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ABSTRACT
Objectives: The aim of this study was to systematically evaluate the diagnostic 

value of cell free DNA (cfDNA) for breast cancer.
Results: Among 308 candidate articles, 25 with relevant diagnostic screening 

qualified for final analysis. The mean sensitivity, specificity and area under the curve 
(AUC) of SROC plots for 24 studies that distinguished breast cancer patients from 
healthy controls were 0.70, 0.87, and 0.9314, yielding a DOR of 32.31. When analyzed 
in subgroups, the 14 quantitative studies produced sensitivity, specificity, AUC, and a 
DOR of 0.78, 0.83, 0.9116, and 24.40. The 10 qualitative studies produced 0.50, 0.98, 
0.9919, and 68.45. For 8 studies that distinguished malignant breast cancer from 
benign diseases, the specificity, sensitivity, AUC and DOR were 0.75, 0.79, 0.8213, 
and 9.49. No covariate factors had a significant correlation with relative DOR. Deek’s 
funnel plots indicated an absence of publication bias.

Materials and Methods: Databases were searched for studies involving the use of 
cfDNA to diagnose breast cancer. The studies were analyzed to determine sensitivity, 
specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), 
and the summary receiver operating characteristic (SROC). Covariates were evaluated for 
effect on relative DOR. Deek’s Funnel plots were generated to measure publication bias.

Conclusions: Our analysis suggests a promising diagnostic potential of using 
cfDNA for breast cancer screening, but this diagnostic method is not yet independently 
sufficient. Further work refining qualitative cfDNA assays will improve the correct 
diagnosis of breast cancers.

INTRODUCTION

Breast cancer is the most frequently diagnosed 
cancer worldwide and the leading cause of cancer death 
among females, accounting for 23% of total cancer 
cases and 14% of cancer deaths [1]. Despite increasing 
incidence, mortality from breast cancer has declined 
over the past decade [2]. A considerable proportion of 
the decrease in mortality is attributed to early diagnostic 
methods, such as modern digital mammography. However, 
13% of breast cancers are undetectable by mammography 

affected by tumor size and age of patients [3, 4]. Currently 
used biomarkers with unsatisfactory accuracy, such as 
cancer antigen CA15-3 and carcinoembryonic antigen 
(CEA), have been recommended against for accurately 
diagnosing breast cancer [5, 6]. Therefore, development of 
new technologies with enhanced sensitivity and specificity 
to detect and diagnose breast cancer is in critical demand.

Circulating cell-free DNA (cfDNA) is fragmented 
DNA originating from cancer cells through the processes 
of necrosis and apoptosis [7]. The cfDNA containing 
specific mutations, copy number alterations, and structural 
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variants prevail in a wide range of cancers, including 
pancreatic, ovarian, colorectal, bladder, breast cancers, and 
other pathologies with rapid cell turnover [8–11]. Through 
highly sensitive techniques to detect abnormalities 
of circulating cfDNA, including digital PCR-based 
[8, 12, 13] and massive sequencing-based technologies 
[8, 9, 14], it is now feasible to improve early screening 
and surveillance of breast cancer.

The detection of alternations in circulating cfDNA 
present in breast cancer patients has led to a wealth of 
studies that have analyzed the genetic and epigenetic 
character of these alterations, including microsatellite 
instability and aberrant DNA methylation in plasma or 
serum [15]. Many studies have addressed the potential 
value of circulating cfDNA assays as a repeatable and 
non-invasive “liquid biopsy” for breast cancer [7, 16]. 
However, these results of such studies have varied, but 
have not been systematically reviewed. Hence, the aim 
of this meta-analysis was to quantitatively evaluate the 
diagnostic efficiency of circulating cfDNA assays for 
breast cancer screening.

RESULTS

Database analyses

In primary review, a total of 45 publications dealing 
with abnormal concentration [8, 17–36], methylation 
alterations [37–44], microsatellite instability [45–50] and 
other characteristics [10, 14, 51–58] of plasma or serum 
DNA for the diagnosis of breast cancer were retrieved. 
After full-text review, 20 studies [8, 10, 14, 29–35, 42–44, 
48–50, 56–59] were excluded because they did not allow 
the calculation of sensitivity or specificity, included very 
rare indicators, or consisted of less than 10 breast cancer 
patients (Figure 1). 

