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ABSTRACT

Telmisartan, a bifunctional agent of blood pressure lowering and glycemia 
reduction, was previously reported to antagonize angiotensin II type 1 (AT1) 
receptor and partially activate peroxisome proliferator-activated receptor γ (PPARγ) 
simultaneously. Through the modification to telmisartan, researchers designed and 
obtained imidazo-\pyridine derivatives with the IC50s of 0.49~94.1 nM against AT1 
and EC50s of 20~3640 nM towards PPARγ partial activation. For minutely inquiring 
the interaction modes with the relevant receptor and analyzing the structure-activity 
relationships, molecular docking and 3D-QSAR (Quantitative structure-activity 
relationships) analysis of these imidazo-\pyridines on dual targets were conducted 
in this work. Docking approaches of these derivatives with both receptors provided 
explicit interaction behaviors and excellent matching degree with the binding pockets. 
The best CoMFA (Comparative Molecular Field Analysis) models exhibited predictive 
results of q2=0.553, r2=0.954, SEE=0.127, r2

pred=0.779 for AT1 and q2=0.503, r2=1.00, 
SEE=0.019, r2

pred=0.604 for PPARγ, respectively. The contour maps from the optimal 
model showed detailed information of structural features (steric and electrostatic 
fields) towards the biological activity. Combining the bioisosterism with the valuable 
information from above studies, we designed six molecules with better predicted 
activities towards AT1 and PPARγ partial activation. Overall, these results could be 
useful for designing potential dual AT1 antagonists and partial PPARγ agonists.

INTRODUCTION

Type 2 diabetes mellitus (T2DM) was thought to result 
from the combination of genetic factor, such as lifestyle 
changing, population aging, exercise reducing [1, 2]. It is 
predicted that the number of people with this disorder will be 
increasing without highly efficient therapy [3, 4]. In addition, 
diabetes mellitus was thought to exhibit some relationship 
with hypertension. The incidence of hypertension occurring 
to patients with diabetes mellitus is almost twice higher than 
those with no diabetes mellitus. The greater mortality of 
patients in diabetes mellitus right attributed to cardiovascular 

diseases, among which hypertension takes up to high 
proportion of 75% [5]. So, developing novel and potent 
agents to concurrently treat hyperglycemia and hypertension 
with high occurrence allows of no delay.

Telmisartan, which antagonized angiotensin II type-1 
receptor (AT1R), was a novel oral agent for blood pressure 
reducing and cardiovascular protection [6]. Previously, it 
was reported to display dual activities of antagonizing AT1 
and partially activation towards PPARγ [7–9].

The peroxisome proliferator-activated receptors 
(α, δ and γ) belong to the nuclear hormone receptor 
superfamily that regulate the expression of target genes 
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[10, 11]. PPARγ, the most thoroughly studied isoform 
in the treatment of metabolic syndrome [12], is widely 
expressed in adipose tissue, macrophages, liver, kidney 
and lung [13]. The binding of active ligands to PPARγ 
would modulate the expression of related genes, play 
vital role in lipogenesis, glycolipids metabolism and 
immune system [14]. Thiazolidinediones (TZDs, such as 
rosiglitazone and piglitazone) can greatly activate PPARγ. 
TZDs were first reported as insulin-sensitizing drugs in 
the early 1980s by the pharmaceutical company Takeda 
and developed for the treatment of type 2 diabetes mellitus 
in clinical practice [15–17]. However, the administration 
of TZDs could produce severe side effects such as fluid 
retention, weight gain, cardiac hypertrophy, bone fractures, 
and hepatotoxicity [18]. As reported in 2007 by Nissen 
and Wolski, rosiglitazone was removed from the European 
market due to its association with excessive cardiovascular 
risk [12, 19, 20].

Renin-angiotensin system (RAS) has reported to 
exhibit significant roles in reducing blood pressure and 
maintaining electrolyte and fluid homeostasis. Angiotensin 
receptor included in this system is a hypertension-related 
G protein-coupled receptor (GPCR) [21]. There are two 
main types: AT1 and angiotensin II type-2 receptor (AT2), 
among which the former receives the most research 
[22]. The bio-effects of angiotensin II (Ang II), such as 
vasoconstriction, the increase of vasopressin secretion and 
myocardial hypertrophy, are primarily developed via the 
activation of AT1 while activating AT2 will inhibit cell 

growth and lead to cell differentiation and apoptosis [23–
25]. AT1 receptor blockers (ARBs), namely sartans, which 
enable to block the action of AT1 receptor, were developed 
to treat unfavorable symptoms [9, 26, 27].

