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Transcriptional landscape of human cancers
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ABSTRACT

The homogeneity and heterogeneity in somatic mutations, copy number 
alterations and methylation across different cancer types have been extensively 
explored. However, the related exploration based on transcriptome data is lacking. In 
this study we explored gene expression profiles across 33 human cancer types using 
The Cancer Genome Atlas (TCGA) data. We identified consistently upregulated genes 
(such as E2F1, EZH2, FOXM1, MYBL2, PLK1, TTK, AURKA/B and BUB1) and consistently 
downregulated genes (such as SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 and 
HMGCLL1) across various cancers. The dysregulation of these genes is likely to 
be associated with poor clinical outcomes in cancer. The dysregulated pathways 
commonly in cancers include cell cycle, DNA replication, repair, and recombination, 
Notch signaling, p53 signaling, Wnt signaling, TGFβ signaling, immune response 
etc. We also identified genes consistently upregulated or downregulated in highly-
advanced cancers compared to lowly-advanced cancers. The highly (low) expressed 
genes in highly-advanced cancers are likely to have higher (lower) expression levels in 
cancers than in normal tissue, indicating that common gene expression perturbations 
drive cancer initiation and cancer progression. In addition, we identified a substantial 
number of genes exclusively dysregulated in a single cancer type or inconsistently 
dysregulated in different cancer types, demonstrating the intertumor heterogeneity. 
More importantly, we found a number of genes commonly dysregulated in various 
cancers such as PLP1, MYOM1, NKAPL and USP2 which were investigated in few 
cancer related studies, and thus represent our novel findings. Our study provides 
comprehensive portraits of transcriptional landscape of human cancers.

INTRODUCTION

It has been recognized that cancer is associated with 
the genetic and genomic changes [1]. With the advance 
of microarray and next-generation sequencing technology, 
gene expression profiling has been widely used for 
identifying molecular biomarkers for cancer diagnosis, 
treatment and prognosis [2–6]. In addition, as the biology 
of cancer is extremely complicated, a simple genetic or 
genomic perspective is insufficient to understand it. The 
exploration of pathway perturbations in cancer is critical 
in comprehending the disease [7–9].

Cancers originating from different tissues or cell 
types vary in terms of their genomic profiles. Lawrence 

et al analyzed 27 cancer types and found that the median 
frequency of non-synonymous mutations varied by more 
than 1,000-fold across different cancer types [10]. The 
variation in mutation frequencies is mostly associated 
with cancer tissue type of origin where haematological and 
paediatric cancers have the lowest mutation frequencies 
while melanoma and lung cancers the highest mutation 
frequencies [10]. Zack et al analyzed the copy number 
profiles of 4,934 primary cancer specimens across 11 
cancer types and found that the mean rate of somatic copy 
number alterations (SCNAs) varied across different cancer 
types with ovarian, cervix, breast and bladder cancers 
having a large number of SCNAs while leukemia and 
kidney cancers very few SCNAs [11]. Previous studies 
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have also shown that numbers of methylomes and patterns 
of DNA methylation varied across different cancer types 
[12, 13].

Due to the varied genomic profiles, different cancer 
types may show different prognosis. Among all cancer 
types, pancreatic, lung, liver and esophageal cancers 
have the worst survival prognosis while prostate, thyroid 
and skin cancers have the best survival prognosis [14]. 
Moreover, different cancer types with the same genomic 
or genetic profiles may exhibit different responses to the 
same treatment strategies. For example, melanoma with 
the BRAF V600E mutation is highly responsive to the 
small-molecule inhibitor vemurafenib while colon cancers 
with the same mutation show a very limited response to 
this drug [15]. On the other hand, different cancer types 
show the major homogeneity. It has been appreciated that 
the multistep development of human tumors depends on 
the eight biological capabilities acquired [8, 16]. They 
include sustaining proliferative signaling, evading growth 
suppressors, resisting cell death, enabling replicative 
immortality, inducing angiogenesis, activating invasion 
and metastasis, reprogramming of energy metabolism 
and evading immune destruction [8, 16]. Although 
intertumor and intratumor heterogeneity extensively 
exists in genomic profiles [10, 17, 18], all the cancer 
driver genes are associated with 12 pathways that confer a 
selective growth advantage [9]. The 12 pathways include 
APC, Hedgehog, NOTCH, chromatin modification, 
transcriptional regulation, DNA damage control, TGF-β, 
MAPK, STAT, PI3K, RAS, cell cycle/apoptosis [9].

With the emergence of large-scale cancer genomics 
projects such as the International Cancer Genome 
Consortium (ICGC, http://icgc.org/) [19] and The Cancer 
Genome Atlas (TCGA, https://gdc-portal.nci.nih.gov/), 
the homogeneity and heterogeneity across different 
cancer types have been extensively explored [10–13, 17, 
18, 20, 21]. The TCGA datasets cover 33 different cancer 
types and more than 10,000 cancer cases in total. Each 
TCGA cancer type contains different types of “omics” 
data, including: whole exome or genome sequencing; 
genomic DNA copy number arrays; DNA methylation; 
mRNA expression array and RNA-Seq data; microRNA 
sequencing; reverse-phase protein arrays; and clinical 
metadata. Based on the TCGA datasets, the tumor 
homogeneity and heterogeneity have been studied in 
various genomic profiles including somatic mutations 
[10, 18], SCNAs [11], and methylation [12, 13]. However, 
the exploration of homogeneity and heterogeneity across 
different cancer types specifically based on transcriptome 
data from large-scale cancer genomics projects such as 
TCGA is lacking.

