by a positional linkage 
strategy in Iceland population [42], which remains the 
most influential common T2DM variant (allelic OR = 
~1.46) [43]. Then it was successfully validated by several 
other GWASs [44-46]. Soon, multiple T2DM loci were 
discovered by independent GWASs, such as SLC16A11, 
CDKAL1, FTO, HHEX, IGF2BP2, KCNJ11, PPARG, 
SLC30A8 et al.[44, 45, 47]. DIAGRAM conducted the 
first meta-analysis on T2DM comprising 10,128 European 
individuals at the discovery stage and identified six novel 
loci including ADAMTS9, CDC123-CAMK1D, JAZF1, 
NOTCH2, TSPAN8-LGR5, and THADA [48]. The second 
meta-analysis by DIAGRAM had a sample size of 8130 
cases and 38,987 controls of European descent. Notably 
12 T2DM loci harboring genes that included BCL11A, 
CENTD2, CHCHD9, HMGA2, DUSP9, ZBED3, HNF1A, 
KLF14, PRC1, KCNQ1, TP53INP1, and ZFAND6 were 
identified [49]. The third effort made by DIAGRAM 
included 26,488 cases and 83,964 controls of diverse 
ethnic populations. Eight novel loci were discovered: 
ANK1, ANKRD55, BCAR1, CILP2, KLHDC5, MC4R, 
TLE1 and ZMIZ1 [50]. In addition, AGEN-T2DM 

conducted a meta-analysis including approximately 
55,000 individuals in East Asian populations and identified 
eight novel T2DM loci in European populations: MAEA, 
FITM2-R3HDML-HNF4A, GCC1-PAX4, GLIS3, 
KCNK16, PEPD, PSMD6 and ZFAND3 [51].

Although T2DM and obesity are highly interrelated 
from both epidemiological and pathophysiological 
viewpoints, they have few genetic risk loci in common. 
Of 200 loci associated with T2DM and 400 loci associated 
with standard measures of adiposity, merely 11 loci are 
shared (CDKAL1, FTO, GIPR, KCNQ1, LINGO2, 
LYPLAL1, MC4R, TMEM18, GRB14, RREB1 and 
ZNF608), which may do not include shared associations 
below the level of genome-wide statistical significance. 
However, for SNPs primarily associated with BMI, there 
seems to be a positive correlation between the effect size 
on BMI and the effect of the same SNP on T2DM [31].

Insulin resistance

The T2DM physiologic characteristics are pancreatic 
β-cell dysfunction and insulin resistance in the peripheral 
tissues and liver [52]. Interestingly, T2DM susceptibility 
loci seldom map directly to insulin resistance. Multiple 
independent studies showed that the insulin resistance 
susceptibility loci included APOC3, GCKR, IRS1, IGF1, 
PPARG and so on [53]. By 2016, about 70 genetic loci 
have been identified as insulin resistance risk loci [http://
www.ebi.ac.uk/gwas/]. In 2011, based on the HyperGen 
study, a GWAS including 1,040 African Americans 
explored the association between insulin resistance and 
genetic variation. The results showed SNPs linked with 
homeostasis model assessment of insulin resistance 
(HOMA-IR) and fasting insulin near ATP10A (rs6576507 
and rs8026527) and CACNA1D (rs1401492) [54]. 

Obesity is related with insulin resistance, and also 
a strong risk factor for T2DM. Thus, we can assume 
reasonably that some loci of obesity would also be insulin 
resistance loci, or possibly T2DM susceptibility loci. 
However, there is little overlap among loci for these traits. 
These results suggest that the etiologically distinct subsets 
may exist in these extreme phenotypes.