As summarized in Figure 1, PPARγ closely 
correlated with RAS (rennin-angiotensin system). The 
mutation of PPARγ would induce the enhanced expression 
of AT1R, leading to an increase of Ang II. As a result, the 
following reactive oxygen species cause hypertension 
symptom. Fortunately, the reported PPARγ agonists like 
TZDs could activate PPARγ as well as block its mutation, 
thus interrupting the following process just as the role of 
small interfering RNA and AT1R blockers [28].

In order to find novel drugs with dual AT1 antagonism 
and partial PPARγ activation activities, the structure of 
telmisartan (Figure 2) could be modified to retain the AT1 
receptor antagonistic activity and enhance the partially 
PPARγ agonistic activity. Series of imidazo[4,5-b]pyridines 
and imidazo[4,5-c]pyridin-4-one derivatives (Figure 
2) were obtained by Agustin Casimiro-Garcia [17, 29] 
via maintaining the main scaffold of telmisartan. These 
compounds showed robust AT1 antagonistic activity and 
partial activation of PPARγ. Their activities were evaluated 
with the IC50s of 0.49~94.1 nM against AT1 and EC50s of 
20~3640 nM for PPARγ partial activation.

For the purpose of minutely determining the 
binding mode and structure-activity relationship (SAR) 
of these molecules, docking and CoMFA (Comparative 
Molecular Field Analysis) studies were conducted in 

Figure 1: The closely relationship between PPARγ and RAS (rennin-angiotensin system). As shown, PPARγ mutations would 
increase the expression of AT1 receptor, thus leading to hypertension through produced reactive oxygen species (ROS) and inflammation. 
However, treatment of TZDs, small interfering RNA and AT1R blockers will interrupt this effect by interfering different phases.

Figure 2: Structural scaffolds of imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridin-4-one derivatives modified from 
telmisartan.
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our work. Wholly, these results from the computational 
techniques could be useful for designing potential dual 
AT1 antagonists and PPARγ partial agonists.

RESULTS AND DISCUSSION

Molecular docking

For a deep insight into the crucial interactions of 
molecules with AT1 and PPARγ, these imidazo-\ pyridine 
derivatives (Table 1) were docked into the protein’s 
binding site using standard-precision (SP) docking tool 
[30]. As presented in Figure 3, the fascinating illustrations 
of ligands (8 and telmisartan) with AT1 pocket could 
be of great help to understand the binding mechanism. 
The whole structural skeletons of both molecules were 
appropriate for the pocket environment. The representative 
compound 8 superimposed perfectly with telmisartan in 
the binding surface, especially the hydrophobic moiety as 
well as the parts of hydrogen donors and acceptors, which 
validated the similar modes to telmisartan. Additionally, 
telmisartan matched better with the receptor surface 
compared with compound 8, illustrating the higher AT1 
antagonistic activity than 8. This was mainly derived 
from the different R substituent in structures, which led to 
some divergence in position or orientation in the binding 
surface. As to the detailed interactions in AT1 pocket, 
the critical hydrogen bonds of compound 8 with residues 
Tyr35, Arg167 and Lys199 were almost consistent with 
telmisartan. Both molecules formed π-π interaction with 
Trp84 as well. Above-mentioned results from docking 
analysis verified the bio-activities of these compounds 
against AT1 receptor.

Seen from Figure 4A, compound 8, 19 and co-
crystallized ligand 1 matched well in PPARγ binding 
surface. As R1 substituent was radically diverse, the 
orientation of this part in the surface was somewhat 
inconsistent with each other. The R1 part of compound 19 
obviously extended to the narrow pocket, so compound 
19 was in perfect accordance with PPARγ pocket in 
comparison to 1 and 8, validating its higher agonistic 
activity. Therefore, a proper modification to R1 will 
probably be beneficial to the PPARγ partial activity, such 
as increasing the substituent, extending the carbon chain.