In this study we explored gene expression profiles 
across 33 human cancer types in TCGA (Table 1). We 
identified dysregulated genes and pathways across 
different cancer types, and performed survival analyses 
based on expression profiles of the dysregulated genes. 

Tumors can be classified based on stage and grade. Tumor 
stage refers to the size and/or extent of the primary tumor 
and whether or not tumor cells have spread in the body 
[22]. Tumor grade refers to how abnormal the tumor cells 
and the tumor tissue look under a microscope compared to 
normal cells, indicative of how quickly a tumor is likely 
to grow and spread [22]. We identified differentially 
expressed (DE) genes and pathways between different 
stages and different grades of cancers, respectively. 
Furthermore, we explored the transcriptional homogeneity 
and heterogeneity across different cancer types. This study 
would bring additional insights into the biology of human 
cancers.

RESULTS

Identification of DE genes between cancer and 
normal samples

We compared gene expression levels between 
cancer and normal samples in 18 cancer types each of 
which contains at least five normal samples (Table 1). 
Supplementary Tables 1 and 2 list genes whose expression 
is significantly higher and lower in cancer than in normal 
samples (fold change > 1.5, false discovery rate (FDR) < 
0.05), respectively. The numbers of DE genes vary across 
different cancer types (Figure 1). The most number (5,755) 
of genes are more highly expressed in CHOL, and the least 
number (1,780) in PRAD. The most number (6,404) of 
genes are more lowly expressed in KICH, and the least 
number (2,797) in ESCA. The median number of genes 
with higher and lower expression levels in cancers is 3,626 
and is 4,055, respectively.

Identification of genes consistently upregulated 
in different types of cancer

There are 51 genes consistently upregulated in all 
the 18 cancer types, and 52 genes consistently upregulated 
in 17 of the 18 cancer types compared to normal tissue 
(Supplementary Tables 3 and 4). Many of these genes 
have been reported to be overexpressed in cancers and 
associated with cancer progression and aggression. For 
example, E2F1 encodes a member of the E2F family 
of transcription factors (TFs) which play a crucial role 
in the control of cell cycle [23]. E2F1 has been shown 
to be upregulated in various cancers [24–26]. EZH2 
encodes a member of the Polycomb-group (PcG) family 
that regulates cell generations. High EZH2 expression 
has been associated with different types of cancer [27]. 
Interestingly, the collaboration of EZH2 and E2F1 in 
transcriptional regulation has been observed in various 
cancers [28, 29]. The other TF genes such as FOXM1 
[30–33], MYBL2 [34], NFE2L3 [35], and UHRF1 [36, 
37] have been involved in various malignancies with 
overexpression. Among the 103 genes that are consistently 
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Table 1: 33 TCGA cancer types in which gene expression profiles were analyzed

Cancera Full name # cancer 
samples

# normal 
samples

Stageb Gradec

# early-
stage

# late- 
stage

# low-
grade

# high- 
grade

BLCA bladder urothelial carcinoma 408 19 132 274 21 384

BRCA breast invasive carcinoma 1100 112 801 270 NA NA

CHOL cholangiocarcinoma 36 9 28 8 16 20

COAD colon adenocarcinoma 287 41 155 119 NA NA

ESCA esophageal carcinoma 185 11 97 65 95 49

GBM glioblastoma multiforme 166 5 NA NA NA NA

HNSC head and neck squamous cell 
carcinoma 522 44 118 388 366 132

KICH kidney chromophobe 66 25 46 20 NA NA

KIRC kidney renal clear cell carcinoma 534 72 324 207 243 282

KIRP kidney renal papillary cell 
carcinoma 291 32 193 67 NA NA

LIHC liver hepatocellular carcinoma 373 50 257 90 232 134

LUAD lung adenocarcinoma 517 59 397 110 NA NA

LUSC lung squamous cell carcinoma 501 51 406 91 NA NA

PRAD prostate adenocarcinoma 498 52 NA NA NA NA

READ rectum adenocarcinoma 95 10 38 46 NA NA

STAD stomach adenocarcinoma 415 35 180 212 160 246

THCA thyroid carcinoma 509 59 334 165 NA NA

UCEC uterine corpus endometrial 
carcinoma 370 11 272 98 185 185

ACC adrenocortical carcinoma 79 0 46 31 NA NA

CESC cervical squamous-cell carcinoma 
and endocervical adeno-carcinoma 306 3 231 66 153 119

DLBC lymphoid neoplasm diffuse large 
B-cell lymphoma 48 0 25 17 NA NA

LAML acute myeloid leukemia 173 0 NA NA NA NA

LGG brain lower-grade glioma 530 0 NA NA 249 265

OV ovarian serous cystadeno-
carcinoma 307 0 22 280 34 262

PAAD pancreatic adeno-carcinoma 179 4 168 8 126 50

PCPG pheochromocytoma and 
paraganglioma 184 3 NA NA NA NA

SARC sarcoma 263 2 NA NA NA NA

SKCM skincutaneous melanoma 472 1 217 193 NA NA

TGCT testicular germ-cell tumors 156 0 110 15 NA NA

(Continued )
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upregulated in at least 17 of the 18 cancer types, there 
are 11 protein kinase encoding genes including PLK1, 
TTK, AURKA, AURKB, BUB1, BUB1B, GSG2, MELK, 
NEK2, PBK, and PKMYT1. Most of these kinase genes 
have been shown to be overexpressed in various cancers 
such as PLK1 [38–43], TTK [44–47], and AURKA/B [48–
51]. These protein kinases are of particular interest because 
kinase inhibitors have been intensively investigated as a 
key class of anticancer drugs in clinical use or trials [52].