NAFLD

NAFLD appears family genetic predisposition. 
Compared with overweight children without NAFLD, 
fatty liver was found to be more common in children 
whose siblings and parents had NAFLD. [55]. After 
adjusting age, race, sex, and BMI, the heritability of 
NAFLD was estimated to be 39%, suggesting close 
relationship between the development of NAFLD and 
genetic factors. To date, a number of potential genetic 
determinants based on GWASs have been proposed. The 
Dallas Heart Study firstly identified the nonsynonymous 



Oncotarget35407www.impactjournals.com/oncotarget

rs738409 (I148M) located in PNPLA3, which was the 
most important genetic variant associated with NAFLD 
[56]. After adjustment for ethnicity, BMI, diabetes status 
and alcohol use, PNPLA3 rs738409 was significantly 
associated with hepatic fat content. The results were 
subsequently confirmed by many independent studies 
[57] and other GWASs [58]. A meta-analysis in 2011 
including 16 studies also proposed a strong association 
between PNPLA3 rs738409 and a more aggressive 
disease. Homozygous GG will lead to 28% increase in 
serum ALT levels, 3.5-fold greater risk of NASH, and 
3.3-fold higher risk of fibrosis. [59]. The second GWAS 
about NAFLD was performed in 236 women with NAFLD 
and identified an association between SNP rs2645424 in 
FDFT1 (an enzyme with a role in cholesterol synthesis) 
and NAFLD activity score [60]. In 2011, Speliotes et al. 
conducted the third NAFLD GWAS [58], and identified 
five SNPs associated with NAFLD in or near PNPLA3 
(rs738408), NCAN (rs2228603), PPP1R3B (rs4240624), 
GCKR (rs780094) and LYPLAL1 (rs12137855). There 
was a strong linkage disequilibrium between PNPLA3 
rs738408 and the previously identified rs738409 [56]. 
Another recently GWAS in adolescents with NAFLD 
identified SNPs relevant to two neuron-specific genes 
(SLC38A8 and LPPR4) and two liver-specific genes 
(LCP1and GC). This study further confirmed the 
significant differential expression of GC and LCP1 in a 
NAFLD cohort [61]. Another GWAS was conducted in 
the Japanese population involving 392 NAFLD subjects 
and 934 controls. In addition to those polymorphisms in 
the PNPLA3 gene, the polymorphisms in SAMM50 and 
PARVB were also observed to be associated with the 
occurrence and progression of NAFLD. [62].

HCC

As we known, virus infection, obesity, diabetes 
mellitus, alcohol and aflatoxin B1 exposure are pivotal risk 
factors for inducing HCC. Genetic factors of the individual 
genome may also act a role in liver malignant tumor [63]. 
In recent years, a plethora of studies have confirmed that 
the host genetic factors play crucial roles in developing 
HBV-induced HCC. One of the first GWASs included 
355 HBV carriers with HCC and 360 asymptomatic 
HBV carriers (ASCs) in Chinese population, indicated 
rs17401966 in KIF1B was significantly associated with 
HBV-related HCC, and SNPs in UBE4B and PGD genes 
were also shown to be significant for HCC emergence 
among patients with HBV-positive [64]. In recent years, 
a large number of studies have confirmed that the host 
genetic factors played a key role in the development of 
HBV-related liver cancer. The other two GWASs from 
Chinese also found some novel SNPs as risk factors for 
HBV-related HCC, including rs9272105 in HLA-DQA1/
DRB1, rs455804 in GRIK1 [65], rs9275319 in HLA-DQ 

gene and rs7574865 in STAT4 gene [66]. Two GWASs 
conducted in large Japanese cohorts concluded that 
variant rs2596542 in the promoter region of the MICA 
gene [67], and SNP rs1012068 in DEPDC5 gene [68] was 
significantly related to HCV-induced HCC.

ANCESTRY-SPECIFIC GENETIC 
SUSCEPTIBILITY LOCI

Most of the GWASs have been completed in the 
European, and there are many studies are emerging in other 
races. Studies of obesity have shown highly comparable 
effects of common variants across major ancestry groups, 
strongly supporting shared common BMI and obesity loci 
across populations, although ancestry-specific loci have 
also been shown, such as KLHL32 in Africans and KLF9 
in Asians [37]. Moreover, of the 14 WHR-associated loci, 
only 7 were found to have a significant effect in women 
[69]. For T2DM, studies have reported novel loci such 
as KCNQ1and C2CD4A in Japanese individuals [70] 
and a number of loci for T2DM in East Asians [51, 71]. 
The ancestry-specific genetic susceptibility loci also 
exist in NAFLD and related cancer, including HCC and 
pancreatic cancer, suggesting great heterogeneity between 
the genetic background of different races or populations. 
It also presented challenges for precise medicine and 
personalized medicine.