Unexpectedly in PPARγ interaction modes, the 
lipophilic tails (R1) of 1, 8 and compound 19 were buried 
in AF-2 domain of the binding pocket, interacting with 
residues His323, Tyr327 and His449 through non-polar 
or van der Waals interactions as indicated in previous 
paper [17, 29]. Clearly, their interaction modes were 
substantially distinct from the typical PPARγ agonists, 
whose acid heads directly interacted with His323, Tyr327 
and His449. Although the acidic tetrazole ring of 1, 8 
and 19 bound well in similar orientation, their binding 
behavior in the active site displayed some different. The 
N-2 of tetrazole ring in molecule 1 and 8 interacted with 

Arg288 through forming an H-bond while 19 formed 
another H-bond between the N-1 of tetrazole and NH of 
Ser342, which was mainly due to the structural flexibility.

CoMFA statistical analysis

AT1 model

The CoMFA model was derived using a training 
set of 26 imidazo-\ pyridines including 10 imidazo[4,5-b]
pyridines and 15 imidazo[4,5-c]pyridin-4-one derivatives 
with telmisartan as the template. The test set including five 
molecules was to validate the external predictive power of 
the CoMFA model. The predictive and residual values of 
the dataset were mentioned in Table 2, and other statistical 
results from the best model were listed in Table 3.

As shown in Table 3, the cross-validated correlation 
coefficient q2 through LOO method was 0.553 and the 
number of optimal components was 3. With the observed 
optimal ONC, the favorable conventional correlation 
coefficient r2 (0.954), SEE (0.127) and F value (117.807) 
from no validation method implied a highly qualified and 
robust CoMFA model. Figure 5 illustrated an excellent 
agreement between the actual pIC50s and the predicted 
values of the training set (Figure 5A) and the test set 
(Figure 5C). Nevertheless, the predicted correlation 
coefficient r2

pred (0.779) from the test set confirmed the 
CoMFA model to be highly predictive. The distributions 
for steric and electrostatic fields were 61.9% and 38.1%, 
respectively, suggesting a higher steric contribution to AT1 
antagonistic activity than electrostatic field.
PPARγ model

A training set of 21 imidazo-\ pyridines and a test 
set of five other derivatives were employed to construct 
and validate the CoMFA model, respectively. The 
statistical data were summarized in Table 2 and Table 
3. PLS method yielded the terms of q2 (0.503) with ten 
principal components, r2 (1.00), SEE (0.019) and F value 
(2107.933). Similarly to AT1, steric field (75.4%) was 
found to exhibit an absolutely higher contribution towards 
PPARγ partial agonism compared to the electrostatic field 
(24.6%). The linear regression curve portrayed in Figure 
5D (r2

pred=0.604) along with the q2 value (>0.6) implied the 
CoMFA model to be relatively robust and stable.

The satisfactory statistical results demonstrated the 
predictivity and accuracy of the CoMFA models (AT1 and 
PPARγ). The qualified models could be used in further 
study to evaluate and design novel imidazo-\ pyridine 
derivatives with potential AT1 antagonism and PPARγ 
partial activation.

The StDev*Coefficient CoMFA contour maps

The contour plots of the steric and electrostatic 
fields observed from the best CoMFA models of both 
targets were depicted in Figures 6–9. The type of 
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Table 1: Structures and bioactivities (AT1-IC50 and PPARγ-EC50) of imidazo-\ pyridine derivatives from available 
literatures [17, 29]

No. R1 R2 R3 R4
AT1

IC50(nM)
PPARγ 

EC50(nM)

Telmisartan 0.49 1520

1 H 7.6 591

2 H 13.3 1320

3 H 10.2 295

4 H 8.2 762

5 15.7 1340

6 H 6.8 494

7 H 16.9 264

8 H 1.6 212

9 H 3.5 89

10 H 5.2 90

11 H H 12.7 292

12 H H 19.8 1250

(Continued )
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No. R1 R2 R3 R4
AT1

IC50(nM)
PPARγ 

EC50(nM)

13 H H 19.4 1710

14 H H 41 942

15 H H 37.7 103

16 H H 5.1 97

17 H H 13.5 685

18 H H 94.1 187

19 H H 29.3 20

20 H H 67.4 159

21 H H 36.9 108

22 H H 63.8 3580

23 H H 45.2 3640

(Continued )
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No. R1 R2 R3 R4
AT1

IC50(nM)
PPARγ 

EC50(nM)

24 H 6.8 42

25 H 7 295

Figure 3: (A) Binding surface of compound 8 (green) and telmisartan (magenta) with AT1 receptor pocket (PDB ID: 
4ZUD). (B) Interaction behaviors of compound 8 (green) and telmisartan (magenta) in AT1 receptor active site. H-bond interactions were 
represented by green dashed line. Telmisartan was regarded as a positive control.