Using Gene Set Enrichment Analysis (GSEA) 
software [53], we identified 41 Rectome pathways 
[54] significantly associated with the set of 103 genes 
(FDR<0.05, Figure 2 and Supplementary Table 5). 
Obviously, these gene products are significantly involved 
in cancer related pathways such as cell cycle, DNA 
replication and repair, and immune response. Network 
analysis of the gene set composed of the aforementioned 
seven TF genes (E2F1, EZH2, FOXM1, MYBL2, 
NFE2L3 and UHRF1) and the 11 protein kinase genes 
by STRING [55] shows that the protein products of these 
genes interact to each other (Figure 3). PLK1, a hub node 
in the network, interacts with 11 of the other 17 proteins 
(BUB1, BUB1B, PKMYT1, AURKA, AURKB, FOXM1, 
MYBL2, NEK2, TTK, PBK, and GSG2). As another hub 
node in the network, BUB1 interacts with 12 of the other 
17 proteins (BUB1B, PLK1, MELK, MYBL2, PKMYT1, 
AURKA, AURKB, FOXM1, NEK2, TTK, PBK, and 
GSG2). The TF FOXM1 regulates seven protein kinases 
(BUB1, BUB1B, PLK1, MELK, AURKA, AURKB, and 
NEK2). The three TFs E2F1, EZH2 and MYBL2 interact 
with each other. This demonstrates that interactions of 
these oncoproteins may play an important role in the 
initiation and progression of various cancers.

We compared overall survival (OS) and disease-free 
survival (DFS) between patients with higher expression 
levels and patients with lower expression levels of the 
11 protein kinase genes and seven TF genes in 30 cancer 
types (three cancer types were excluded from the analysis 
due to lack of survival data). Kaplan-Meier survival 

curves show that higher expression levels of these genes 
are associated with significantly worse OS and DFS 
prognoses in various cancers (Figure 4 and Supplementary 
Figure 1). For example, patients with higher expression 
levels of BUB1 have worse OS prognoses than those 
with lower expression levels of BUB1 in 10 cancer types 
(ACC, HNSC, KICH, KIRC, KIRP, LGG, LUAD, PAAD, 
and SKCM), and worse DFS prognoses in nine cancer 
types (ACC, KIRC, KIRP, LGG, LIHC, LUAD, PAAD, 
SARC and UVM) (Figure 4A, log-rank test, unadjusted 
P-value < 0.05). Patients with higher expression levels of 
FOXM1 have worse OS prognoses than those with lower 
expression levels of FOXM1 in 11 cancer types (ACC, 
BRCA, KICH, KIRC, KIRP, LGG, LUAD, PAAD, 
SKCM, UCEC and UVM), and worse DFS prognoses in 
seven cancer types (ACC, KIRC, KIRP, LIHC, SARC, 
SKCM and UVM) (Figure 4B, log-rank test, unadjusted 
P-value < 0.05). Kaplan-Meier survival curves show that 
higher expression of NEK2 and MYBL2 is also associated 
with worse clinical outcomes in various cancers (Figure 
4C, 4D). These results are consistent with previous studies 
showing that overexpression of BUB1, FOXM1, and 
NEK2 correlated with poor prognosis of cancers [56–58].

Identification of genes consistently 
downregulated in different types of cancer

We identified 11 genes (SCARA5, PLP1, MYOM1, 
ADH1B, NKAPL, SYNE1, PEG3, USP2, PCDH9, 
SLC5A7 and HMGCLL1) which are consistently 
downregulated in all the 18 cancer types compared to 
normal tissue. Among the 11 genes, SCARA5 expression 
has been shown to be frequently downregulated in 
various cancers [59], and has been proposed as a novel 
tumor suppressor gene [60]. ADH1B was shown to be 
downregulated in colorectal cancer [61] and lung cancer 
[62]. SYNE1 has been shown to be downregulated in 
various human cancers [63]. PEG3 encodes a tumor 
suppressor and was downregulated in several cancer types 