OUTLOOK

We remain in infancy of the research for potential 
molecular basis in the HCC development. More 
specifically, in patients with NASH, the genetic variants 
and mechanisms that drive the development of HCC 
remains largely mysterious. Based on the current GWASs, 
we hope to find new genetic components related to 
metabolic syndrome and liver cancer progression, yet 
major efforts are still needed to gain biological knowledge 
from discoveries.

Seeking the missing heritability

The past 8 years of genetic discoveries brought 
about by the GWASs approach have meant a giant leap 
for genetic research of complex traits, with more than 
288 genetic loci shown to associate with metabolic traits. 
Yet, the major part of the genetic predisposition to these 
phenotypes remains unaccounted since the proportion of 
variance explained by genetic risk variants discovered 
to date is limited. Implicit in the initial design, GWASs-
identified variants in metabolic syndrome and related 
cancer are common (minor allele frequency >5% in the 
population). There has been much focus on this missing 
heritability [72]. The rare alleles with large effects are the 
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primary drivers of common disease, which has received 
renewed attention. The focus is needed to change to study 
the individual and combined effect of low-frequency and 
rare variants in metabolic disease through the analysis of 
data from microarray-based genotyping and wide-genome 
sequencing.

In addition, influences other than main effects of 
SNPs may explain parts of the susceptibility for metabolic 
disease. Preliminary evidence supports the role of copy 
number variations and gene-environment interactions in 
obesity, T2DM and HCC, as solid findings have been 
reported [73, 74], and future large-scale studies may reveal 
gene-gene interactions.

Identifying causal variants

GWASs contribute to find the common genetic 
variants between normal and pathological features, 
but the major challenge is how to recognize the precise 
targets of those associations among them. The studies for 
investigating gene function for the loci from GWASs are 
needed, including accurate mapping of GWASs signal(s) 
combined with genetic epidemiology and bioinformatics 
methods of the integration and optimization of putative 
functional SNPs, and in vitro and in vivo experimental 
verification for predicted molecular mechanism to identify 
the targeted genes [75].

Risk prediction

As discussed above, common genetic variants 
unanimously impose modest risk increments on metabolic 
syndrome and related cancer. Furthermore, combining 
these variants does not enable prediction these disease/
traits [77, 78]. Future studies are needed to reveal further 
important genetic susceptibility elements. In addition, 
systemic integration of complex date obtained from 
other “omics” such as transcriptomics, proteomics and 
metabolomics, and modeling research for composite 
effect on the integrate common metabolic phenotype, 
is projected to be a breakthrough in the research of 
genetic determinants of metabolic traits. Besides gaining 
biological knowledge and allowing the identification of at-
risk individuals, hopes have been high that knowledge of 
genetic risk factors would lead to personalized treatment 
based on the genetic profile. With the developing of 
the polymorphism risk-scoring algorithm and gene 
sequencing, it is plausible for identification high-risk 
groups for prevention and healthcare, and early screening 
for potential biomarkers. And the complex molecular 
mechanisms for the NASH, related cirrhosis and HCC 
need more retrospective and prospective studies to 
underpin. Since there is a strong association between 
NASH and HCC, the direction of the study about NAFLD/
NASH treatment should focus on how to reduce the risk 
of cancer in these patients, provide long-term benefits 

and reduce socio-economic pressure. With the continued 
popularity of obesity, the prevalence of diabetes mellitus 
and metabolic syndrome is increasing, so it is imperative 
to screen the high risk groups of HCC in patients with 
metabolic syndrome, and to provide the appropriate 
monitoring strategies.
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