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ABSTRACT
Although papillary renal cell carcinoma (PRCC) accounts for 10%–15% of renal 

cell carcinoma (RCC), no predictive molecular biomarker is currently applicable to 
guiding disease stage of PRCC patients. The mRNASeq data of PRCC and adjacent 
normal tissue in The Cancer Genome Atlas was analyzed to identify 1148 differentially 
expressed genes, on which weighted gene co-expression network analysis was 
performed. Then 11 co-expressed gene modules were identified. The highest 
association was found between blue module and pathological stage (r = 0.45) by 
Pearson’s correlation analysis. Functional enrichment analysis revealed that biological 
processes of blue module focused on nuclear division, cell cycle phase, and spindle (all 
P < 1e-10). All 40 hub genes in blue module can distinguish localized (pathological 
stage I, II) from non-localized (pathological stage III, IV) PRCC (P < 0.01). A good 
molecular biomarker for pathological stage of RCC must be a prognostic gene in 
clinical practice. Survival analysis was performed to reversely validate if hub genes 
were associated with pathological stage. Survival analysis unveiled that all hub genes 
were associated with patient prognosis (P < 0.01).The validation cohort GSE2748 
verified that 30 hub genes can differentiate localized from non-localized PRCC  
(P < 0.01), and 18 hub genes are prognosis-associated (P < 0.01). 

ROC curve indicated that the 17 hub genes exhibited excellent diagnostic efficiency 
for localized and non-localized PRCC (AUC > 0.7). These hub genes may serve as a 
biomarker and help to distinguish different pathological stages for PRCC patients.

INTRODUCTION

Kidney malignant tumor is a heterogeneous disease 
of which epithelial renal cell carcinoma (RCC) constitutes 
the vast majority [1]. Based on morphological features, 
RCC can be divided into multiple histological subtypes, 
encompassing clear cell, papillary, chromophobe, 
collecting duct, and unclassified subtypes [2]. Up to one-
third of patients with RCC already suffer with a distant 

metastasis at the time of diagnosis [3]. Papillary RCC 
(PRCC), taking up about 10%–15% of RCC, is the second 
most common subtype. At present, no effective therapeutic 
approach is available for patients with advanced PRCC 
[4]. Many biomarkers for renal clear cell carcinoma 
have been discovered, including VHL, VEGF, CAIX 
and HIF1a/2a mutations, some of which could predict 
therapeutic effect and clinical prognosis [5]. However, 
PRCC’s molecular biomarkers for predicting curative 
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effect and prognosis have rarely been reported [6]. Thus, 
it is necessary to identify novel molecular biomarkers that 
can predict disease stage and clinical outcome of PRCC 
patients, which could help understand its pathogenesis and 
provide personalized treatment.

Rapid technological breakthroughs of genome-
wide sequencing have shed new light on the research of 
clinical issues and related pathological mechanisms in 
various cancers [7]. The Cancer Genome Atlas (TCGA), 
a large integrated collection of clinical information and 
gene sequencing data, allow for systematic analysis for 
underlying molecular mechanisms of various clinical 
features associated with cancers, e.g. pathological stage, 
histological type, tumor grade, diagnosis and prognosis, 
contributing to improvements in diagnostic methods and 
ultimately ameliorating the survival prognosis of cancer 
patients [8]. Weighted gene co-expression network analysis 
(WGCNA) can construct free-scale gene co-expression 
networks to explore the relationships between different 
gene sets or between gene sets and clinical features [9]. 
WGCNA has been widely applied to finding the hub 
genes associated with clinical feature in different cancer 
types. For example, PS15A, PTGDS, CD53 and MSI2 
have been identified as potential therapeutic targets or 
diagnostic biomarkers for uveal melanoma [10]. COL5A2, 
HOXB1, CENP-E, MYCN and BCL-2 were predicted to 
be associated with endometrial cancer progression via 
Hedgehog signaling and other cancer-related pathways 
[11]. Additionally, SRASSF2 and CDCA7 were identified 
as potential biomarkers for retinoblastoma [12].