Cancera Full name # cancer 
samples

# normal 
samples

Stageb Gradec

# early-
stage

# late- 
stage

# low-
grade

# high- 
grade

UCS uterine carcino-sarcoma 57 0 27 30 NA NA

UVM uveal melanoma 80 0 36 44 NA NA

MESO mesothelioma 87 0 26 61 NA NA

THYM thymoma 120 2 97 21 NA NA

a 18 cancer types are underlined in which gene expression were compared between cancer and normal samples.
b Numbers of early-stage (stage I-II) and late-stage (stage III-IV) cancer samples are shown.
c Numbers of low-grade (G1-2) and high-grade (G3-4) cancer samples are shown.
* "NA" indicates no related information available.
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[64–66]. The downregulation of PCDH9 has been shown 
to contribute to the development of various human cancers 
[67–69]. These previous studies confirm the results we 
obtained from the TCGA data analysis. However, few 
studies have shown that PLP1, MYOM1, NKAPL, and 
USP2 were consistently downregulated in various cancers. 
Thus, this analysis provides novel findings about these 
genes whose downregulation may play an important role 

in carcinogenesis. In addition, HMGCLL1 has been shown 
to be upregulated in several human cancers such as breast 
cancer [70] and brain cancer [71]. SLC5A7 had elevated 
mRNA expression in breast cancer cells compared with 
mammary epithelial cells [72]. These observations conflict 
with our results from the TCGA data analysis. Therefore, 
the roles of HMGCLL1 and SLC5A7 in carcinogenesis 
remain to be clarified.

Figure 1: Number of differentially expressed (DE) genes between cancer and normal samples identified in each of the 
18 cancer types.

Figure 2: 41 Rectome pathways significantly associated with the 103 genes upregulated in various cancers.
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We compared OS and DFS between patients 
with higher expression levels and patients with lower 
expression levels of the 11 genes in the 30 cancer types. 
Kaplan-Meier survival curves show that higher expression 
levels of most of these genes are associated with better 
OS and DFS prognoses in multiple cancer types (Figure 
5 and Supplementary Figure 1). For example, patients 
with higher expression levels of NKAPL have better 
OS prognoses than those with lower expression levels 
of NKAPL in four cancer types (ACC, KIRP, LGG, 
and PAAD), and better DFS prognoses in three cancer 
types (ACC, KIRP, and THYM) (Figure 5A, log-rank 
test, unadjusted P-value < 0.05). Patients with higher 
expression levels of USP2 have better OS prognoses 
than those with lower expression levels of USP2 in three 
cancer types (ACC, KIRC, and PAAD), and better DFS 
prognoses in three cancer types (ACC, KIRC, and THCA) 
(Figure 5B, log-rank test, unadjusted P-value < 0.05). 

Kaplan-Meier survival curves show that higher expression 
of PEG3 and SLC5A7 is also associated with better 
clinical outcomes in several cancer types (Figure 5C, 5D). 
Surprisingly, a literature survey shows that few studies 
have revealed the correlation between overexpression of 
these genes and beneficial clinical outcomes in cancers.

In addition, we identified 53 genes which are 
consistently downregulated in 17 of the 18 cancer types 
(Supplementary Tables 4 and 6). Pathway analysis did not 
find any significant pathway associated with the set of 64 
genes consistently downregulated in at least 17 of the 18 
cancer types (FDR<0.05).

Identification of DE genes between highly-
advanced and lowly-advanced cancers

We compared gene expression levels between early-
stage (stage I-II) and late-stage (stage III-IV) cancers, and 

Figure 3: Interaction network associated with the seven transcriptional genes and the 11 protein kinase genes 
overexpressed in various cancers.
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Figure 4: Survival analyses of cancer patients based on expression of the upregulated genes in cancers (log-rank test, 
unadjusted P-value < 0.05). (A) Compare survival time between BUB1 higher-expression-level and BUB1 lower-expression-level 
cancers; (B) Compare survival time between FOXM1 higher-expression-level and FOXM1 lower-expression-level cancers; (C) Compare 
survival time between NEK2 higher-expression-level and NEK2 lower-expression-level cancers; (D) Compare survival time between 
MYBL2 higher-expression-level and MYBL2 lower-expression-level cancers.
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between low-grade (G1-2) and high-grade (G3-4) cancers, 
respectively. We refer to early-stage or low-grade cancers 
as lowly-advanced cancers, and late-stage or high-grade 
cancers highly-advanced cancers. There are 27 and 12 
cancer types whose clinical data contain stage and grade 
information, respectively (Table 1). Supplementary Table 7 
presents the numbers of DE genes between highly-advanced 
and lowly-advanced cancers. Supplementary Tables 8 and 

9 list genes whose expression is higher and lower in late-
stage than in early-stage cancers, respectively. In 13 of 
the 27 cancer types there are DE genes between different 
stages of cancers (fold change > 1.5, FDR < 0.05). The 
numbers of DE genes between different stages of cancers 
vary across different cancer types (Figure 6A). In KIRP the 
most number (1,318) of genes are more highly expressed 
in late-stage than in early-stage cancers, and in the same 

Figure 5: Survival analyses of cancer patients based on expression of the downregulated genes in cancers (log-rank 
test, unadjusted P-value < 0.05). (A) Compare survival time between NKAPL higher-expression-level and NKAPL lower-expression-
level cancers; (B) Compare survival time between USP2 higher-expression-level and USP2 lower-expression-level cancers; (C) Compare 
survival time between PEG3 higher-expression-level and PEG3 lower-expression-level cancers; (D) Compare survival time between 
SLC5A7 higher-expression-level and SLC5A7 lower-expression-level cancers.
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cancer type the most number (975) of genes are more 
highly expressed in early-stage than in late-stage cancers. 
In contrast, in some other cancer types such as BRCA, only 
two and six genes were upregulated and downregulated in 
late-stage compared to early-stage cancers, respectively. In 
some cancer types such as KIRP, BLCA, KIRC, ACC, and 
COAD, the number of genes with higher expression levels 
in late-stage than in early-stage cancers are much higher 
than that of genes with lower expression levels in late-stage 
than in early-stage cancers. In some other cancer types such 
as THYM, LIHC, HNSC, and LUAD, the situation is just 
the opposite.

