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ABSTRACT
Breast cancer (BC) has been genetically profiled through large-scale genome 

analyses. However, the role and clinical implications of genetic alterations in metastatic 
BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing 
(WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 
29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and 
assessed gene expression and performed pathway analysis from RNA-Seq. In this 
analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-
positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene 
(p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation 
was related to low expression of TP53 in contrast nonsynonymous mutation was related 
to high expression. The impact of TP53 mutation on clinical outcome varied with regard 
to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated 
TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 
(months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative 
BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not 
affect patient survival. In gene expression analysis, CALM1, a potential regulator of 
AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 
was associated with expression status and affect clinical outcome according to ER 
status in MBC. Although mutation of PIK3CA was not related to survival in this study, 
mutation of PIK3CA altered the expression of other genes and pathways including 
CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

INTRODUCTION

 Breast cancer (BC) is the most common malignancy 
in women worldwide [1]. Recent advances in therapeutic 
strategies have improved BC-specific mortality and 
morbidity, but still only one-quarter of metastatic BC 
patients survive until 5 years after BC diagnosis [2].

In the era of next-generation sequencing (NGS), 
numerous genetic alterations causing BC have been 
discovered. The Cancer Genome Atlas (TCGA) 
consortium performed comprehensive genetic analysis of 
BCs [3]. They showed that TP53, PIK3CA, and GATA3 
were the genes most commonly mutated, and that genetic 
alterations differed according to BC subtype (luminal 
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A, B, basal-like, or HER2-enriched). The International 
Cancer Genome Consortium (ICGC) reported that 93 
protein coding cancer genes carried driver mutations 
[4]. Similar to TCGA results, genetic alterations differed 
according to BC subtype; TP53, PTEN, and RB1 were the 
genes most frequently mutated in estrogen receptor (ER)-
negative BC, whereas PIK3CA, CCND1, and GATA3 were 
rarely mutated in ER-negative BC. 

 Many clinical trials based on these mutated genes 
have been proposed and are on-going [5]. PIK3CA is 
considered a targetable potential driver of BC. PI3Kα and 
PIK3δ inhibitors and AKT inhibitors are being used to treat 
ER-positive BC patients harboring PIK3CA mutations 
in clinical trials [6–8]. Recently, everolimus, an mTOR 
inhibitor, was approved for postmenopausal ER-positive 
metastatic BCs [9, 10]. An additional biomarker study 
showed that BC patients with mutated PIK3CA derived 
clinical benefit from everolimus; however, BC patients 
with wild-type PIK3CA also responded to everolimus [11]. 

Here, we identified gene alterations in MBC using 
whole-exome and whole-transcriptome sequencing. We 
evaluated mutation profiles and expression patterns and 
analyzed the relationship between genetic alterations 
and expression of specific genes and pathways. Because 
we performed our large-scale genetic studies using BC 
surgical specimens, our findings, in addition to describing 
genetic alterations in advanced BC, could help establish 
treatment strategies for refractory BC. We conclude by 
proposing an optimal treatment plan for MBC BCs. 

RESULTS

 Samples and clinical data

We enrolled 54 patients with metastatic BC. Of 
these 54 patients, RNA sequencing was performed in 37. 
RNA-Seq was not performed for 17 samples due to RNA 
extraction failure. The characteristics of the 37 patients 
are described in Table 1. The median age of enrolled 
patients was 45.1 years, and 35.1% patients had TNBC. 
Fourteen of 37 patients (37.8%) had basal-like subtype 
BC. Five patients were tested for the BRCA1/2 mutation, 
and a germline BRCA1 and/or BRCA2 mutation was 
detected in three patients. Visceral metastasis was found 
in 15 patients, eight patients had brain metastasis, and 
the others had liver metastasis. All specimens were from 
biopsy from metastatic BC not archival tissue. Most 
common biopsy site was breast main mass (32.4%). 
Patients with metastatic BC received more than three 
palliative treatments on average. Thirty-six of 37 patients 
had received anthracycline-containing cytotoxic 
chemotherapy, and 31 patients were treated with taxane 
chemotherapy. All ER-positive BCs were treated with 
tamoxifen or a non-steroidal aromatase inhibitor. Anti-
HER2 treatment was administered in all patients with 
HER2-positive BCs. 

