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ABSTRACT:
Heat shock proteins are molecular chaperones with a central role in protein 

folding and cellular protein homeostasis. They also play major roles in the development 
of cancer and in recent years have emerged as promising therapeutic targets. In 
this review, we discuss the known molecular mechanisms of various heat shock 
protein families and their involvement in cancer and in particular, multiple myeloma. 
In addition, we address the current progress and challenges in pharmacologically 
targeting these proteins as anti-cancer therapeutic strategies

INTRODUCTION

Heat shock proteins are a group of highly conserved 
proteins found in both eukaryotic and prokaryotic cells. 
They are involved in a wide range of cellular processes 
such as assisting protein folding and degradation of 
misfolded proteins, intracellular trafficking, modulating 
signalling pathways and regulating immune responses 
[1-5]. The multi-functional nature of heat shock proteins 
enables them to play critical roles in the regulation of 
protein homeostasis and cell survival. Although the 
proteins are frequently associated with the cellular stress 
response, they also play an important role in supporting 
normal cellular processes such as development and 
differentiation [6-8]. 

They were accidentally discovered in 1962, as a 
set of genes whose expression is elevated by heat shock 
in Drosophila melanogaster [9].  It is now known that 
heat shock proteins function as molecular chaperones 
and can play many roles in the cell in addition to 
modulating the heat shock response. In mammalian cells, 
they are classified into five families according to their 
molecular weight: Hsp100, Hsp90, Hsp70, Hsp60 and 
small heat shock proteins including Hsp27. Members 
of each family can be either constitutively expressed or 
cell event induced, and can be found in defined cellular 
compartments carrying out specific functions.

There are numerous lines of evidence which link 
heat shock proteins to the pathogenesis of cancer. They 
are found to be overexpressed in a wide range of cancers 
and are implicated in cell survival, apoptosis, invasion, 

metastasis and escape of immune surveillance. As a 
tumour progresses, it becomes increasingly dependent 
on these proteins to adapt to its microenvironment and to 
stabilise the large amount of oncogenic proteins produced 
which support growth and survival. The different heat 
shock protein families are being studied extensively as 
potential anti-cancer targets for two main reasons: (1). 
heat shock proteins interact with multiple cancer related 
client proteins/pathways and targeting them may lead to 
the inhibition of multiple cancer causing pathways; (2). 
some cancers rely on heat shock proteins to survive the 
proteotoxic stress induced by the production of excessive 
proteins/oncogene products.  

Multiple myeloma is a cancer resulting from the 
malignant proliferation of plasma cells in the bone marrow 
and one important feature of myeloma plasma cells is the 
secretion of excessive monoclonal paraproteins [10]. 
Despite recent advances in treatment and the use of high 
dose chemotherapy, the majority of patients relapse even 
after successful initial treatment. To date, the disease 
remains incurable with a median survival of 4 years. 
There is therefore an urgent need for better treatments 
and new drugs. In recent years, heat shock proteins have 
become attractive potential therapeutic targets in multiple 
myeloma, as the ability to deal with proteotoxic stress as 
a result of paraprotein production is critical for myeloma 
cell survival [10, 11]. Importantly, several inhibitors of 
Hsp90 have demonstrated activity against myeloma cells 
in vitro and in vivo, and clinical trials are ongoing [12-15].

In this review, we aim to provide an overview of 
the known mechanism and functions of the various heat 
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shock protein families and their implication in cancer 
development and progression concentrating particularly, 
on multiple myeloma. We also discuss the role of heat 
shock proteins as potential therapeutic targets in multiple 
myeloma and discuss the supporting pre-clinical and 
clinical data.

The mechanisms and functions of heat shock 
family proteins

Hsp90

Multiple Hsp90 family proteins exist in different 
subcellular locations. These include the cytoplasmic 
Hsp90α (inducible) and Hsp90β (constitutive), 
mitochondrial TNF receptor-associated protein 1 (TRAP1) 
and endoplasmic glucose regulated protein 94 (Grp94). All 
of the proteins are highly abundant and the cytoplasmic 
isoform is essential for cell survival [16],  and studies 
in yeast demonstrate that Hsp90 may interact with more 
than 10% of the yeast proteome [17]. Unlike other heat 
shock proteins involved in general protein folding 
tasks, Hsp90 is found to interact only with a group of 
selective client proteins, many in a more mature folding 
conformation compared to Hsp70 substrates. Rather than 
protein folding, Hsp90 is more commonly associated with 
client protein maturation or functions to maintain a client 
protein in a specific folding conformation required for 
its activity, for example, to respond to activation signals 
such as phosphorylation. The client proteins identified 

to date consist mainly of protein kinases, receptors and 
transcription factors, and many of these are involved in 
cell cycle control and signalling pathways [18-24]. The 
list of client proteins identified for Hsp90 is increasing, yet 
the molecular basis for substrate selectivity is still largely 
unknown as client proteins have no obvious common 
sequence motifs. A current list of Hsp90-interacting 
proteins has been maintained by Didier Picard and can 
be found at (http://www.picard.ch/downloads/downloads.
htm), which includes client proteins as well as co-
chaperones.