In this study, WGCNA and other analysis methods 
are adopted to jointly analyze clinical information and 
mRNASeq data of PRCC patient samples provided by 
TCGA data set to identify key genes associated with 
clinical features. These key genes may have important 
clinical implications and serve as diagnostic and 
prognostic biomarkers or therapeutic targets.

RESULTS

Preparation of clinical and genetic data

A workflow of this study is shown in Figure 1. In 
the TCGA data set, mRNA sequencing data contained 32 
normal renal samples and 290 PRCC samples, level-4 
clinical data comprised 291 PRCC patients samples. 
Standardized level-3 RNAseq data was utilized for 
prognostic analysis. After eliminating cases without 
complete follow-up information, 289 patients remained 
available for prognostic analysis. Raw level-3 RNAseq 
data was utilized for differential expression analysis and 
WGCNA. After excluding patients without complete 
clinical information or explicit T stage, 106 patients were 
included in the WGCNA analysis. In computer language, 
clinical data, originally described as character, was 
encoded to numeric form for WGCNA analysis. Original 

and numeric clinical information, as well as summarized 
data of the PRCC patients in TCGA were displayed 
in Supplementary Table 1. In the validation cohort 
GSE2748, there were 34 patients with pathological stage 
information and 29 patients with prognostic data. Clinical 
features of the PRCC patients in GSE2748 were shown in 
Supplementary Table 2.

Screening for differentially expressed genes 
(DEGs) 

Raw level-3 RNAseq data of 19,405 mRNAs of 290 
PRCC tissue and 32 adjacent non-tumor tissue samples 
was subjected to DEG analysis. DEGs were screened by 
DESeq2 [13] and limma [14] algorithms. 2117 DEGs 
were identified by DESeq2, among which 493 were up-
regulated in cancer samples and 1624 down-regulated. 
1322 DEGs were identified by limma, among which 
471 were up-regulated in cancer samples and 851 down-
regulated. Then a total of 1148 overlapping DEGs were 
obtained by both algorithms, among which 343 were up-
regulated and 805 down-regulated, accounting for 29.94% 
and 70.06% of the total overlapping differential genes, 
respectively (Figure 2). 

Co-expression network construction and module 
preservation analysis

WGCNA was performed on 1148 DEGs of 106 
samples. After discarding four outlier samples, the 
connectivity between genes in the gene network met a 
scale-free network distribution when the soft threshold 
power beta was set to 4 (Supplementary Figure 1). Then 
11 co-expressed modules, ranged in size from 46 to 206 
genes (assigning each module a color for reference), were 
identified. While the “grey” module was reserved for 
genes identified as not co-expressed (Figure 3). The genes 
in each module is listed in Supplementary Table 3. 

By comparing the TCGA data set with the test data 
set GSE2748, the summary preservation statistics [15], a 
statistics that determined whether a reference network can 
be found in another test network, were visualized. blue and 
turquoise modules were found to be most stable. Whereas 
the rest modules were not stable enough with their 
Zsummary statistics below 10. The median Rank statistics 
for blue and turquoise modules presented the minimum, 
suggesting that their preservation tended to be best among 
all modules (Figure 4).

Finding module of interest and functional 
annotation

It is of great biological significance to identify 
modules most significantly associated with clinical 
features. The highest association in the Module-feature 
relationship was found between blue module and 
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Figure 1: Flow chart of data preparation, processing, analysis and validation in this study.

Figure 2: DEGs were screened with limma and DESeq2 algorithms. (A) number of up-regulated DEGs identified with limma 
(brown circle) and DESeq2 (green circle), and overlapping DEGs (auburn). (B) number of down-regulated DEGs identified with limma 
(orange circle) and DESeq2 (blue circle), and overlapping DEGs (light-brown). 
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pathological stage (r = 0.45, P = 2 × 10–6; Figure 5), which 
were selected as module of interest and clinical feature to 
be studied in subsequent analyses. The module of interest 
was also associated with pathology T stage, clinical stage 
and clinical T stage. The second-highest association in 
the Module-Trait relationship was found between green 
module and tumor type (r = 0.42, P = 1 × 10–5), but the 
module was not further analyzed because the preservation 
statistics indicated that it was not stable enough. 