 The time elapsed between diagnosis with metastatic 
breast cancer and RNA-Seq differed according to breast 
cancer subtype (Table 2). For ER-HER2+ BC, mean time 
to RNA-Seq was 29.3 months (range 5.5–69.7 months), 
whereas in ER-HER2- BC, the corresponding time was 4.3 
months (range 0.0–36.7 months).

Significantly mutated genes and mRNA 
expression in metastatic breast cancer 

 Overall, 34 tumor samples from 37 patients were 
subjected to whole-exome sequencing, resulting in 
identification of 3,278 somatic mutations comprising 
3,069 point mutations (single nucleotide variants; SNVs) 
and 209 insertion/deletions. Among the point mutations, 
44 were silent mutations, 2,830 were non-synonymous 
mutations, 184 were stop-gain, and 11 were stop-loss 
mutations. In addition, 136 frameshift deletions and 
73 insertions were detected.

 TP53 was the most frequently mutated gene 
in metastatic BC (64.7%, 14 SNVs, and 8 frameshift 
insertions and deletions (indels)), followed by MUC4 
(38.2%) and PIK3CA (29.4%). Frameshift mutations were 
most commonly observed in ZNF717 (26.5%) (Figure 1A 
and 1B). 

 Somatic mutations differed according to ER status. 
TP53 was more frequently mutated in ER-negative 
BCs than ER-positive BCs (p = 0.126) in contrast to 
PIK3CA (p = 0.019). TTN, TMPRESS13, and LRRIQ1 
were also more frequently mutated in ER-positive BCs, 
and ZNF717, RBNX, and FRG2C were more frequently 
mutated in ER-negative BCs, but there were no significant 
differences between the two groups (Figure 1C).

We additionally performed targeted deep sequencing 
of 29 metastatic BC samples to detect TP53 and PIK3CA 
mutations. Then, we reanalyzed 63 sequences. Of these 
63 BCs, 36 (57.1%) were ER-positive (Supplementary 
Table 3). In this analysis, TP53 mutation was more 
frequently detected in ER-negative BC (ER-positive vs. ER-
negative: 41.7% vs. 92.6% p < 0.001) and PIK3CA mutation 
was more common in ER-positive BC (ER-positive vs. ER-
negative: 47.2% vs. 18.5%, p = 0.018) (Figure 1D).

 Gene expression patterns also differed according to 
ER status. Among 22,072 genes, ERBB4, GATA3, FOXA1, 
and another 434 genes were more highly expressed in 
ER-positive BC than ER-negative BC (false discovery 
rate (FDR) p < 0.05 respectively). In contrast, KRT16, 
S100A2, RASAL1, and another 282 genes were more 
highly up-regulated in ER-negative BC than ER-positive 
BC (Supplementary Figure 2 and Supplementary Table 1).

The relationship between somatic mutations and 
gene expression 

Because DNA is ultimately transcribed to messenger 
RNA followed by protein translation, we analyzed the 
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Table 1: Clinicopathological characteristics of metastatic breast cancer (N = 37)
N = 37 (%)

Age (median) 45.1 ± 11.0
 Range 26.5–75.7
 < 40 years old 15 (40.5)
 ≥ 40 years old 22 (59.5)

Histology
 Invasive ductal carcinoma 34 (91.9)
 Other 3 (8.1)

Subtype

 ER+HER2− 12 (32.4)
 ER+HER2+ 5 (13.5)
 ER-HER2− 13 (35.1)
 ER-HER2+ 7 (18.9)

Intrinsic subtype
 Luminal A 7 (18.9)
 Luminal B 6 (16.2)
 Basal-like 14 (37.8)
 Normal-like 2 (5.4)
 HER2-enriched 8 (21.6)

BRCA1/2
 Wild-type 2 (5.4)
 Mutated 3 (8.1)
 Not tested 32 (86.5)

Cancer status
 Recurrent 27 (73.0)
 Initially metastatic 10 (27.0)

Visceral metastasis
 Yes 15 (40.5)
 Liver metastasis 7 (18.9)
 Brain metastasis 8 (21.6)

 No 22 (59.5)
Biopsy site

 Breast 12 (32.4)
 Lymph node 7 (18.9)
 Pleura 7 (18.9)
 Liver 3 (8.1)
 Lung 2 (5.4)
 Other 6 (16.2)

Chemotherapy agents (average 3.24)
  1 8 (21.6)
  2 11 (29.7)
  3 4 (10.8)
≥ 4 14 (37.8)
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Chemotherapeutic regimen
Anthracycline 36 (97.3)
Taxane 31 (83.8)
Both anthracycline and taxane 27 (73.0)