Figure 4: (A) Binding surface of compound 8 (green), 19 (orange) and co-crystallized ligand 1 (magenta) with PPARγ 
pocket (PDB ID: 3R8A). (B) Interaction behaviors of compound 8 (green), 19 (orange) and co-crystallized ligand 1 (magenta) in PPARγ 
active site. H-bond interactions were represented by green dashed line. Co-crystallized ligand 1 was regarded as a positive control.
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Table 3: Statistical parameters from the best AT1 and PPARγ CoMFA models

Statistical Parameters
CoMFA

AT1 PPARγ

Leave-One-Out(LOO)
q2 0.553 0.503

ONC 3 10
r2 0.954 1.000

No validation
SEE 0.127 0.019

F value 117.807 2107.933
rpred

2 0.779 0.604

Field distributions (%)
Steric 61.9 75.4

Electrostatic 38.1 24.6

a: the cross-validated correlation coefficient, q2; b: the optimum number of components, ONC; c: the conventional correlation 
coefficient, r2: d: standard error of estimate, SEE; e: Fisher Test value; f: the predicted correlation coefficient, r2

pred.

Table 2: The actual and predictive activity values of the training and test datasets from the best AT1 and PPARγ 
CoMFA models

No.
AT1 PPARγ

Actual pIC50 Predicted pIC50 Residual error Actual pEC50 Predicted pEC50 Residual error

Telmisartan 0.3098 0.222 0.0879 -3.1818 -3.181 -0.0008
1 -0.8808 -1.008 0.1271 -2.7716 -2.781 0.0096
2 -1.1239 -1.035 -0.0888 -3.1206 -3.109 -0.0114
3 -1.0086 -1.051 0.0429 -2.4698 -2.473 0.0032
4#* -0.9138 -0.846 -0.0678 -2.8820 -3.379 0.4967
5 -1.1959 -1.117 -0.079 -3.1271 -3.121 -0.0063
6 -0.8325 -0.873 0.0406 -2.6937 -2.719 0.0252
7 -1.2279 -0.923 -0.3054 -2.4216 -2.404 -0.0172
8* -0.2041 -0.418 0.2141 -2.3263 -2.326 -0.0003
9 -0.5441 -0.496 -0.0482 -1.9494 -1.954 0.0049
10* -0.7160 -0.636 -0.0804 -1.9542 -2.572 0.6178
11# -1.1038 -1.618 0.5142 -2.4654 -2.431 -0.034
12* -1.2967 -1.262 -0.0344 -3.0969 -2.569 -0.5279
13 -1.2878 -1.363 0.0756 -3.2330 -3.215 -0.0179
14 -1.6128 -1.53 -0.0829 -2.9741 -2.985 0.0106
15 -1.5763 -1.455 -0.1217 -2.0128 -2.014 0.0013
16# -0.7076 -1.41 0.7024 -1.9868 -2.003 0.0166
17 -1.1303 -1.028 -0.1021 -2.8357 -2.842 0.0061
18 -1.9736 -2.091 0.1173 -2.2718 -2.27 -0.0016
19 -1.4669 -1.466 -0.0011 -1.3010 -1.304 0.0035
20#* -1.8287 -1.717 -0.1117 -2.2014 -2.736 0.5346
21 -1.5670 -1.675 0.1075 -2.0334 -2.046 0.0128
22 -1.8048 -1.762 -0.0427 -3.5539 -3.564 0.0102
23 -1.6551 -1.773 0.1175 -3.5611 -3.565 0.0036
24# -0.8325 -1.325 0.4925 -1.6232 -1.611 -0.0125
25 -0.8451 -0.901 0.0561 -2.4698 -2.464 -0.0057

# test set of AT1 model, * test set of PPARγ model.
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Figure 6: The steric field contour maps of representative compounds from the best CoMFA model (AT1). Green regions 
referred to higher activity by introducing bulker groups while the yellow parts would lead to increased activity with smaller substituents. 
(A) telmisartan (the most active molecule), (B) compound 8.