Hsp90 proteins exist as homodimers of subunits 
consisting of an N-terminal ATPase domain, a C-terminal 
dimerisation / protein interaction domain, and a middle 
domain associated with client protein binding [25]. ATPase 
activity is essential for the chaperoning activity of Hsp90 
[26, 27]. Following the addition of ATP, Hsp90 undergoes 
a conformational change, which induces an open to shut 
conformation shift [28], with transient dimerisation of 
the N-terminal domains and N-M domain association 
(Figure 1) [29, 30]. The middle segment of Hsp90 has 
been identified as the binding site for protein kinase 
PKB/Akt  and is implicated as the main site for client 
protein interactions [31]. This segment can also interact 
with cochaperones and is required for N-terminal ATPase 
activity. The C-terminal domain is involved in dimerisation 
and contains a highly conserved EEVD sequence which 
is required for the binding of tetratricopeptide repeat 
(TPR) containing family of cofactors, such as HOP  [32, 
33]. The C-terminal domain also contains an alternative 
ATP-binding site [34, 35], but how this contributes to the 
overall function of Hsp90 remains unclear.

Figure 1: The Hsp90 chaperoning system. ATP binding and hydrolysis drive Hsp90 conformational changes resulting in the binding 
and release of client proteins. Client proteins are presented to Hsp90 by the Hsp70 chaperone complex.
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The Hsp90 homodimer functions like a molecular 
clamp, using ATP binding and hydrolysis to drive the 
confirmation change cycle of Hsp90 which is required 
to facilitate the binding and release of client proteins. 
It works in a multi-chaperone complex and the current 
proposed mechanism is that client proteins first bind to 
Hsp70. ATP hydrolysis of Hsp70 by Hsp40 stabilises the 
initial client/Hsp70/40/HIP complex, which then interacts 
with Hsp90 in ADP-bound open conformation via Hop, 
presenting the client protein to Hsp90 [36]. When Hsp90 
exchanges ADP to ATP, its open to shut conformational 
change leads to the dissociation of Hsp70/40 and HOP 
and the association of another set of co-chaperones 
such as CDC37 and p23 to form the mature complex 
[37, 38]. In this mature state the client protein becomes 
activated (Figure 1). Studies of glucocorticoid receptor 
(GR) activation demonstrate that Hsp90 and Hsp70 are 
absolutely required for GR activation (i.e. opening of the 
steroid binding cleft in GR), whereas cochaperones such 
as Hop, Hsp40 and p23 help to facilitate the chaperoning 
activity by client protein recruitment (HOP), ATP 
hydrolysis of Hsp70 (Hsp40) and stabilisation of Hsp90-
ATP conformation (p23) [39-41]. To date more than 20 
Hsp90 co-chaperones have been identified and all are 
involved in the recruitment of client proteins, control 
of client protein maturation and modulation of ATPase 
activity. It is thought that the binding and release of 
specific co-chaperones in an orderly way may control the 
activity / selectivity of Hsp90, and that different client 
proteins require a different set of co-chaperones. Given 
the complexity of the Hsp90 chaperoning system, a full 
understanding of the molecular mechanism is still lacking.

In addition to the cytoplasmic Hsp90s, protein 
quality control requires the functions of compartment 
specific Hsp90s located within various cellular organelles. 
TRAP1 is an Hsp90 located in the mitochondria involved 
in mitochondrial protein folding, cytoprotection and 
mitochondrial integrity [42, 43]; whereas Grp94 is the only 
Hsp90 residing in the endoplasmic reticulum (ER), where 
it plays a critical role in regulating ER protein homeostasis 
by chaperoning highly selective client proteins such as 
immunoglobulins [44], targeting misfolded client proteins 
for ER-associated degradation (ERAD) [45] and storing 
Ca2+ to regulate ER calcium flux [46]. Both are implicated 
in promoting tumour progression [43, 46].

Hsp70

Eukaryotic cells also express a range of Hsp70 
proteins in various subcellular localisations. Family 
members include the constitutively expressed Hsc70 
and stress induced Hsp72 in the cytoplasm, Bip (Grp78) 
localised in the endoplasmic reticulum and mortalin/Grp75 
in the mitochondria. Similar to Hsp90, Hsp70 protein 
consists of a N-terminal ATPase domain where ATP 

exchange acts as the driving force of the conformational 
change required for target protein binding and release; a 
substrate binding domain with affinity for hydrophobic 
amino acid residues; and a C-terminal domain containing 
an EEVD motif for co-chaperone binding and functioning 
as a ‘lid’ which controls the availability of the substrate 
binding domain to target proteins [47]. Hsp70 forms a 
complex with its cochaperone Hsp40 and a nucleotide 
exchange factor such as Bag-1 and HspBP1. Hsp40 
stimulates Hsp70 assisted protein folding by interacting 
with Hsp70 and promoting ATP hydrolysis, resulting in 
a closed conformation and tight binding of substrate, 
whereas a nucleotide exchange factor stimulates the 
release of ADP and binding of ATP, thereby opening the 
binding pocket for substrate release [48]. 

During protein synthesis, partially synthesized 
and incompletely folded polypeptide chains expose 
hydrophobic regions that need to be protected from 
misfolding and aggregation. Hsp70 assists the de novo 
folding of 15-20% of all bacterial proteins, and this figure 
is thought to be even higher in eukaryotes [3]. It interacts 
with a wide spectrum of nascent polypeptide chains 
co- and posttranslationally, with preference for chains 
between 30-75kDa [49-51]. It utilises ATP driven cycles 
of substrate binding and release to carry out chaperoning 
functions, preventing aggregation by maintaining a low 
free substrate concentration, while enabling free substrate 
to fold to its native state [52-56]. On the other hand, 
the binding and release cycles may also induce specific 
unfolding of a misfolded polypeptide or pull apart 
aggregated proteins for them to be refolded to their correct 
state [56]. 