Hormone therapy (N = 17)
 Yes 17 (100.0)
 No 0 (0.0)

HER2-targeted therapy (N = 12)
 Yes 12 (100.0)
 No 0 (0.0)

Figure 1: (A) Frequency of single nucleotide variants (SNVs) in metastatic breast cancer (BC) (N = 34). (B) Frequency of frame shift 
insertion/deletions in metastatic BC (N = 34). (C) Somatic mutation profile according to ER status in metastatic BC (N = 34). (D) TP53 
and PIK3CA mutation profile according to ER status in metastatic BC (N = 63). 

Table 2: Previous chemotherapy and time to biopsy according to subtype
Subtype No. of previous chemotherapy agents Time to biopsy after metastasis

 ER+HER2− 3.5 (range 1–6) 13.6 months (range 0.1–126.0)
 ER+HER2+ 4.4 (range 1–11) 18.8 months (range 2.4–33.2)
 ER-HER2− 2.5 (range 1–6) 4.3 months (range 0.0–36.7)
 ER-HER2+ 3.4 (range 1–9) 29.3 months (range 5.5–69.7)
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association between somatic mutation and gene expression 
using Fisher’s exact test and the log-rank test. We focused 
on the two most commonly mutated genes, TP53 and 
PIK3CA. 

Mutation of TP53 affected the level of gene 
expression (Figure 2A). Frameshift indels and stop-
gain mutations of TP53 decreased gene expression 
compared to nonsynonymous mutations. In addition, high 
expression of CHEK2 and SNORA61 and low expression 
of LOC100499489 were detected in TP53-mutated 
BC (Figure 2B and Supplementary Figure 3). SNVs of 
TP53 (only nonsynonymous mutations, not frameshift 
indels or splicing variants) were associated with low 
expression of APBB2 and PPP1R3C and high expression 
of TNFRSF13C, but there were no statistically significant 
differences (Figure 2C). 

PIK3CA mutations were all nonsynonymous 
mutations. Nine of 10 mutation occurred at known hotspots: 
E545, H1047, and G1049. There was no relationship 
between mutation of PIK3CA and gene expression. We 
also analyzed PIK3CB, PIK3CD, PIK3CG, and PTEN, but 
did not find a correlation between genetic mutation of these 
genes and gene expression (Figure 3A). In one BC case with 
PIK3CA mutation, high expression of CALM1, SLC4A8, 
and NRK was observed (Figure 3B and Supplementary 
Figure 4). In pathway analysis, low scores for glyoxylate 
and dicarboxylate metabolism, drug metabolism, and RNA 
polymerase were associated with mutation of PIK3CA 
(Figure 3C and Supplementary Table 2). 

The relationship between genetic alterations and 
clinical outcomes 

For analyzing the effect of genetic alterations to 
clinical outcome, we divided metastatic BC into two 
subtypes, ER-positive and ER-negative. According to 
subtypes, we analyzed the relationship between genetic 
alterations and overall survival. 

TP53 mutation was related to shorter OS in ER-
positive BC in contrast to ER- negative BC. In ER-
positive BC, the median OS of TP53-mutated BC was 
32.6 months compared to 88.5 months in wild type TP53 
(median OS (wild type vs. mutated): 88.5 ± 54.4 vs.  
32.6 ± 10.7 (months), p = 0.002). In contrast, TP53 
mutation in ER-negative BC had longer OS compared to 
wild type TP53 (median OS (wild type vs. mutated): 0.1 
vs. 32.6 ± 8.2 (months), p = 0.026) (Figure 4A and 4B). 
However, there were no significant differences in OS 
between those with SNVs and frameshift indel mutations.

PIK3CA mutation did not affect OS in metastatic 
BC regardless of ER status (median OS (wild-type vs. 
mutated): 34.9 ± 11.0 vs. 57.9 ± 12.1 (months), p = 0.269 
in ER+ BC and median OS: 27.2 ± 5.9 vs. 38.7 ± 14.0 
(months), p = 0.558 in ER- BC) (Figure 4C and 4D).

DISCUSSION

We explored genome-wide genetic alterations 
in metastatic BC in this study and confirmed that TP53 
was the most frequently mutated gene in ER-negative 
metastatic BCs, while PIK3CA was the most frequently 
mutated gene in ER-positive metastatic BC. 