Supplementary Tables 10 and 11 list genes whose 
expression is higher and lower in high-grade than in 
low-grade cancers, respectively. In nine of the 12 cancer 
types there are DE genes between different grades of 
cancers (fold change > 1.5, FDR < 0.05). The numbers of 
DE genes between different grades of cancers also vary 
across different cancer types (Figure 6B). In BLCA the 
most number (3,572) of genes are more highly expressed 
in high-grade than in low-grade cancers, and in the 
same cancer type the most number (1,819) of genes are 
more highly expressed in low-grade than in high-grade 
cancers. In contrast, in ESCA only 79 and 118 genes were 
upregulated and downregulated in high-grade compared to 
low-grade cancers, respectively. In some cancer types such 
as STAD, the number of genes with higher expression 
levels in high-grade than in low-grade cancers are much 
higher than that of genes with lower expression levels in 
high-grade than in low-grade cancers (1,420 versus 573). 
In some other cancer types such as CESC, we observed the 
opposite situation (35 versus 156).

These results indicate that during cancer progression 
some cancers such as BLCA, KIRP, KIRC, HNSC, LIHC 
and UCEC exhibit expression disturbances in a large 
number of genes, while some other cancers such as BRCA, 
PAAD, LUAD, LUSC, and SKCM exhibit expression 
disturbances in a small number of genes. Interestingly, 
although both stage and grade indicate the degree of 
cancer progression, in some cancer types such as STAD, 
ESCA, and CESC, the markedly different numbers of 
DE genes between lowly-advanced and highly-advanced 
cancers were identified in the stage and grade phenotype 
comparisons (Figure 6A, 6B).

Identification of genes upregulated in highly-
advanced cancers

We identified 71 genes which are upregulated in late-
stage compared to early-stage cancers in more than three 
cancer types (Supplementary Table 12). We call the 71 
genes late-stage-activated (LSA) genes. Pathway analysis 
of the 71 LSA genes identified four significant Rectome 
pathways: extracellular matrix organization (P-value 
= 6.9*10-15), collagen formation (P-value = 2.1*10-14), 
cell surface interactions at the vascular wall (P-value = 
9.4*10-6), and integrin cell surface interactions (P-value 
= 0.0002). Obviously, these pathways are associated with 
cancer progression and metastasis characteristics such 
as cell interaction, cell adhesion, and cell motility. Some 
of the LSA genes have been shown to be overexpressed 
in advanced cancers and be associated with unfavorable 
clinical outcomes such as SOX11 [73, 74], PTPRN 
[75], PNCK [76] and HMGA2 [77–79]. In addition, we 

Figure 6: Number of differentially expressed (DE) genes between lowly-advanced and highly-advanced cancers across 
different cancer types. (A) Number of DE genes between early-stage and late-stage cancers; (B) Number of DE genes between low-
grade and high-grade cancers.
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identified 212 genes which are upregulated in high-grade 
compared to low-grade cancers in more than three cancer 
types (Supplementary Table 13). We call the 212 genes 
high-grade-activated (HGA) genes. Pathway analysis 
of these HGA genes identified 63 significant Rectome 
pathways (Supplementary Table 14). These pathways 
are mainly involved in cell cycle, DNA replication, and 
immune system whose dysregulations are the leading 
causes of cancer development [8, 9].

There are much more HGA genes upregulated 
in cancers than HGA genes downregulated in cancers 
compared to normal tissue. For example, in more than 
nine (50%) of the 18 cancer types, 128 (60%) of the 212 
HGA genes are upregulated in cancers, compared to 15 
(7%) of the 212 HGA genes downregulated in cancers 
(Fisher's exact test, P-value < 2.2*10-16). Similarly, 
there are much more LSA genes upregulated in cancers 
than LSA genes downregulated in cancers compared to 
normal tissue. For example, in more than nine (50%) 
of the 18 cancer types, 26 (37%) of the 71 LSA genes 
are upregulated in cancers, compared to 9 (13%) of the 
71 LSA genes downregulated in cancers (Fisher's exact 
test, P-value =0.0016). These results indicate that cancer 
initiation (normal tissue evolving into cancer tissue) 
and cancer progression (low-grade cancers evolving 
into high-grade cancers, or early-stage cancers evolving 
into late-stage cancers) may depend on many common 
changes in gene expression profiles. In fact, we found a 
number of genes whose expression follows this pattern: 

late-stage cancers > early-stage cancers > normal tissue. 
For example, in the eight cancer types (BLCA, BRCA, 
COAD, KIRC, LIHC, LUAD, THCA and UCEC) with 
both stage phenotype information and normal control 
samples, SOX11 expression follows the pattern in four 
cancer types (BLCA, KIRC, LIHC and THCA) (Figure 
7A). Similarly, we found a number of genes whose 
expression follows this pattern: high-grade cancers > 
low-grade cancers > normal controls. For example, in 
the seven cancer types (BLCA, ESCA, HNSC, KIRC, 
LIHC, STAD and UCEC) with both grade phenotype 
information and normal control samples, expression of 
AURKB, BUB1, FOXM1, HMMR, MYBL2, and PLK1 
follows the pattern in five cancer types (BLCA, HNSC, 
KIRC, LIHC, and UCEC) (Figure 7B). These results 
confirm that overexpression of PLK1 [38–42], BUB1 
[80], AURKB [50], HMMR [81], FOXM1 [30–33], 
MYBL2 [34] and SOX11 [73, 74] are associated with 
both cancer onset and cancer progression.