The family members found at different cellular 
localisations fulfill specific roles. Collectively, they 
form a key part in the cellular mechanism maintaining 
protein homeostasis and cell survival (Figure 2). They 
play central housekeeping functions in the cell as part 
of a complex network working with co-chaperones and 
downstream chaperoning systems such as Hsp90. In 
addition to assisting the folding of newly synthesized 
and refolding of misfolded proteins discussed above, 
they translocate target proteins across membranes [57], 
as well as directing protein degradation by the ubiquitin-
proteasome pathway [58] or autophagy [59]. An increasing 
number of signal transduction proteins and transcription 
factors are known to transiently interact with the Hsp70 
complex [60], and together with the Hsp90 complex, the 
Hsp70 system is linked to cell cycle regulation, apoptosis 
and differentiation.

The endoplasmic reticulum resident Bip is involved 
in the folding and assembly of proteins in the ER, targeting 
misfolded proteins to ER-associated protein degradation 
(ERAD) and signaling the unfolded protein response in 
response to stress [61-63]. Bip may also be expressed 
on the cell surface of some tissues and is involved in 
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signal transductions [64-66]. Mitochondria matrix 
localised Hsp70 (mortalin) forms part of the presequence 
translocase-associated motor (PAM) complex which acts 
as the driving motor of protein translocation from the 
cytoplasm into the mitochondria [67]. Whereas cytosolic 
Hsp70 is required for the post-translational translocation 
of secretory proteins destined to the ER, by holding the 
fully transcribed polypeptide in an incompletely folded 
state for translocation [68, 69]. In addition the cytoplasmic 
inducible Hsp72 and its cognate protein Hsc70 are 
responsible for the folding of proteins in the cytoplasm 
as well as the recruitment of E3 ubiquitin ligases such as 
CHIP to tag target proteins for proteasomal degradation 
[70]. Hsc70 also participates in chaperone-mediated 
autophagy, a type of lysosomal degradation which 
selectively targets specific proteins. Cytosolic Hsc70 
binds to a target protein and presents it to the lysosome 
receptor LAMP-2A. At this site the substrate protein is 
subsequently unfolded and translocated into lysosome, 
a process which is assisted by the lysosomal resident 
Hsc70 [71, 72]. In addition to their roles in maintaining 
the cellular protein program, cytoplasmic Hsp70 inhibits 
both the caspase dependent and independent apoptosis 
pathways at multiple levels [73, 74].

Small heat shock proteins - Hsp27

In contrast to Hsp90 and Hsp70, small heat shock 
proteins are a family of ATP-independent chaperones. 
With a small size between 15-30kDa, they oligomerise 
to form homo or hetero-oligomers with up to 50 subunits 
[75], which determines their chaperoning activity. In 

addition to their phosphorylation status, cell-cell signalling 
and various protein modifications also modulate their 
oligomerisation [76].

Hsp27 belongs to this family and functions to 
prevent protein aggregation by directly binding misfolded 
substrates, and promoting protein refolding by interaction 
with the Hsp70 chaperone complex. In addition, Hsp27 
can directly prevent cell death by interfering with key 
components of the apoptosis pathway, such as blocking 
the formation of the apoptosome by binding to cytochrome 
c released from the mitochondria [77], and by interacting 
with Daxx, a mediator of Fas-induced apoptosis [78]. 

Under stress conditions, Hsp27 is also directly 
involved in the ubiquitin-proteasome pathway by binding 
to the 26S proteasome and multi-ubiquitin chains, to 
facilitate the degradation of a selective range of target 
proteins [79]. By doing so, Hsp27 can mediate its 
cytoprotective effect at multiple levels by facilitating the 
degradation of various apoptotic and cell cycle proteins. 
For example, Hsp27 can enhance the anti-apoptotic 
activtity of the transcription factor NF-κB, as the presence 
of Hsp27 in the proteasome-protein substrate complex 
is required for the degradation of I-κBα, the inhibitor of 
NF-κB [79]. Hsp27 can also promote the degradation of 
the cell cycle inhibitor p27Kip1, thereby avoiding cell cycle 
arrest during stress [80].

Hsp60/Hsp10

Hsp60 and Hsp10 form the mitochondrial 
chaperonin complex, which is involved in mitochondrial 
protein folding. The understanding of the structure and 

Figure 2: The Hsp70 family proteins. Hsp70 protein isoforms (Bip, cytoplasmic Hsp70s, lys-Hsc70 and mortalin) reside at various 
subcellular localisations to perform specific roles in protein folding, translocation, degradation and signal transduction, thereby mediating 
cell survival and apoptosis.
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function of chaperonin has mainly come from studies 
performed on the bacterial chaperonin, GroEL and GroES.