TP53 mutation, the most common mutation in triple-
negative breast cancer [3, 4], was also frequently detected 
in the metastatic setting. SNVs of TP53 were commonly 
observed in TNBC and increased TP53 mRNA expression. 
In contrast, TP53 frameshift indels were more frequently 
detected in HER2-positive BCs and decreased mRNA 
expression. Additional gene expression and pathway 
analysis revealed that SNVs and other types of TP53 
mutations were diversely related to the expression patterns 
of other genes (Figure 2 and Supplementary Figure 3). 
Accordingly, TP53 mutation type affects mutational 
profile. In a previous study, we reported a relationship 
between TP53 mutation profile and expression in TNBCs 
[12]. Although statistical significance was not reached 
in the current study because of our small sample size, 
our results suggest that the TP53 mutation profile might 
impact all subtypes of BCs, as well as TNBCs. 

We observed CHEK2 overexpression in TP53-
mutated BCs. CHEK2, an inducer of the TP53 gene in 
response to DNA damage, acts as a tumor suppressor. TP53 
mutation causes p53 dysfunction and DNA repair system 
malfunction. Therefore, CHEK2 overexpression may 
induce CHEK2-mediated DNA repair system activation 
as a compensatory mechanism in TP53-mutated BC.  
TNFRSF13C, also known as B-cell activating factor 
receptor (BAFFR), was especially activated in metastatic 
BC with TP53 SNVs. TNFRSF13C mutations have been 
studied in the context of lymphoid malignancy, with higher 
expression predicting better prognosis. Further studies to 
clarify the relationship between TP53 and TNFRSF13C 
are warranted.

SNVs were detected only in four loci in PIK3CA: 
three hotspots and one rare locus. Similar to previous 
comprehensive genetic studies of BCs, PIK3CA mutations 
were detected in five ER-positive cases, three ER-positive 
and HER2-positive cases, one HER2-positive case, 
and one TNBC case. No correlation between mutation 
and mRNA expression was observed for PIK3CA or 
PTEN. Additional analysis showed that calmodulin 
1(CALM1) was highly expressed in PIK3CA-mutated 
BCs. Calmodulin, a regulator of calcium metabolism, is 
thought to be a regulator of AKT activity that indicates 
poor prognosis [13]. 

There are several current clinical trials targeting 
PIK3CA. BCs with PIK3CA mutation appear to have a 
poorer prognosis than wild-type BCs, and PI3K inhibitors 
appear to have a clinical benefit regardless of PIK3CA 
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mutation status [6]. We propose that mutation of PIK3CA 
alters the activity of other genes involved in tumor 
aggressiveness, and that inhibiting PIK3CA modulates 
these altered pathways. This would explain why treatment 
with PIK3CA inhibitors improves the outcomes of BC 
patients with PIK3CA mutations as well as those patients 
without PIK3CA mutations. Three pathways related to 
PIK3CA might be targets of PIK3CA inhibitors; further 
validation studies are warranted. 

We reviewed the TCGA dataset and found 20 
metastatic BCs in the entire TCGA breast cancer cohort 
(n = 1046). The most common mutated gene in TCGA 

cohort was PIK3CA followed by TP53. Up to 30% of 
ER-positive BC had PIK3CA mutation (271/537, 53.5%) 
and 16.8% did TP53 mutation. Of ER-negative BC, TP53 
was the most commonly mutated gene (154/238, 63.0%). 
PIK3CA was detected in 12.6% of ER-negative BC 
(30/238) (Supplementary Figure 5A). Among metastatic 
BCs in TCGA cohort, 3 of 4 ER-negative BC had TP53 
mutation. Five of 16 ER-positive BC had PIK3CA 
mutation (31.3%) and 4 had TP53 mutation (25.0%)
(Supplementary 5B). Metastatic BCs in our cohorts had 
a similar mutation profile to the profile observed in the 
TCGA cohort. Compared with early BC, metastatic BC 

Figure 2: (A) TP53 expression according to TP53 mutation status. (B) Gene expression according to TP53 mutation status (TOP3 genes: 
CHEK2, SNORA61 and LOC100499489). (C) APBB2, PPP1R, and TNFRSF13C expression according to TP53 single nucleotide variants.
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more frequently had TP53 mutations in ER-positive BC. In 
ER-negative BC, the frequency of TP53 mutation did not 
vary between early and metastatic BC. PIK3CA mutation 
was detected at similar rates in early and metastatic BC. 
Considering TCGA cohort consisting of mainly early BCs, 
our study would give the novel genomic information of 
metastatic BCs to solve medical unmet need. 