Figure 5: The graphical presentations of the predicted activities versus the actual activities using the best CoMFA 
models. (A) Fitted prediction for the training set of best AT1 model (r2=0.954). (B) Fitted prediction for the training set of best PPARγ 
model (r2=1.00). (C) Fitted prediction for the test set of best AT1 model (r2

pred=0.779). (D) Fitted prediction for the test set of best PPARγ 
model (r2

pred=0.604).
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CoMFA field was regulated to StDev*Coeff (the standard 
deviation and the coefficient). The field levels for favored 
and disfavored regions were set to be default (80.0% 
and 20.0%, respectively). In steric field contour maps 
(Figure 6 and Figure 8), green blocks referred to areas 
where increasing the steric bulk of one substituent would 

enhance the activity while yellow areas represented the 
opposite. Similarly in electrostatic field maps (Figure 7 
and Figure 9), blue contours indicated a higher bioactivity 
by introducing electron-donating groups. The red parts, 
however, presented that the potency will be improved with 
the electron withdrawing substituent.

Figure 8: The steric field contour maps of representative compounds from the best CoMFA model (PPARγ). The sterical 
favourable and unfavourable regions were represented in green and yellow, respectively. (A) compound 8, (B) compound 19 (the most 
active molecule).

Figure 9: The electrostatic field contour maps of representative compounds from the best CoMFA model (PPARγ). The 
blue and red contours respectively indicated that electropositive and electronegative substituents in the corresponding positions would lead 
to increased inhibitory activity. (A) compound 8, (B) compound 19 (the most active molecule).

Figure 7: The electrostatic field contour maps of representative compounds from the best CoMFA model (AT1). The 
blue and red contours respectively indicated that electropositive and electronegative substituents in the corresponding position would lead 
to increased antagonistic activity. (A) telmisartan (the most active molecule), (B) compound 8.



Oncotarget25621www.impactjournals.com/oncotarget

AT1 model

As interpreted in Figure 6, there was a large 
yellow polyhedron falling between the benzyl of the 
central benzimidazole ring and the imidazole group of 
the distal benzimidazole, indicating a greater influence 
on AT1 antagonistic activity. Accordingly, properly 
reducing the volume of the substituent would favor 
a lot to the activity. A green polyhedron with small 
size mapping the benzyl of the distal benzimidazole 
was hypothesized that a little increase to the bulk of 
the substituent on the benzyl would be beneficial. 
According to the CoMFA map of compound 8, a 
similar yellow piece overlapped the half of pyridine in 

the imidazo[4,5-b]pyridine, which suggested that the 
volumes of particular R2 part were negatively correlated 
to AT1 antagonistic activity. Therefore, compound 5 
(15.7nM) holding an ethyl group in R2 position reduced 
the role in antagonism compared to compound 1 (7.6nM) 
with no substitution. Absolutely greater potency to 8 
(1.6nM) and 9 (3.5nM) over compound 1 (7.6nM), 6 
(6.8nM) and 3 (10.2nM) respectively just exemplified 
the significant role by the green block near R1 part.

The contributions of the electrostatic field to 
the representative telmisartan and 8 were described in 
Figure 7. In details for the contour map of telmisartan, a 
large blue contour mapping the imidazole group of the 

Figure 10: The SAR of imidazo-\ pyridine derivatives from the best CoMFA models (AT1 and PPARγ).

Figure 11: (A) The common substructure (magenta section) on the template of telmsartan (AT1 model) for 
superimposition. (B) The common substructure (magenta section) on the template of 19 (PPARγ model) for superimposition. (C) The 
molecular alignment of the training set on AT1 model. (D) The molecular alignment of the training set on PPARγ model.
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Table 4: The structures and predicted AT1/PPARγ activities of new designed molecules based on the best CoMFA models

No. R1 R2 R3 R4 R5 pIC50 (AT1) pEC50 (PPARγ)

A1 H H -0.429 -1.735

A2 H H -0.479 -1.767

A3 H H -0.497 -1.763

A4 H -0.654 -1.512

A5 H -0.657 -1.544

A6 H -0.724 -1.525

8 H -0.418 -2.326

19 -1.466 -1.304
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distal benzimidazole indicated that the electropositive 
substituent was preferred for greater effect against AT1 
activity. The red parts located in the hydroxyl of carboxyl 
group and the C-4 position of the central benzimidazole 
referred that the electronegativity of the groups at this 
position tended to be beneficial to the activity. Taking 
compound 8 for further analysis, there was a big blue 
piece located around R1, perfectly illustrated a better 
activity of compound 8, 9 with isobutyl and 10 with 
benzyl than compounds with methyl in R1 part. Besides, 
compound 16 with an methyl group substituting R1 part 
showed clearly higher potency than compound 15, 17, 
18, 19 and 20 with electron withdrawing -F, -CN, -CF3,-
OCF3 and -F group. Several red blocks around R2 moiety 
indicated a potentially better efficacy if with electron 
withdrawing groups.
PPARγ model