GroEL (Hsp60) is an oligomer formed by monomers 
arranged into two stacked heptameric rings [81, 82], 
resulting in a barrel like cavity where misfolded or 
unfolded substrate proteins are folded. GroES (Hsp10), 
which forms a single heptameric ring, acts as a lid to the 
chamber and can bind to either end of the double GroEL 
rings  [83, 84]. Like Hsp70 and Hsp90, ATP cycles induce 
conformational changes required for substrate protein 
folding. ATP and polypeptide binds to one GroEL ring, 
followed by GroES capping, resulting in the encapsulation 
of polypeptide in a hydrophilic cavity which promotes 
protein folding conditions [84]. Once the substrate is 
inside the chamber, ATP is hydrolysed slowly, allowing 
time for the protein to fold. The two rings of GroEL act 
in an alternate fashion [85], with ATP hydrolysis in one 
ring resulting in a structural transition in the opposite ring 
making it available for ATP binding, which in turn triggers 
the release of GroES and substrate protein from the 
original ring. A substrate protein may go through multiple 
binding and release cycles to reach its folded state [85].

In Eukaryotes, Hsp60 was first shown to reside in 
the mitochondria, and following interaction with Hsp10, 
is responsible for chaperoning nascent polypeptides as 
well as transporting target proteins from the cytoplasm 
into the mitochondria [86, 87]. Evidence also suggests 
that Hsp60 participates in apoptosis by interactions with 
mortalin (mitochondrial hsp70), p53 and survivin [88-90]. 
Accumulating evidence suggests that Hsp60 is not just a 
mitochondrial protein, as it also resides in the cytoplasm 
and unlike other heat shock proteins that mostly have 
pro-survival functions, Hsp60 has either pro-survival or 
pro-apoptosis functions [91]. It has also been found on 
the cell surface where it is involved in the activation of 
immune system [92, 93] and in the extracellular matrix 
where it has pro-inflammatory functions [94, 95]. The 
molecular mechanism of Hsp60 in humans remains largely 
unknown, but its involvement in cancer as well as its 
potential applications in cancer therapy is actively being 
investigated. 

Hsp110 (Hsp105) 

Hsp110/105 is abundant in the cytosol of 
mammalian cells but relatively little is known about its 
function compared to the other heat shock proteins. It has 
diverged from the Hsp70 superfamily, and has independent 
chaperone activity as well as serving as a nuclear exchange 
factor to Hsp70s [96]. As an independent chaperone, 
unlike Hsp70, Hsp110 cannot assist protein folding, but 
acts to prevent protein aggregation of denatured proteins 
with higher efficiency compared to Hsp70 [97, 98]. It also 
exhibits differential substrate binding properties to Hsp70s 
with preference for substrates with aromatic residues, and 

this may account for the different chaperone activities of 
Hsp110 and Hsp70 [99].

Hsf1

It is widely established that Hsf1 is the “master 
regulator” of heat shock protein expression. In the absence 
of stress, inactive Hsf1 monomers are held in a complex 
with Hsp70/Hsp90. At the onset of proteotoxic conditions, 
Hsf1 is released from the complex, homo-trimerises, 
translocates to the nucleus and activate the transcription 
of its downstream targets by binding to the heat shock 
elements in the promoter regions of target proteins [100, 
101]. Hsf1 is classically recognised as a regulator of heat 
shock protein expression with its downstream targets such 
as Hsp72 and Hsp27. Several recent genome-wide analysis 
using ChIP and microarray technologies along with Hsf1 
siRNA in yeast [102] and mammalian cells [103, 104] have 
uncovered a plethora of previously undiscovered Hsf1 
gene targets, including genes implicated in transcriptional, 
RNA splicing, ubiquitylation, stress defence, vesicular 
transport and cell structures. Page et al [103] emphasized 
that aside from the chaperones induced by Hsf1 upon heat 
shock, the second most substantially induced group were 
genes coding for anti-apoptotic proteins. These genome-
wide analyses also reveal the role of Hsf1 in regulation 
of stress, cellular adaptation, survival, development and 
disease.

Heat shock proteins contribute to cancer 
progression and metastasis 

Cancer cells proliferate at a fast rate and in order 
to survive, they resist apoptosis, upregulate oncogenes/
oncoproteins, cope with environmental stresses such 
as hypoxia, and modulate various survival signalling 
pathways. Therefore, in order to overcome the challenging 
hostile environment, cancer cells have higher metabolic 
requirements for chaperones than non-cancer cells. 

Hsp90

A large number of oncoproteins, including cell cycle 
proteins, tyrosine kinases, signalling transduction proteins, 
anti-apoptotic proteins and transcription factors are known 
Hsp90 client proteins. Upregulation of Hsp90 has been 
widely observed in a range of solid and haematological 
malignancies including myeloma [105-109] and is 
required for the stability and function of these oncoproteins 
thereby supporting tumour development and survival. By 
supporting the large number of client proteins involved 
in multiple cancer related pathways, Hsp90 is involved 
in the regulation of many of the “hallmarks of cancer”, 
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namely sustaining proliferative signalling, resisting cell 
death, evading growth suppressors, inducing angiogenesis, 
enabling replicative immortality, invasion and metastasis, 
and emerging hallmarks including deregulating cellular 
energetic and avoiding immune destruction [110, 111]. 
In addition, high expression of Hsp90 is an independent 
prognostic marker in a number of cancers. In breast 
cancer, it is associated with decreased survival [109], and 
in gastric cancer, high Hsp90 expression is linked to poor 
prognosis and tumour aggressiveness [112]. In CML, 
Hsp90 correlates with disease state and high levels are 
associated with resistance to therapy [113].