In conclusion, mutation of TP53, the most frequent 
genetic alteration in ER-negative BC, affected gene 
expression levels. Moreover, the type of TP53 mutation 
had a differential influence on clinical outcomes according 
to ER status. In contrast, there was no association between 
PIK3CA mutation and expression, or of other related 

genes, namely PIK3CB, PIK3CD, PIK3CG, and PTEN. 
Mutation of PIK3CA might alter calmodulin expression 
and other genetic pathways. Further functional validation 
studies are warranted.

 MATERIALS AND METHODS

 Patients 

 This study involved prospective explorative analysis 
of patients with metastatic BC at Samsung Medical 
Center as an establishing genomic platform for precision 
medicine in the era of NGS. Women diagnosed with 

Figure 3: (A) Expression of PIK3CA pathway-associated genes according to PIK3CA mutation status. (B) Gene expression according 
to PIK3CA mutation status (TOP3 genes: CHEK2, SNORA61 and LOC100499489). (C) Pathway gene expression according to PIK3CA 
mutation status. 
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stage IV BC or recurrent BC by diagnostic examination 
and staging work-up (breast magnetic resonance imaging 
[MRI], chest computed tomography [CT] scan, abdominal 
CT scan, bone scan, and/or positron emission tomography 
[PET]-CT scans if indicated) were included.

All patients provided written informed consent, and 
study approval was obtained from the Institutional Review 
Board of Samsung Medical Center, Seoul, Korea (IRB No: 
SMC 2012-08-065).

Immunohistochemical (IHC) staining

Two experienced pathologists reviewed all specimens 
to determine IHC staining for ER, progesterone receptor 
(PgR), and HER2. ER and PgR positivity were defined 
using Allred scores ranging from 3 to 8 based on IHC 
using antibodies to ER (Immunotech, Marseille, France) 
and PgR (Novocastra Laboratories Ltd., Newcastle upon 
Tyne, UK). HER2 status was evaluated using a specific 
antibody (Dako, Glostrop, Denmark) and/or silver in situ 
hybridization (SISH). Grades 0 and 1 for HER2, as assessed 

by IHC, were defined as a negative result, and grade 3 was 
defined as a positive result. Amplification of HER2 rated 
as 2+ by IHC was confirmed by SISH. Ki67 IHC analyses 
were performed independently using semi-quantitative and 
quantitative methods (Dako). Triple negativity was defined 
as a lack of expression of ER, PgR, and HER2.

DNA and RNA extraction 

 Unstained sections (4 mm) of tumors consisting of 
over 75% malignant cells were dissected under microscopy 
by comparison with an H&E-stained slide, and genomic 
DNA was extracted using a Qiagen DNA FFPE Tissue kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. After extraction, DNA concentration and 
260/280- and 260/230-nm ratios were measured by 
spectrophotometry (ND1000, NanoDrop Technologies, 
ThermoFisher Scientific, MA, USA). Each sample was then 
quantified using a Qubit fluorometer (Life Technologies, 
Carlsbad, CA, USA). Libraries were prepared for samples 
with a genomic DNA total yield > 10 ng.

Figure 4: (A) Overall survival in ER-positive BC according to TP53 mutation. (B) Overall survival in ER-negative BC according to TP53 
mutation. (C) Overall survival in ER-positive BC according to PIK3CA mutation. (D) Overall survival in ER-negative BC according to 
PIK3CA mutation. 
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Areas containing representative invasive breast 
carcinoma were outlined on the slide. Total RNA was 
then extracted using a High Pure RNA Paraffin kit 
(Roche Diagnostic, Mannheim, Germany), and the RNA 
concentration and 260/280- and 260/230-nm ratios were 
measured using a NanoDrop ND1000 spectrophotometer 
(NanoDrop Technologies). Samples were concentrated 
by a SpeedVacTM concentrator (Thermo Scientific™, 
Waltham, MA, USA). After concentration, these with 
less than 1 g/L of total were excluded from downstream 
analysis.