In order to explore biological relevance of blue 
module, 154 genes in blue module were mapped into the 
DAVID database [16] and subjected to Gene Ontology 
(GO) functional and KEGG pathway enrichment analyses. 
Biological processes of blue module were found to focus 
on nuclear division (P = 3.72×10–13), cell cycle phase  

(P = 4.59 × 10–12), mitosis (P = 3.72 × 10–13), and the 
spindle (P = 7.92 × 10–11). However, in KEGG pathway 
analysis, cell cycle was identified as only significant 
pathway. (P = 3.53 × 10–7; Figure 6). 

Identifying hub genes and correlation analysis

Forty hub genes, which exhibited high intramodular 
connectivity in the module of interest and high gene 
significance for pathological stage, were identified in the 
blue module.

Significant difference (P < 0.01) of each hub gene 
was found across different pathological stages with one-
way ANOVA. When an independent t-test was utilized , 
difference for each hub gene between pathological stage 

Figure 3: Clustering dendrograms of genes. Gene clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-
based dissimilarity. The colored row below the dendrogram indicates module membership identified by the dynamic tree cut method, 
together with assigned merged module colors and the original module colors.
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Figure 5: Module-feature associations. Each row corresponds to a module Eigengene and each column to a clinical feature. Each cell 
contains the corresponding correlation in the first line and the P-value in the second line. The table is color-coded by correlation according 
to the color legend.

Figure 4: The medianRank and Zsummary statistics of the module preservation of the DEG modules. In the preservation 
medianRank graph on the left, the medianRank of the modules close to zero indicates a high degree of module preservation. In the 
preservation Zsummary graph on the right, the dashed blue and green lines indicate the thresholds Z = 2 and Z = 10, respectively. These 
horizontal lines indicate the Zsummary thresholds for strong evidence of conservation (above 10) and for low to moderate evidence of 
conservation (above 2).
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I and II, or between stage III and IV was not always 
significant, but difference for each hub gene between 
localized (pathological stage I, II) and non-localized 
PRCC (pathological stage III, IV) was found to be 
persistently statistically significant (P < 0.01). ANOVA 
and t-test analysis on hub genes between different 
pathology T stages got similar results, where significant 
differences were found between pathology T1/T2 and T3/
T4 group. 

The relationship between all hub genes and 
pathological stage was shown in Supplementary Figure 2, 
and the relationship between all hub genes and pathology 
T stage in Supplementary Figure 3. The correlation 
between hub genes and pathological stage was verified 
by the validation set GSE2748. Significant differences 

were found for 30 hub genes between localized and non-
localized PRCC, shown in Supplementary Figure 4.

Survival analysis on hub genes 

The mRNASeq data and follow-up information of 
289 PRCC patients in TCGA were subjected to  survival 
analysis [17]. We found that all hub genes were associated 
with patient prognosis (P < 0.01). When the results 
of survival analysis was verified by the validation set 
GSE2748, 18 hub genes were still prognosis-associated  
(P < 0.05). Positive results of the survival analysis were 
shown in Supplementary Figure 5 for 40 hub genes in the 
blue module and in Supplementary Figure 6 for 18 hub 
genes in GSE2748.

Figure 6: GO functional and KEGG pathway enrichment analyses for genes in the object module. The x-axis shows the 
number of genes and the y-axis shows the GO and KEGG pathway terms. The -log10 (P-value) of each term is colored according to the 
legend.
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Efficacy evaluation for hub genes 

ROC curve analysis was implemented to evaluate 
the diagnostic efficiency of hub genes to distinguish 
between localized and non-localized PRCC [18]. AUC 
values for 40 hub genes were greater than 0.7 in TCGA 
data set. In the validation set GSE2748, only 17 hub genes 
are prognosis-associated and capable of discriminating 
localized and non-localized PRCC. We calculated the 
AUC value and plotted ROC curve for the 17 hub genes. 
Each AUV value of the 17 hub genes was bigger than 
0.7. The ROC curves for 40 hub genes were shown 
in Supplementary Figure 7 and 17 hub genes shown in 
Supplementary Figure 8. 