Hsp70

Unlike Hsp90 which chaperones specific ‘client 
proteins’, Hsp70 family proteins assist general folding 
of unfolded or misfolded proteins exposing hydrophobic 
regions and prevent their aggregation. High Hsp70 
expression is correlated with poor prognosis in a wide 
range of cancers such as breast, endometrial, cervical, oral 
and bladder carcinomas and has been extensively reviewed 
elsewhere [114]. The anti-apoptotic role has also linked 
Hsp70 to chemotherapeutic resistance in ovarian cancer 
and leukaemia [115, 116]. Hsp70 is involved in multiple 
cancer promoting pathways by associating with the Hsp90 
chaperone system as well as carrying out independent 
functions in apoptosis, senescence, and protein regulatory 
pathways such as autophagy [117]. 

The cytoplasmic Hsp70s regulate the apoptosis 
pathway at multiple levels, for example, Hsp70s have 
been shown to protect Bcl-2 from proteasomal degradation 
[118]; block Bax translocation to the mitochondria thereby 
preventing cytochrome c release [119]; bind Apaf-1 and 
prevent the recruitment of caspase-9 to the apoptosome 
[120, 121]; and to prevent AIF translocation to the nucleus 
to cause chromatin condensation and DNA degradation 
[122, 123]. It is interesting to note that the function of 
Hsp70s do not always rely on their ATPase activity, for 
instance it has been shown that Hsp72 inhibits JNK 
activation independently of its chaperoning activity [124-
126]. The Hsp70s also play a protective role against 
senescence. Hsp72 knock down induces senescence 
in a variety of cancer cell lines [127, 128] and Hsp72 
controls Her-2-induced senescence by regulating p21 
and survivin in a mouse breast tumour model [129]. 
Evidence also suggests that Hsp70 supports autophagy by 
maintaining protein homeostasis and supporting cancer 
cell survival. Hsp70 localises at the autophagosome/ 
lysosomal membrane compartments and inhibits 
lysosomal permeabilisation [130, 131]. In addition, 
Hsp70 participates in chaperone mediated autophagy by 
delivering target proteins to the lysosome surface receptor 
LAMP-2A, where it enables their translocation into the 
lysosomal lumen (Figure 2) [71, 132].

Small heat shock proteins - Hsp27

Hsp27 is also commonly overexpressed, correlating 
with prognosis and chemoresistance in many cancers 
including colorectal [133], breast [134], prostate [135] 
and ovarian [136]. Elevated expression is associated 
with tumour aggressiveness in both primary and 
metastatic tumours. Apart from having anti-apoptotic 
roles at multiple levels contributing to primary tumour 
survival, Hsp27 is involved in actin dynamics and is 
overexpressed in metastatic breast tumour contributing 
to cell migration and invasion. Silencing of Hsp27 leads 
to decreased bone metastasis in a breast tumour model 
[137]. In addition, Hsp27 is implicated in epithelial-to-
mesenchymal transition (EMT) in breast [138], lung 
[139], and has been shown to be a key mediator of both 
IL-6 dependent and independent EMT in prostate cancer 
[140]. Experimental models also suggest that Hsp27 can 
promote angiogenesis by NFkB dependent upregulation 
of VEGF-gene transcription and secretion of VEGFR-2 in 
endothelial cells [141]. Knocking down Hsp27 in breast 
cancer cells reduced endothelial cell proliferation and 
reduced secretion of VEGF and FGF [142].

Hsp60/Hsp10

Increasing evidences suggest that Hsp60 and Hsp10 
may also be important players in cancer progression. As 
reviewed by Cappello et al [143], Hsp60 expression is 
altered in a wide range of cancers with potential diagnostic 
and prognostic implications. As well as assisting protein 
folding in association with Hsp10, cytosolic Hsp60 can 
regulate apoptosis by stabilizing the apoptosis inhibitor 
survivin [89] and binding to and inhibiting pro-apoptotic 
Bax and Bak [144]. Conversely, Hsp60 can also promote 
the activation of caspase-3, leading to tumour cell death 
[145]. Hsp60 interacts with β-catenin—a key oncogene 
driving cancer development and metastasis, where it is 
found to enhance β-catenin transcriptional activity thereby 
promoting metastasis [146]. Cell surface Hsp60 also 
directly interacts with and activates α3β1 integrin, which 
can contribute to tumour progression and metastasis [147].

Although Hsp10 is mostly considered to reside in 
the mitochondria as a component of the Hsp60/Hsp10 
chaperonin complex, increasing evidence suggest 
that Hsp10 may have Hsp60-independent roles. This 
hypothesis is supported by the differential expression and 
localisation of these two heat shock proteins in tumour 
cells [148].  In tumour cells, Hsp10 is found to accumulate 
in the cytoplasm [148], and may be involved in the 
inhibition of apoptosis by altering the expression level of 
Bcl-2 family proteins [149]. Hsp10 may also contribute to 
tumour progression through its role in the regulation of the 
Ras GTP-ase signalling pathway [150]. In addition, Hsp10 
can be released from tumour cells and evidence suggests 
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that Hsp10 may enable tumour cells to escape immune 
surveillance by suppressing T cells expressing CD3 zeta 
chain, inhibiting cytokine production [151].