The contributions of steric and electrostatic fields 
to PPARγ partial activation were 75.4% and 24.6%, 
respectively. So the sterical bulk played decisive role in 
controlling the PPARγ partial agonism. Figure 8 illustrated 
the steric contour maps of 8 and 19 towards PPARγ model. 
Seen from Figure 8A, a large green region located near 
R1, illustrating a better PPARγ activity if with properly 
bigger substituent, which could be verified by compound 1 
(591nM), 6 (494nM), 8 (212nM) and 10 (90 nM). Around 
part R2, there were several small yellow blocks, indicating 
that groups with small volume were beneficial to the 
partial agonism activity. That was why –H was applied to 
R2 of imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridin-
4-one derivatives. Additionally, a single big yellow piece 
situated near R4 moiety, so molecule 2 (1320nM) with 
n-propyl tended to be less active than 1 (591nM) with 
anethyl group. As observed from the study, ethyl tended to 
be an excellent group for potent PPARγ partial activation. 
As to the series of imidazo[4,5-c]pyridin-4-one derivatives 
(Figure 8B), a small green block near -OCF3 of part R1 
(19) exactly explicated the higher potency than 18 with 
-CF3 group and 15 with -F substituted. An independent 
green piece mapped the vicinity between C-4 and C-5 
position in molecule 19, assuming that the bulker group in 
this part would lead to increased agonistic activity.

Seen from Figure 9A, a large blue block as well 
as a small red piece lay around part R1 of compound 8, 
supposing an increase in PPARγ partial activity with 
electron-donating groups. Additionally in Figure 9B, a 
relatively small red region stretched into C-2 position of 
part R1, validating that molecule 11 (292nM) with –H, 15 
(103nM) with -F atom, 16 (97nM) with –CH3, 17 (685nM) 
with -CN, 18 (187nM) with –CF3 group displayed lower 
activity than molecule 19 (20nM). The larger blue block 
in C-5 position of part R1 assumed that the PPARγ partial 
activation may enhance if substituted with electron-
donating groups. Additionally, the small red region around 

6 position of R1 (Figure 9B) might induce increased 
agonism by electron-withdrawing groups.

With overall analysis to imidazo-\ pyridine 
derivatives, we could summarize the rules (Figure 10) as 
follows: (1) Increasing the R1 substituent properly will be 
beneficial to enhance PPARγ partial activity and maintain 
AT1R antagonistic activity; (2) The electronagative groups 
like trifluoromethoxy in C-2 of part R1 caused the dual 
activities to increase and compounds with 2-substituted 
groups tended to be more active than that of other 
positions; (3) R2 substitution was improper for enhancing 
the activities towards AT1R antagonism and PPARγ partial 
activation; (4) ethyl or propyl in R4 was appropriate for 
dual activities, larger substituents were unworkable; (5) 
Tetrazole ring or carboxylic acid in R5 was responsible for 
better dual activities.

Structural optimization

Considering the structural factors towards AT1 and 
PPARγ partial activities, six molecules (Table 4) were 
rationally modified and screened based on the structure 
of compound 8. In the design process, we replaced 
the tetrazole ring with carboxylic acid group via the 
bioisostere principle and primarily substituted R1 and R3 
parts with proper groups according to the contour maps 
from best AT1/PPARγ CoMFA models. The activities of 
these designed structures towards AT1 and PPARγ were 
predicted to be almost better compared to that of reported 
imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridin-4-
one derivatives. The successful molecule design above 
illustrated that the constructed CoMFA models were 
highly stable and practicable to acquire novel, potential 
dual AT1 antagnists and PPARγ partial agonists.