DISCUSSION

In the present study, we identified 17 candidate 
biomarkers for PRCC by applying WGCNA, a systems 
biology method, and other analysis methods on mRNASeq 
data and clinical information of PRCC patients in TCGA 
for the first time. We found that the 17 biomarkers can 
distinguish between localized (pathological stage I, II) 
and non-localized PRCC (pathological stage III, IV), 
which was verified by a microarray-based validation 
cohort GSE2748. The findings may contribute to the 
improvement of therapeutic decision-making, risk 
stratification and prognosis prediction for PRCC patients.

TCGA provides both clinical information and gene 
sequencing data from a large number of patient samples 
in many cancer types. Genetic data, coupled with clinical 
information, is an advantage when compared with other 
databases such as Oncomine, SEER, or GEO data sets. 
Numerous studies utilized the data of RCC in TCGA. But 
most of them focused on renal clear cell carcinoma, only 
four on PRCC. Two publications concentrating on the 
histological subtype of PRCC revealed that type I and type 
II PRCC exhibited difference in clinical and biological 
characteristics, and that type II PRCC consisted of at 
least three subtypes based on molecular and phenotypic 
features [19, 20]; One study found three specific miRNAs 
associated with the progression and aggressiveness of 
PRCC [21]; The fourth study proposed an immunoscoring 
approach based on RNASeq data of PRCC [22]. The four 
studies didn’t fully exploit clinical information of PRCC 
patients in TCGA data set, or didn’t adopted coexpression 
network analysis to widely screen biomarkers associated 
with clinical features.

WGCNA provides a global interpretation of 
gene expression information by constructing gene 
co-expression networks on the basis of similarities 
of expression profiles among samples. Many articles 
related to WGCNA have been published on prestigious 
journals in the field of biological information and systems 
biology [23–25]. WGCNA algorithm has been applied to 
identifying related gene, biological pathway and tumor 

therapeutic target for complex diseases, such as familial 
combined hyperlipidemia [26], Alzheimer’s disease [27], 
and osteoporosis [28]. Considerable amounts of tumor 
and control samples with genetic data and corresponding 
clinical information in TCGA offer promising 
opportunities to employ WGCNA for cancer research. 
However, few studies have mined the TCGA database 
with this method. For example, data on four different 
cancers, ovarian, breast, lung and skin, was processed with 
WGCNA to compare patterns of co-expressed genes in 
tumors grouped according to their TP53 missense or null 
mutation status. Examining mutation-type-related changes 
in correlated sets of genes might provide new insights into 
tumor biology [29]. To our knowledge, mining PRCC 
data in TCGA to explore the correlation between gene 
expression profiles and clinical features has not been 
previously reported.

The purpose of our study was to mine mRNASeq 
data and clinical information of PRCC patients in TCGA 
with WGCNA to find out biomarkers associated with 
clinical features. In cancer research, candidate biomarkers 
should correctly distinguish cancerous from normal 
tissues. Differentially expressed genes were obtained 
when comparing PRCC samples with normal renal tissue 
samples, on which WGCNA was performed. Then 11 
co-expression modules were identified via the dynamic 
tree cut method. By means of correlating gene modules 
with clinical features, highest positive correlation was 
found between blue module and pathological stage. 
The summary preservation statistics approved that 
blue module was one of the most stable modules. After 
the previous analysis, blue module was considered as 
a gene set with clinical significance. A range of genes 
with the highest connectivity in module was defined as 
hub genes that largely determined characteristics of the 
module. Exploring the relationship between blue module 
and pathological stage could be simplified as to find out 
the connection between hub genes in blue module and 
pathological stage, so as to seek genes with important 
biological significance. Forty hub genes were screened 
out in blue module.