Surprisingly, very few (only seven) genes are 
common between the LSA gene list and the HGA gene list. 
In fact, the gene expression profiling alteration (GEPA) 
from normal tissue to cancers is closer to the GEPA 
from low-grade to high-grade cancers than to that from 
early-stage to late-stage cancers. For example, 42 (82%) 
of the 51 genes overexpressed in all the 18 cancer types 
are included in the HGA gene list, compared to one (2%) 
of the 51 genes included in the LSA gene list (Fisher's 
exact test, P-value < 2.2*10-16). In more than nine (50%) 

Figure 7: Genes have increased or decreased expression alterations from normal tissue to lowly-advanced cancers, 
and to highly-advanced cancers (Student's t test, P-value < 0.05). (A) Genes whose expression follows the pattern: late-stage 
cancers > early-stage cancers > normal tissue; (B) Genes whose expression follows the pattern: high-grade cancers > low-grade cancers > 
normal tissue; (C) Genes whose expression follows the pattern: late-stage cancers < early-stage cancers < normal tissue; (D) Genes whose 
expression follows the pattern: high-grade cancers < low-grade cancers < normal tissue.
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of the 18 cancer types, 128 (60%) of the HGA genes are 
more highly expressed in cancers than in normal tissue, 
compared to 26 (37%) of the LSA genes (Fisher's exact 
test, P-value =0.0006). It is consistent with a recent study 
showing that cancer grade, but not stage, was driven by 
transcriptional alterations [82].

Identification of genes downregulated in highly-
advanced cancers

We identified 13 genes downregulated in late-stage 
compared to early-stage cancers in more than three cancer 
types (Supplementary Table 15). We call the 13 genes 
(DNASE1L3, CD1E, SLC44A4, PLIN5, IYD, RORC, 
GGT6, FBP1, ALDH1L1, PIGR, SPATA18, ARPP21 
and CWH43) late-stage-inactivated (LSiA) genes. 
Pathway analysis of these LSiA genes did not find any 
significant Rectome pathway associated with them. In 
addition, we identified 58 genes downregulated in high-
grade compared to low-grade cancers in more than three 
cancer types (Supplementary Table 16). We call the 58 
genes high-grade-inactivated (HGiA) genes. Pathway 
analysis of these HGiA genes identified three significant 
Rectome pathways: biological oxidations, phase 1 - 
functionalization of compounds, and cytochrome P450 - 
arranged by substrate type. The associations between these 
pathways and cancer progression are unclear and remain 
to be investigated.

There are more HGiA genes downregulated in 
cancers than HGiA genes upregulated in cancers compared 
to normal tissue, although the difference is not significant. 
For example, in more than nine (50%) of the 18 cancer 
types, 9 (16%) of the 58 HGiA genes are downregulated 
in cancers, compared to 3 (5%) of the 58 HGiA genes 
upregulated in cancers (Fisher's exact test, P-value = 0.12). 
Similarly, there are more LSiA genes downregulated in 
cancers than LSiA genes upregulated in cancers, although 
the difference is not significant. Likewise, we found a 
number of genes whose expression follows this pattern: 
late-stage cancers < early-stage cancers < normal tissue 
(Figure 7C), such as ADHFE1, LOC653501, NT5DC1, 
RSBN1, SOCS2 and TAPT1 in five cancer types. We 
also found a number of genes whose expression follows 
this pattern: high-grade cancers < low-grade cancers < 
normal tissue (Figure 7D), such as ALDH1L1, WIF1, 
ACSL1, FOS, and ABLIM1 in at least four cancer 
types. ALDH1L1 [83, 84] and WIF1 [85, 86] have been 
shown to be ubiquitously downregulated in cancers, and 
their downregulation was associated with poor clinical 
outcomes in cancer.

Again, very few genes (only three genes ALDH1L1, 
SLC44A4 and IYD) are common between the LSiA gene 
list and the HGiA gene list. It strongly suggests that 
although both stage and grade reflect the status of cancer 
advancement in phenotype, they are markedly different in 
molecular levels.

Pathway analyses of DE genes

We used GSEA software [53] to perform pathway 
analyses of the DE genes between cancer and normal 
samples in each of the 18 cancer types. Supplementary 
Tables 17 and 18 show significant KEGG pathways [87] 
associated with the upregulated and downregulated genes 
in cancers (FDR<0.05), respectively. There are 22 pathways 
only associated with upregulated genes, and six pathways 
only associated with downregulated genes in at least one 
cancer type (Supplementary Table 19). Remarkably, the 
cell cycle pathway is consistently upregulated in all the 18 
cancer types (Figure 8), suggesting that hyperactivation 
of this pathway is a common mechanism underlying 
cancer initiation and progression. The other dysregulated 
pathways in cancer such as DNA replication, repair, and 
recombination, and Notch signaling [9] were also identified 
to be aberrantly activated in various cancers in this study 
(Supplementary Table 19).