Hsp110 (Hsp105)

Finally, Hsp110 may have a potential use in 
cancer as a marker of prognosis and drug response. It is 
overexpressed in malignant melanoma [152], colorectal 
[153] and pituitary tumours [154], and high expression 
is associated with advanced and metastatic lesions [153, 
155]. In contrast, a reduction in Hsp110 expression was 
correlated with invasion and metastasis and therefore 
poor prognosis of oesophageal cancer [156]. A truncated 
mutant of Hsp110 has been found in colorectal cancer 
with microsatellite instability, and in this type of cancer 
the truncated mutant inhibits the protective role of the wild 
type form in a dominant negative manner. High expression 
of the truncated mutant is linked to chemo-sensitivity and 
better prognosis [157].

Heat shock proteins are potential therapeutic 
targets in multiple myeloma

Multiple myeloma is characterised by the production 
of large quantities of nascent immunoglobulin [10]. As 
a result, myeloma cells rely on their protein handling 
mechanisms to cope with protein load and maintain 
survival. A number of pathways are responsible for 
protein homeostasis in the cell including the unfolded 
protein response (UPR), ubiquitin proteasome pathway, 
autophagy and aggresome pathway. The endoplasmic 
reticulum (ER) is a site of protein folding and quality 
control. The accumulation of unfolded/misfolded proteins 
in the lumen of the ER triggers the UPR, which activates 
downstream pathways to inhibit protein translation 
and increases protein folding capacity by upregulating 
molecular chaperones [158]. If proteins cannot be 

correctly folded in the ER, they are retrotranslocated to 
the cytoplasm to be ubiquitinated and destroyed by the 
proteasome [159]. Alternatively, excess proteins can be 
removed by autophagy via lysosomal degradation, which 
can be upregulated during stress triggered by protein 
aggregation, nutrient deprivation, or proteasome inhibition 
[160-164]. When protein folding and degradation capacity 
is exceeded, unfolded/misfolded protein aggregates in 
the cytoplasm are transported along the microtubule 
to the microtubule organising centre, where they form 
aggresomes [165, 166]. The aggresomes act as storage 
centres for toxic proteins until these proteins are eventually 
targeted to chaperones for refolding or degradation by 
autophagy [167, 168]. 

The protein handling pathway is a tightly linked 
process and is overloaded by the large amount of 
immunoglogulin produced in myeloma. As a result, the 
protein handling pathway is actively being explored as an 
attractive therapeutic target in myeloma. The success of 
the clinically approved proteasome inhibitor bortezomib 
provides evidence that targeting this pathway can be an 
effective treatment strategy in myeloma. Efforts have 
therefore been put into developing inhibitors of the 
UPR, heat shock proteins, proteasome, autophagy and 
aggresomes, and these have been extensively reviewed by 
Aronson et al [161]. 

Being molecular chaperones responsible for protein 
folding, the heat shock proteins play a key role in all of 
the protein homeostasis pathways and thus the handling of 
immunoglobulin folding in myeloma. In addition to their 
chaperoning functions, heat shock proteins are found to be 
involved in many other signalling pathways important for 
myeloma growth and survival, making them particularly 
attractive targets (Figure 3). 

Numerous studies have shown that Hsp90 inhibition 
in myeloma cells induces apoptosis and depletes multiple 
client proteins such as AKT, STAT3, IL-6Rα, thereby 
simultaneously disrupting multiple pathways known to 
contribute to cell survival, including the JAK/STAT, PI3K, 
NF-κβ, and RAS/ERK pathways [169]. Cytoplasmic 
Hsp90 has also been shown to be a modulator of the 
UPR by associating with and stabilising IRE1 and PERK, 
two major transactivators of the UPR responsible for 
the downstream upregulation of stress response genes 
and translational repression [170]. It is also shown that 
Hsp90 inhibition induces UPR in myeloma, and that 
Hsp90 inhibitors induce myeloma cell death at least in 
part via the UPR death pathway [11]. Given the support 
of myeloma cell growth and survival by the bone marrow 
microenvironment, the ability of HSP90 inhibition 
to overcome exogenous IL-4-induced chemotherapy 
resistance highlights the potential efficacy of HSP90 
inhibitors in vivo [171].

Preclinical studies demonstrate that the inhibition 
of Hsp90 is effective in myeloma in vitro and in vivo 
[11, 14, 172]. However, treatment of myeloma cells with 

Figure 3: Heat shock proteins contribute to myeloma 
survival and chemoresistance via their roles in multiple 
pathways known to be important in myeloma.
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compounds such as Hsp90 inhibitors (17-AAG, NVP-
AUY922), bortezomib and dexamethasone is usually 
accompanied by the upregulation of other heat shock 
proteins such as Hsp70 and Hsp27, protecting cells 
from apoptosis and contributing to drug resistance [14, 
173, 174]. For instance, it has been shown that Hsp27 
is overexpressed in myeloma and inhibits the release of 
Smac, an activator of caspases from the mitochondria, 
thereby confering dexamethasone resistance [175]. 
Blocking the Hsp27 upregulation associated with 
bortezomib treatment overcomes bortezomib resistance 
[176], and inhibiting p38 MAPK, an upstream regulator 
of Hsp27, sensitises myeloma cells to bortezomib induced 
cell death by downregulating Hsp27 [177]. Evidence 
for HSP90 inhibition having a cytostatic effect on colon 
adenocarcinoma cells, rather than inducing cell death, 
suggests that HSP90 inhibitors used in combination with 
other agents can enhance tumour cell kill [178]. Further 
studies in myeloma models will be needed to explore 
possible drug combinations with HSP90 inhibitors.