Enrichment analyses for blue module indicated 
that biological processes of blue module focused on 
nuclear division, cell cycle phase, mitosis, spindle, 
etc. Previous studies have unveiled that hub genes of 
the blue module played vital role in the formation of 
other cancers. BUB1 has been reported to exert a direct 
effect on the suppression of p53-mediated cell death via 
physical interaction with p53 at kinetochores in response 
to mitotic spindle damage [30]. Overexpression of BUB1 
was linked with poor outcomes in breast cancer patients 
[31]. Microtubule-associated protein TPX 2, which could 
bind to tubulin and induce microtubule polymerization, 
was crucial for mitotic spindle formation [32]. Aberrant 
expression of TPX2 may be essential in both malignant 
transformation of respiratory epithelium and progression 
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of squamous cell lung cancer [33]. No reports concerning 
the relationship between these hub genes and pathological 
stage of PRCC have been published. However, some of 
them exhibited a close relationship with disease stage of 
other cancers in previous studies. For example, BUB1 
mRNA was significantly co-expressed with AURKB 
mRNA in advanced-stage ovarian serous carcinoma [34]. 
Another study found that the circulating CCNB2 mRNA 
level in serum was significantly correlated with cancer 
stage and metastasis status [35].

By means of one-way ANOVA and an independent 
sample t test, the mRNASeq expression of all hub genes 
can effectively distinguish localized PRCC (pathological 
stage I or II) from non-localized PRCC (pathological stage 
III or IV), also can successfully recognize the pT1/pT2 
group from the pT3/pT4 group. Hub genes distinguish 
different pathological stages in PRCC possibly because the 
pathology T stage greatly affects the pathological stage. 
The data in the validation set GSE2748 confirmed that 
30 hub genes could make a distinction between localized 
and non-localized PRCC. These hub genes might be good 
biomarkers for distinguishing between localized and non-
localized PRCC.

The pathological stage of RCC is the most effective 
prognostic factor [36]. The five-year survival rate of non-
localized RCC is significantly lower than that of localized 
RCC [36]. Patients with higher pathological stages tend 
to have worse prognosis. Theoretically, genes related to 
pathological stage are supposed to be associated with 
prognosis. Conversely, if these genes are not related to 
prognosis, they should not belong to the genes associated 
with pathological stage. Survival analysis was performed 
to reversely validate if hub genes were associated with 
pathological stage. Survival analysis demonstrated that all 
40 hub genes were significantly associated with prognosis 
(P < 0.01). But only 18 hub genes were prognosis-
related genes in the validation cohort GSE2748. By 
seeking overlapped genes, 17 hub genes were correlated 
with pathological stage and prognosis at the same time, 
no matter in the TCGA data set or in the validation set 
GSE2748. Additionally, ROC curve indicated that the 17 
hub genes exhibited excellent diagnostic efficiency for 
localized and non-localized PRCC (AUC > 0.7). To the 
best of our knowledge , this is the first time to identify 
17 hub genes as biomarkers capable of distinguishing 
localized from non-localized PRCC.

Some limitations of this study should be mentioned. 
The most vital genes out of 17 hub genes can’t been filtered 
out due to the restrictions of the bioinformatics methods. A 
large number of clinical samples are required to validate 
our findings and elucidate the underlying mechanisms of 
how these hub genes impact on pathological stage. 

In summary, WGCNA and other method are adopted 
to analyze RNAseq data and clinical information of 
PRCC patient in TCGA, a set of 17 biomarkers capable 
of distinguishing localized from non-localized PRCC are 

identified. These results are of great clinical significance 
and will contribute to personalized therapy.

MATERIALS AND METHODS

Collection of clinical and genetic data

RNA sequencing data sets and clinical information 
of kidney PRCC patients were downloaded from the 
TCGA repository website (http://firebrowse.org/). Level-3 
RNAseq data was derived from Illumina HiSeq RNAseq 
v2 RSEM genes. Microarray-based normalized mRNA 
data sets of PRCC patients in GSE2748, which served as 
a independent validation cohort, were obtained from the 
Gene Expression Omnibus. Clinical information of PRCC 
patients in GSE2748 were extracted from a published 
literature [38]. Microarray expression data of GSE2748 
was annotated according to the Affymetrix Human 
Genome U133 Plus 2.0 Array platform. Data processing 
in this study met the human subject protection and data 
access policies set by NIH and TCGA, respectively. 
Clinical follow-up data of PRCC patients in TCGA 
were retrieved for prognostic analysis. Other clinical 
information, including AJCC pathological TNM stage 
(pathological stage, pT, pN and pM), AJCC clinical TNM 
stage (clinical stage, cT, cN and cM), gender, age at initial 
pathological diagnosis and tumor type (type I or II), was 
extracted for WGCNA analysis. 