MATERIALS AND METHODS

Data set

A set of imidazo-\ pyridines with dual activities 
towards AT1 antagonism (IC50: 0.49~94.1 nM) and 
PPARγ partial activation (EC50: 20~3640 nM) (Table 1) 
were collected from the published literatures [17, 29]. In 
the study, compounds with highly structural difference 
and no explicit activity values were excluded and not 
applied into the modeling. For modeling convenience, 
the eventual 26 molecules including telmisartan, 10 
imidazo[4,5-b]pyridines and 15 imidazo[4,5-c] pyridin-
4-one derivatives were selected and renumbered. 
The values of AT1 antagonistic activity and PPARγ 
partial activation were changed into the corresponding 
pIC50 (-log IC50) and pEC50 (-log EC50) respectively as 
dependent variables in the study. These molecules were 
divided into a training set and a test set randomly with a 
certain proportion (4:1) aiming to include the structural 
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and biological diversity [31, 32]. The former set was 
used to conduct the predictive CoMFA model while the 
latter was to validate and evaluate the predictability 
[33]. In this work, training sets of 21 molecules and 
test sets of 5 molecules respectively for CoMFA models 
(AT1 and PPARγ) were divided.

Construction and optimization of 3D structures

Before modeling, the planar structures of these 
imidazo-\ pyridine derivatives were first sketched utilizing 
ChemBioDraw software. Through the transformative 
function of “3D Geometry (Concord)” protocol 
implemented in SYBYL-X 2.1 software, we received the 
3D structures of 26 derivatives. Afterwards, the optimized 
3D conformations were obtained by “minimize” command 
using Powell method and Tripos force field. With the 
Gasteiger-Huckel Charges computation method, the 
process was initially performed in a simplex way and the 
termination value was set to gradient 0.005kcal/mol·Å and 
max iterations to 1000 [34]. Other settings in this module 
were default.

Preparation of receptors and small ligands

Prior to docking, all preparations of receptors (AT1 
and PPARγ) and ligands were done via the corresponding 
panels implemented in Maestro v10.2 (Schrödinger, LLC, 
New York, 2015) [35]. The proteins for docking analysis 
were downloaded from RCSB Protein Data Bank (http://
www.rcsb.org/pdb/home/home.do, PDB ID: 4ZUD for 
AT1, 3R8A for PPARγ) [17, 36]. All these compounds 
were docked into the receptor’s active binding cavity.

As to the optimization of receptors (AT1 and 
PPARγ), we utilized “Protein Preparation Wizard (PPW)” 
protocol to assign bond orders, add hydrogens, create 
zero-order bonds to metals, create disulfide bonds, cap 
termini and delete waters [37]. For the sake of optimizing 
the -OHs orientation and regulating the state of some 
amino acids, the H-bond optimization was proceeded 
accordingly. Energy minimization was monitored with 
the root mean square deviation (RMSD) set to 0.5 and the 
force field environment to Optimize Potentials for Liquid 
Simulations 2005 (OPLS_2005) [38]. Then all molecules 
were assigned to “LiPrep” module (Schrödinger, LLC, 
New York, 2015) for preparation [39, 40]. The pH 
condition for ionization generation was set to 7.0 +/- 2.0 
while the force field to be default OPLS_2005 as receptor 
preparation to avoid bonds crash.

Molecular docking study

Once the cubic grid box (10×10×10 Å for AT1 
and 12×12×12 Å PPARγ) around the active site residues 
generated, the prepared molecules and proteins were 
submitted to Glide docking panel (Schrödinger, LLC, New 
York, 2015) for a perfect docking analysis [41]. According 

to the subsequent docking results, we were able to analyze 
the binding stability of a ligand-protein complex and the 
matching degree in the binding surface.

Molecular alignment

A perfect database alignment is crucial for deriving 
a reliable CoMFA model and improving the predictability 
[31, 42]. “Align Database” panel in SYBYL-X 2.1 was 
adopted to superimpose the compounds set to the template 
molecule when fixed the common substructure (Figure 
11). Considering the configurations in imidazo-\ pyridine 
derivatives, the common moieties of these two groups in 
this study were determined as indicated in Figure 11A 
and 11B. The reference structures for superimposition 
were the most active telmisartan (AT1) and 19 (PPARγ), 
respectively.