Pathway analyses of the DE genes between early-
stage and late-stage cancers in each of the 13 cancer 
types identified 28 and 48 significant KEGG pathways 
associated only with the upregulated genes and only with 
the downregulated genes in late-stage cancers in at least 
one cancer type, respectively (FDR<0.05, Supplementary 
Table 20). Pathway analyses of the DE genes between low-
grade and high-grade cancers in each of the nine cancer 
types identified 44 and 29 significant KEGG pathways 
associated only with the upregulated genes and only with 
the downregulated genes in high-grade cancers in at least 
one cancer type, respectively (FDR<0.05, Supplementary 
Table 21). Supplementary Tables 20 and 21 show that a 
number of pathways are upregulated in highly-advanced 
cancers such as cell cycle, ECM receptor interaction, 
DNA replication, DNA mismatch repair, homologous 
recombination, antigen processing and presentation, and 
nicotinate and nicotinamide metabolism. Among them, 
the pathways cell cycle, DNA replication, DNA mismatch 
repair and homologous recombination have also been 
identified to be consistently upregulated in various cancers 
(Supplementary Table 19). It suggests that hyperactivation 
of these pathways drives both cancer onset and cancer 
progression. The pathways significantly downregulated 
in highly-advanced cancers are mainly involved in 
metabolism regulation such as ether lipid metabolism, alpha 
linolenic acid metabolism, glycolysis gluconeogenesis, 
histidine metabolism, butanoate metabolism, beta alanine 
metabolism, propanoate metabolism, pyruvate metabolism, 
and phenylalanine metabolism.

Intertumor homogeneity and heterogeneity in 
gene expression profiles

We identified a number of genes which are 
consistently upregulated or downregulated in various 
cancers. For example, there are 51 genes consistently 
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upregulated and 11 genes consistently downregulated 
in all the 18 cancer types (Supplementary Tables 22, 
23). Moreover, the cell cycle pathway is consistently 
upregulated in all the 18 cancer types (Supplementary 
Table 19). When comparing highly-advanced with lowly-
advanced cancers, we also identified a number of genes 
consistently upregulated or downregulated in highly-
advanced cancers (Supplementary Tables 24, 25, 26, 
27). For example, there are 70 and 12 genes consistently 
upregulated and consistently downregulated in late-stage 
cancers in at least four cancer types, respectively. There are 
49 and six genes consistently upregulated and consistently 
downregulated in high-grade cancers in at least five cancer 
types, respectively. These results demonstrate that there 
exist common genes and pathways whose dysregulations 
lead to the development of different types of cancer.

In addition, we identified a number of genes which 
are upregulated in some cancer types while downregulated 
in other cancer types (Supplementary Table 28). For 
example, there are 171 genes which are upregulated in at 
least six cancer types while downregulated in other at least 
six cancer types, respectively. We also identified a number 
of genes which are upregulated in highly-advanced cancers 
in some cancer types while downregulated in other cancer 
types (Supplementary Tables 29, 30). For example, there 
are 15 genes which are upregulated in late-stage cancers 
in at least two cancer types while downregulated in other 
at least two cancer types (Supplementary Table 29), and 
110 genes which are upregulated in high-grade cancers 
in at least two cancer types while downregulated in other 
at least two cancer types (Supplementary Table 30). 
Moreover, we identified a number of genes exclusively 

Figure 8: The cell cycle pathway is consistently upregulated in all the 18 cancer types.
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dysregulated in a single cancer type (Supplementary Table 
31, Figure 9). For example, there are 178 and 186 genes 
upregulated and downregulated in GBM, respectively, 
but not in the other 17 cancer types. The number of 
exclusively differentially expressed (EDE) genes in GBM 
is the most among the 18 cancer types, suggesting the 
major specificity in transcriptional dysregulations that 
underly the development of GBM. In fact, a recent study 
has shown that GBM is different from other cancers in 
that TP53-mutated GBM has a better prognosis than 
TP53-wildtype GBM while most of other cancers have 
worse prognoses when TP53 mutated [88]. Interestingly, 
although few genes are exclusively differentially expressed 
between BLCA and normal tissue, a large number of genes 
are exclusively differentially expressed between highly-
advanced and lowly-advanced BLCA. It may suggest that 
the BLCA progression not BLCA onset is associated with 
substantial specific gene expression disturbances.

DISCUSSION

In this study we performed extensive analyses of 
gene expression and clinical data from 33 TCGA cancer 

type-specific datasets. We identified upregulated and 
downregulated genes and pathways commonly across 
different cancer types. Many TF genes (such as E2F1, 
EZH2, FOXM1 and MYBL2) and protein kinase genes 
(such as PLK1, TTK, AURKA, AURKB, BUB1, MELK, 
NEK2, PBK and PKMYT1) are overexpressed in various 
cancers, and their overexpression is associated with poor 
clinical outcomes in cancer (Supplementary Figure 1). 
Clearly, these genes are oncogenes whose hyperactivation 
leads to cancer initiation and progression. In contrast, 
lower expression of the downregulated genes (such as 
SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 
and HMGCLL1) in various cancers is associated with 
poor clinical outcomes in cancer (Supplementary Figure 
1). These genes are tumor suppressor genes whose 
hypoactivation leads to cancer initiation and progression. 
Although many of the identified genes such as E2F1, 
EZH2, FOXM1, PLK1, TTK, AURKA, AURKB, and 
BUB1 have been revealed to be dysregulated in various 
cancers by previous studies, many other genes such as 
PLP1, MYOM1, NKAPL, and USP2 were investigated 
in few cancer-related studies, and thus represent our 
novel findings. Pathway analyses show that the cell cycle 