Screening for differentially expressed genes 

Two R packages, DEseq2, based on a negative 
binomial distribution method [13], and limma, based on 
linear models and empirical Bayes methods [14], were 
utilized to screen DEGs between normal and cancer 
samples. The DEG threshold was set at a log2FoldChange 
> 2 and an adj.P.Val < 0.05. In order to ensure that 
normal and cancer samples could be well characterized 
by acquired DEGs, overlapping genes with significant 
differences obtained from both algorithms were selected 
as target genes to be further analyzed. .

Gene co-expression network construction and 
module preservation analysis

Scale-free gene co-expression networks were 
constructed by the WGCNA package [9]. To ensure that 
the results of network construction were reliable, outlier 
samples were removed. An appropriate soft threshold 
power was selected in accordance with standard scale-free 
networks, with which adjacencies between all differential 
genes were calculated by a power function. Then, the 
adjacency was transformed into a topological overlap 
matrix (TOM), and the corresponding dissimilarity 
(1-TOM) was calculated. Module identification was 
accomplished with the dynamic tree cut method by 
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hierarchically clustering genes using 1-TOM as the 
distance measure with a deepSplit value of 2 and a 
minimum size cutoff of 30 for the resulting dendrogram. 
Highly similar modules were identified by clustering 
and then merged together with a height cut-off of 0.25. 
To test the stablity of each identified module, module 
preservation and quality statistics were computed with 
the modulePreservation function (nPermutations = 200) 
implemented in the WGCNA package [15]. The test 
dataset contained  microarray-based mRNA expression of 
34 samples in GSE2748 [38].

Finding module of interest and functional 
annotation

The correlation between modules and clinical 
features was evaluated by pearson’s correlation tests to 
search biologically meaningful modules. The module and 
clinical feature, which exhibited the highest correlation 
,were selected as module of interest and clinical feature to 
be studied. In order to explore the potential mechanism of 
how module genes impact correlative clinical feature, all 
genes of module of interest were mapped into the DAVID 
database and subjected to GO functional and KEGG 
pathway enrichment analysis [16]. A P-value < 0.01 and 
false discovery rate (FDR) < 0.01 were set as the cutoff 
criteria.

Identifying hub genes and correlation analysis

Genes with high gene significance (GS) and high 
module membership (MM) were defined as hub genes. 
Based on GS and MM, the function “networkScreening” 
in the WGCNA package was applied to screen hub genes 
in module of interest. Preliminary relationships between 
hub genes and corresponding clinical features were 
shown by boxplot graphs. Correlation between them was 
tested with one-way ANOVA and an independent sample 
t-test. These results were verified by the validation cohort 
GSE2748.

Survival analysis and efficacy evaluation

Survival analysis was performed for all hub genes. 
Patients were dichotomized into two groups according to 
the expression of each hub gene (high vs. low). R package 
“survival” was adopted to implement log-rank tests 
and plot Kaplan-Meier survival curves [17]. In order to 
verify if these hub genes were indeed prognosis-related 
genes, the validation set GSE2748 was also utilized for 
survival analysis. If the log-rank test for each hub gene 
in TCGA data set and GSE2748 showed significant 
statistical difference at the same time, it was considered 
as prognosis-associated gene. ROC curve was plotted 
and AUC was calculated with“ROCR” package [18]. 
When AUC value was greater than 0.7, the hub gene was 

considered capable of distinguishing localized and non-
localized PRCC with excellent specificity and sensitivity. 
The result was confirmed by the validation set GSE2748.
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