The cytoplasmic Hsp70s, inducible Hsp72 
and constitutively expressed Hsc70 are frequently 
overexpressed in myeloma [179]. Inhibition of Hsp70 is 
also effective in inducing myeloma cell death both in vitro 
and in vivo [179-181]. As they function as co-chaperones 
of Hsp90, inhibition leads to Hsp90 client protein 
depletion as well as cell death [179, 180]. Inhibition of 
Hsp90 typically leads to a compensatory upregulation 
of Hsp72, and inhibiting both Hsp70 and Hsp90 results 
in a more effective anti-tumour response than inhibiting 
Hsp90 alone [179, 180, 182]. It has also been shown that 
Hsc70 and Hsp72, sharing 85% sequence homology, have 
compensatory yet distinctive roles in immunoglobulin 
folding and survival of myeloma [180, 182]. 

As Hsf1 is a major transcription factor responsible 
for the rapid induction of heat shock proteins during stress, 
recent studies have also explored its role as a potential 
therapeutic target. Hsf1 regulates gene expression of 
heat shock proteins such as Hsp90, Hsp72 and Hsp27, 
as well as non-chaperone genes potentially utilized by 
cancers such as the tumour necrosis factor (TNF) receptor 
[104]. High level of Hsf1 is associated with cancer 
malignancy and poor prognosis clinically, and there is 
considerable evidence for the direct involvement of Hsf1 
in tumourigenesis in cancers including myeloma [183, 
184].  Early studies also suggest that inhibition of Hsf1 
induces apoptosis in myeloma cells in vitro and reduces 
tumour growth in vivo, and this is associated with lowered 
expression of multiple downstream heat shock proteins.

Development of heat shock protein inhibitors for 
the treatment of multiple myeloma

The activity of various inhibitors of the heat shock 
response is currently being explored, however to date only 

inhibitors of Hsp90 have reached the advanced stages of 
clinical development.

Hsp90 inhibitors

The development of Hsp90 inhibitors was initially 
based on the natural product geldanamycin, which has 
potent anti-tumour activity in a wide range of tumour cell 
lines. Geldanamycin binds to the N-terminal domain of 
Hsp90, blocking the site of ATP binding and hydrolysis 
[185]. A number of geldanamycin derivatives have since 
been developed with improved solubility, stability and 
toxicology [186]. The geldanamycin based tanespimycin 
(17-AAG) was the first to enter the clinic as it showed 
single agent activity in vitro on myeloma cell lines [12, 
13], and combination treatment with bortezomib led to an 
increased accumulation of ubiquitinated proteins compared 
to single agent exposure [187]. Despite encouraging initial 
results, the development of tanespimycin has since been 
discontinued. Retaspimycin (IPI-504) is a derivative of 
17-AAG thought to be more potent and less toxic to the 
liver than 17-AAG. A phase I trial showed that it is well 
tolerated in myeloma patients [188], with similar synergy 
when combined with bortezomib [189]. 

In addition to geldanamycin based compounds, 
a number of novel Hsp90 inhibitors have recently been 
developed and are undergoing preclinical and clinical 
studies. NVP-AUY922 (VER52296) efficiently induced 
apoptosis in myeloma cells at nanomolar concentrations 
and triggered changes in the molecular signature of 
cells characteristic of Hsp90 inhibition [14]. Phase I/II 
studies of AUY922 with and without bortezomib, with 
or without dexamethasone are currently being performed 
in patients with relapsed or refractory multiple myeloma 
(NCT00708292). KW-2478 is another promising 
novel compound discovered through a unique lead 
optimization strategy including microbial screening, X-ray 
crystallography, cell-based screening and in vivo models 
[15]. A study on myeloma cell lines showed that KW-
2478, a novel non-purine analogue antagonist, induced 
growth inhibition and apoptosis associated with Hsp90 
client protein depletion [15], and combination with 
bortezomib exhibited synergistic activity in vitro and in 
vivo [190]. Phase I/II Study of KW-2478 in combination 
with bortezomib in multiple myeloma is ongoing 
(NCT01063907). 

Two orally available Hsp90 inhibitors, NVP-
HSP990 and PF-04929113 (SNX5422) have also been 
tested in myeloma. Preclinical studies show that NVP-
HSP990 has potent activity against myeloma and is 
synergistic with melphalan, histone deacetylase (HDAC) 
inhibitors and  a PI3-kinase/mTOR inhibitor, providing a 
rationale for early clinical trials [191, 192]. A phase I trial 
on PF-04929113, a highly selective small molecule Hsp90 
inhibitor, has shown encouraging responses in patients 
with refractory myeloma. Phase II studies are currently 
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being considered [193].
PU-H71, is an emerging purine scaffold HSP90 

inhibitor that can not only bind a larger scope of 
HSP90 conformations compared to its geldanamycin-
derived predecessors, but is also unaffected by HSP90 
phosphosphorylation. PU-H71 exhibits potent anti-
myeloma activity in cell lines by inhibiting both the 
cytoplasmic and ER resident Hsp90 (Grp94) resulting in 
the activation of the UPR and caspase dependent apoptosis 
in myeloma cell lines [194] [195]. 