Whole-exome sequencing (Table 3)

Poor quality reads were filtered out and aligned to 
the human reference genome (hg19) using the Burrows-
Wheeler Alignment tool (BWA, version 0.7.5a) [14]. To 
convert Sequence Alignment and Mapping (SAM) files 
into Binary Alignment and Mapping (BAM) files, we 
used SAMtools (version 0.1.19) [15]. Polymerase chain 
reaction (PCR) duplicates were removed from the BAM 
files by Picard (version 1.93, http://picard.sourceforge.
net/) and SAMtools before variant calling. The Genome 
Analysis Toolkit (GATK, version 2.4.7) [16] was used to 
recalibrate base quality and optimize local realignment. 
Single nucleotide variants (SNVs) and indels were 
called using MuTect (version 1.1.4) [17] and Varscan2 
(version 2.3.5) [18] with default parameter settings. 
Copy number variations were detected with CONTRA 
(version 2.0.4) [19]. Variants were annotated using 
ANNOVAR, with gene, chromosomal information, exonic 
function (synonymous, nonsynonymous, stop gain, non-
frameshift, or frameshift indel), amino acid changes, and 
allele frequencies extracted from public databases such as 
the 1000 Genomes Project (2012 February version) and 
dbSNP (version 132). 

Variants located in exonic regions with sufficient 
coverage (minimum depth of coverage ≥ 8) and variant allele 
frequency (VAF ≥ 0.1) were chosen for further statistical 
analyses. Synonymous variants were filtered out. Read 
alignments were manually investigated using the Integrative 
Genomic Viewer (http://www.broadinstitute.org/igv/).

Fisher’s exact test was used to analyze mutations 
and polymorphic variants separately to discover 
variants enriched in patients with a favorable outcome. 
P-values < 0.05 were considered significantly different. R 
version 3.0.2 (http://www.R-project.org/) and R package 
(ggplot2) were used for all statistical analyses and 
generation of heat maps and plots.

RNA-Seq analysis and normalization (Table 4)

After trimming poor-quality bases from FASTQ 
files obtained from whole-transcriptome sequencing, 
we aligned the reads to the human reference genome 
hg19 with Tophat (version 2.0.6) [20] and performed 

reference-guided assembly of transcripts with Cufflinks 
(version 2.1.1) [21]. Alignment quality was verified with 
SAMtools (version 0.1.19). Transcript abundance was 
estimated using a count-based method with htseq-count. 
Gene counts were used as the input for TMM (Trimmed 
Mean of M values) normalization by the R package edgeR 
[22], and normalized counts were transformed to log2-
counts per million (logCPM) by applying voom from the 
R package limma [23] to account for higher variability at 
low expression levels. Genes with zero read counts across 
all samples were removed for a more powerful statistical 
test. Pathway analysis was performed using GSVA [24] 
(Supplementary Figure 1).

Targeted deep sequencing of TP53 and PIK3CA 

We used CancerScanTM to detect TP53 and 
PIK3CA mutation. After enriched exome libraries were 
multiplexed, the libraries were sequenced on a HiSeq 2500 
sequencing platform (Illumina). Briefly, a paired-end DNA 
sequencing library was prepared through gDNA shearing, 
end-repair, A-tailing, paired-end adapter ligation, and 
amplification. After hybridization of the library with bait 
sequences for 27 hours, the captured library was purified 
and amplified with an index barcode tag, and the library 
quality and quantity were assessed. Sequencing of the 
exome library was performed using the 100-bp paired-
end mode of the TruSeq Rapid PE ClusterKit and TruSeq 
Rapid SBS Kit (Illumina).

Intrinsic subtyping

We performed intrinsic subtyping with log-scaled 
normalized expression values using the 50-gene Prediction 
Analysis of Microarray (PAM50) subtype predictor 
as described by Parker et al. [25]. The PAM50 subtype 
predictor classified tumors into the following groups: 
luminal A, luminal B, HER2-enriched, basal-like, and 
normal-like (Supplementary Figure 1). 

Survival analysis

We evaluated the association between gene 
expression and overall survival (OS) using the R package 
RcmdrPlugin.survival. OS was defined as the time elapsed 
between the date of stage IV breast cancer diagnosis and 
the date of death. For each gene, patients were grouped 
based on the normalized expression value of the gene, 
with the top 50% and the bottom 50% representing high 
and low expression groups, respectively. Survival curves 
for the two groups were estimated with the Kaplan-Meier 
method, and the log-rank test was used to compare overall 
survival curves between the two groups (p < 0.05). After 
pathway analysis with GSVA, Fisher’s exact test was 
used to identify pathways that were enriched with genes 
significantly associated with overall survival (p < 0.05).
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