CoMFA models

After database alignment, the activity values of 
these derivatives were imported to calculate the CoMFA 
descriptors. CoMFA analysis is a method involving the 
shapes of molecules. It operated on energy values at 
points in space surrounding the molecules. Efforts to 
construct better model, 30.0 kcal/mol cutoff values for 
steric and electrostatic fields were assigned in creating 
Tripos Standard field. The energy calculations of 
steric (Lennard-Jones 6-12 potential) and electrostatic 
(Coulombic potential) fields were done automatically by 
the default setting, using a probe atom with van der Waals 
(vdW) properties of c.3 (sp3 carbon as steric probe) and a 
charge of +1 (as electrostatic probe) [43]. Every molecule 
was set in 2Å spacing in all directions. The distance was 
selected as the dielectric value to control the form of the 
Coulombic electrostatic energy calculation [44].

When the parameters of the model calculated, 
Partial Least Squares (PLS) method was adopted to derive 
linear relationships between the bioactivity values and the 
CoMFA descriptors [37, 45]. PLS analysis is generally 
performed in two stages. The first stage is with Leave-
One-Out (LOO) method to determine how rich or complex 
a model is appropriate for the data values or how many 
components to use. LOO method means one molecule was 
removed from the data set and the activity was predicted 
by the rest [46]. Along with the optimum number of 
components (ONC) and no validation method, the second 
stage was to establish the single model that best represents 
the data. The cross-validated correlation coefficient q2 
produced from the internal test determined the goodness-
of-fit of the model [47]. This value was calculated using 
the following equation:
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Where Ypred and Yact refer to the predicted and 
actual activities of each molecule towards single target, 
respectively; Ymean is the mean activities of whole 
training set.

Other statistical outcomes yielding from stage two 
to evaluate the fitting capability, robustness and stability 
of the model were standard error of estimate (SEE), the 
conventional correlation coefficient (r2), Fisher Test (F) 
value and fields (steric and electrostatic) contributions. If 
q2 value is below 0.5 or r2 no greater than 0.6, the model 
is indicated to be relatively poor [48]. Additionally, the 
closer the SEE value is to 0 and the larger value to F, the 
higher predictivity the model will be [32].

Once the CoMFA model of the training set 
constructed completely, the test set not involved in the 
modeling was used to test the external predictivity and 
if the model is appropriate and robust through rpred

2 [49]. 
Based on the StDev*Coefficient (the standard deviation 
and the coefficient) contour maps, the specific impact of 
steric or electrostatic field contribution and distribution 
on potential activity would be viewed clearly [50]. All 
the calculations were operated in CoMFA protocol of 
SYBYL-X 2.1 software package.

CONCLUSIONS

Imidazo[4,5-b]pyridines and imidazo[4,5-c] pyridin-
4-one derivatives modified from telmisartan have been 
identified with dual AT1 antagonistic and PPARγ partial 
agonistic activity. In this work, the docking simulation and 
3D-QSAR analysis were performed to study the SAR as 
well as the binding mechanism of imidazo-\pyridines with 
AT1 and PPARγ pockets. Docking results demonstrated 
the interaction modes and the matching degree with the 
binding surface. Specifically, the binding modes between 
imidazo-\pyridines and PPARγ active cavity were validated 
to be totally opposite from that of typical activators. From 
the best CoMFA models, high values for q2, r2 and rpred

2 
(q2>0.5, r2>0.8, rpred

2>0.6) indicated satisfactory internal 
and external predictivity. Additionally, we concluded: (1) 
Increasing the R1 substituent properly will be beneficial 
to enhance PPARγ partial activity and maintain AT1R 
antagonistic activity; (2) The electronagative groups 
like trifluoromethoxy in C-2 of part R1 caused the dual 
activities to increase and compounds with 2-substituted 
electropositive groups tended to be more active than that 
of other positions; (3) R2 substitution was improper for 
enhancing the activities towards AT1R antagonism and 
PPARγ partial activation; (4) ethyl or propyl in R4 was 
appropriate for dual activities, larger substituents were 
unworkable; (5) Tetrazole ring or carboxylic acid in R5 
was responsible for better dual activities. The successful 
molecules design based on the contour maps of steric and 
electrostatic fields illustrated that the constructed CoMFA 
models were highly stable and practicable to acquire novel, 
potential dual AT1/PPARγ agents. Docking results were 

roughly coincident with the CoMFA contour maps. CoMFA 
models of both targets integrated with the docking analysis 
will be of great benefit in the optimization of potential dual 
AT1 antagonists and PPARγ partial agonists and in the 
identification of novel leads.
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