Hsp70 inhibitors

The consistent upregulation of Hsp70s following 
Hsp90 and proteasome inhibition, and their proven anti-
apoptotic roles contributing to drug resistance  leads to a 
growing interest in the development of Hsp70 inhibitors to 
be used as single anti-cancer agents or in combination with 
conventional or targeted chemotherapies. However, to date 
few Hsp70 specific inhibitors have been identified. Two 
Hsp70 specific compounds, Ver-155008 and MAL3-101, 
have been tested on myeloma in the preclinical setting.

Ver-155008 is an ATP-analogue capable of inducing 
caspase dependent apoptosis in a panel of myeloma cell 
lines via the modulation of multiple oncogenic pathways 
and enhancing Hsp90 inhibition induced cell death [179, 
180]. In contrast to Ver-155008, MAL3-101 inhibits the 
ability of Hsp40 cochaperone to stimulate Hsp70 ATPase 
activity, thereby blocking Hsp70 functions in cells 
[196]. MAL3-101 exhibited promising anti-myeloma 
properties on myeloma cell lines in vitro and in vivo, 
and demonstrated synergy with proteasome and Hsp90 
inhibitors [181]. Although these compounds have limited 
potency, they may form the basis for the development of 
future derivatives suitable for the clinical setting [197].

Hsf1 inhibitors

As an alternative to targeting individual heat shock 
proteins, there has been an interest in the development 
of inhibitors against Hsf1, the ‘master regulator’ of heat 
shock response. Since the inhibition of a single heat shock 
protein such as Hsp90 inevitably leads to the compensatory 
upregulation of other heat shock proteins such as Hsp70 
and Hsp27, targeting Hsf1 instead of the individual 
chaperones separately is potentially more therapeutically 
effective, as inhibition of Hsf1 could in theory abolish the 
ability of a cancer cell to activate the whole heat shock 
response during cellular stress. The increased sensitivity 
of hepatocellular carcinoma and melanoma cell lines 
to HSP90 inhibition with HSF1 knocked down in vitro, 
illustrates the therapeutic potential of an HSF1 inhibitor 
in combination with HSP90 inhibition [198]. While 
several small molecular compounds can interfere with 
the transcriptional activation of Hsf1 or the downstream 

translational mechanisms, the precise mechanisms of how 
these compounds work remains unclear and hence, they 
are not yet valid for clinical investigation [199]. As the 
development of inhibitors against transcriptional factors 
lacking obvious druggable sites is challenging, a better 
understanding of the molecular mechanism controlling 
Hsf1 activation and function will aid the development of 
specific inhibitors against this transcription factor [200]. 

CONCLUSION

It is becoming increasingly apparent that targeting 
individual cellular stress pathways or components 
may not be sufficient for killing myeloma cells as 
other compensatory pathways or components can be 
upregulated. Therefore, targeting multiple oncogenic and 
signalling pathways simultaneously may be the future of 
myeloma treatment, and cancer treatment in general.

The fact that cancers such as myeloma rely on 
the protein handling pathway for survival creates a 
‘therapeutic window’ for heat shock protein inhibition. 
Evidence suggests that the inhibition of heat shock 
proteins affect cancer cells more than normal cells [180, 
182], making them attractive as potential therapeutic 
targets in cancer and encouraging results are observed in 
the early clinical trials on Hsp90 inhibitors. As individual 
protein families, heat shock proteins are capable of 
supporting multiple pathways critical to myeloma survival 
and progression and inhibiting individual heat shock 
proteins lead to myeloma cell death. The cell death effect 
can also be significantly enhanced by combining heat 
shock protein inhibition with inhibitors of other protein 
handling pathways, such as proteasome and HDAC 
inhibitors. Targeting multiple heat shock proteins at the 
same time can also be a good strategy, exemplified by the 
enhanced cell killing following dual inhibition of Hsp90 
and Hsp70.

Challenges however remain in the effective 
targeting of these proteins in myeloma. Firstly, the 
molecular mechanisms of heat shock proteins are still 
not fully understood, with multiple isoforms of the same 
heat shock protein playing distinct or compensatory 
roles. This is exemplified by the consistent upregulation 
of Hsp72 following Hsc70 inhibition, and inhibition 
of both isoforms may be required. Understanding the 
roles of individual heat shock proteins and the effect of 
combined inhibition of multiple heats shock proteins is the 
key to developing an effective treatment strategy against 
myeloma with minimal side effects in patients. Secondly, 
the development of heat shock protein inhibitors suitable 
for the clinic remains a major challenge. Apart from 
Hsp90 inhibitors, inhibitors against Hsp70, Hsp27 and 
Hsf1 are still in the early phase of development despite 
strong evidence of their involvement in myeloma survival. 
Thirdly, preliminary data shows enhanced myeloma cell 
killing by combining heat shock protein inhibition with 
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inhibition of other pathways such as the proteasome, but 
the best combination treatment strategies are yet to be 
established.

In conclusion, targeting the heat shock pathway is 
a promising therapeutic strategy in myeloma as well as in 
other cancers. Much work is currently ongoing in this area 
and the results are eagerly awaited.
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