Figure 9: Number of exclusively differentially expressed (EDE) genes identified in a single cancer type. (A) Number of 
EDE genes between cancer and normal samples; (B) Number of EDE genes between early-stage and late-stage cancers; (C) Number of 
EDE genes between low-grade and high-grade cancers.
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pathway is upregulated commonly in all the cancer types. 
The other dysregulated pathways in various cancers 
include DNA replication, repair, and recombination, 
Notch signaling etc. Moreover, we identified a number 
of genes consistently upregulated or downregulated in 
highly-advanced relative to lowly-advanced cancers. 
An interesting finding is that those genes with higher 
(lower) expression levels in highly-advanced than in 
lowly-advanced cancers are likely to have higher (lower) 
expression levels in cancers than in normal tissue. It 
suggests that common molecular perturbations drive 
cancer evolution from normal tissue to early cancer, 
and from early cancer to late cancer. However, we also 
found many genes which are upregulated in some cancer 
types while downregulated in other cancer types, and 
many genes which are exclusively dysregulated in a 
single cancer type. It suggests that there exists extensive 
intertumor heterogeneity in genomic profiles.

The commonly dysregulated genes and pathways 
identified in various cancers may involve attractive 
therapeutic targets for cancer. For example, since the 
cell cycle pathway is consistently hyperactivated in 
cancers, development of cell-cycle inhibitors may 
be effective in treatment of a wide type of cancers. 
We have identified a number of protein kinase genes 
which are upregulated commonly in cancers and are 
involved in the cell cycle regulation such as PLK1, 
TTK, BUB1, BUB1B, and PKMYT1. Development of 
small molecule inhibitors targeting these protein kinases 
could be a promising direction for curing cancer. On 
the other hand, the identification of a number of genes 
exclusively dysregulated in a single cancer type indicates 
that an individual cancer type may need its own specific 
therapeutic strategies in addition to the common strategies 
in cancer therapy. Furthermore, the identification of a 
considerable number of genes commonly dysregulated 
across various cancers while with different directions 
indicates the complexities of cancer therapy unless the 
dysregulation of these genes is a passenger event.

A limitation of the present study is that a small 
number of normal samples in some cancer types such as 
GBM and CHOL could compromise the validity of the 
results from the analyses of DE genes between normal 
and cancer samples. To overcome the limitation, the 
method of merging samples based on the body sites of 
cancer initiation (such as brain cancer, lung cancer, 
gastrointestinal cancer, kidney cancer, blood cancer, etc.) 
can be used. This is a direction for our future studies.

In addition, many upstream factors may affect 
expression of mRNAs (genes) in cancers such as 
gene mutations, DNA copy number alterations, DNA 
methylation, microRNA expression, and expression 
change of regulators. Combined analysis of other genomic 
profiles with gene expression profiles may gain more in-
depth insights into the mechanism underlying oncogenesis 
[89]. Besides, the study of downstream products (proteins) 
of genes is crucial in cancer research since proteins 

directly determine cell function and fate [90]. Integration 
of different “omics” data to explore oncogenesis in a wide 
type of cancers represents a promising direction for cancer 
research.

MATERIALS AND METHODS

Materials

We downloaded RNA-Seq gene expression data 
(Level 3), and clinical data for all of the 33 cancer types 
for which data are available from the TCGA data portal 
(https://gdc-portal.nci.nih.gov/). For survival analyses 
we used clinical data from FireBrowse (http://gdac.
broadinstitute.org/).

Class comparison to identify differentially-
expressed genes

We first normalized the gene expression data by 
base-2 log transformation, and then identified DE genes 
between two classes of samples using Student's t test. 
We used FDR to adjust for multiple tests. The FDR was 
estimated using the Benjami and Hochberg (BH) method 
[91]. We used the threshold of FDR < 0.05 and mean gene-
expression fold-change > 1.5 to identify the DE genes.

Gene-set enrichment analysis

We performed pathway analysis of gene sets using 
the GSEA tool [53], and network analysis of gene sets by 
STRING [55].

Survival analyses

We performed survival analyses of TCGA patients 
based on gene expression data. Kaplan-Meier survival 
curves were used to show the survival (OS or DFS) 
differences between gene higher-expression-level patients 
and lower-expression-level patients. Gene higher-
expression-level and lower-expression-level patients 
were determined by the median values of gene expression 
levels. If the gene expression level in a patient was 
higher than the median value, the patient was classified 
as gene higher-expression-level; otherwise as gene lower-
expression-level. We used the log-rank test to calculate 
the significance of survival-time differences between two 
classes of patients with a threshold of P-value < 0.05.

CONCLUSION

The present study provides comprehensive portraits 
of transcriptional landscape of human cancers, showing 
extensive intertumor homogeneity and heterogeneity in 
genomic profiles. This work would bring new insights into 
the biology of human cancers.
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