In total, 25 eligible studies [17–28, 36, 38–41, 45–47,  
51–55, 60] were included in the analyses (Table 1), 
comprising 1705 histologically diagnosed breast cancer 
patients, 1079 healthy controls, and 234 patients with 
benign breast diseases. A majority of 1959 subjects 
were from the United States and European countries, 
with the remaining 979 participants from Asian areas 
(China, Thailand and Israel) and 80 from Africa (Egypt). 
Of 25 studies, 15 assessing abnormal concentrations of 
circulating cfDNA were classified as the quantitative 
analysis group, while 10 trials evaluating multi-gene 
methylation alterations, allelic imbalances and genome-
wide aberrations represented the group of qualitative 
analysis. In addition to assessments of 24 studies using 
health individuals as control [17–28, 38–41, 45–47, 
51–55], a diagnostic assessment was also conducted in 8 
studies that included benign breast diseases as controls, 
half of which are quantitative studies while the remain are 
qualitative [18, 21–23, 36, 39, 40, 45]. 

Diagnostic accuracy

Sensitivity and specificity, PLR, NLR, and DOR 
are indicators applied to estimate diagnostic accuracy. 
Generated by integrating 24 trials, the overall sensitivity 
and specificity of cfDNA assays, to distinguish breast 
cancer patients and healthy individuals, were 0.70 
(95% CI, 0.68–0.72) and 0.87 (95% CI, 0.85–0.89), 
respectively. PLR was 6.22 (95% CI, 4.31–8.99), NLR 
was 0.25 (95% CI, 0.17–0.36), and DOR was 32.31 
(95% CI, 17.35–60.18) (Figure 2A). To determine how 
methodology affected diagnostic accuracy, we further 
analyzed two groups that employed quantitative (testing 
cfDNA concentrations) and qualitative (evaluating multi-
gene methylation, allelic imbalances, and genome-wide 
aberrations) methodologies.

The estimates of sensitivity and specificity of the 14 
quantitative analyses of cfDNA for breast cancer diagnosis 
(Figure 2B) were 0.78 (95% CI, 0.75–0.80) and 0.83 
(95% CI, 0.81–0.86), respectively. The value for PLR was 
4.83 (95% CI, 3.37–6.91), and NLR was 0.22 (95% CI,  
0.13–0.35). The DOR value was 24.40 (95% CI,  
12.07–49.31). To further evaluate the diagnostic accuracy 
of quantitative PCR-based assays, three quantitative 
studies using radioimmunoassay [54], ELISA [22] and 
fluorochrome SYBR Gold stain [55] were excluded 
for further analysis. The value for sensitivity, PLR and 
DOR increased to 0.79 (95% CI, 0.77–0.82), 5.07 (95% 
CI, 3.32–7.75) and 31.91 (95% CI, 13.65–74.62); while 
specificity and NLR declined to 0.83 (95% CI, 0.80–0.85) 
and 0.17 (95% CI, 0.09–0.32) (Supplementary Table 1).

Figure 2C shows the sensitivity and specificity 
generated from 10 qualitative analyses, including 
methylation PCR, microsatellite analysis and sequencing, 
in diagnosis of breast cancer. The sensitivity and 
specificity were 0.50 (95% CI, 0.45–0.54) and 0.98 (95% 
CI, 0.96–0.99); PLR was 16.52 (95% CI, 8.65–31.58), 
NLR was 0.32 (95% CI, 0.19–0.54), and DOR was 68.45 
(95% CI, 19.29–242.85). When we excluded four studies 
with comparatively low sensitivity [38, 45–47], the 
sensitivity increased to 0.88 (95% CI, 0.81–0.93), while 
specificity dropped slightly to 0.98 (95% CI, 0.95–0.99); 
PLR was 24.46 (95% CI, 11.38–52.58), NLR was 0.14 
(95% CI, 0.07–0.28), and DOR was 256.60 (95% CI, 
77.40–850.69) (Supplementary Table 1). In addition, the 
diagnostic accuracy of cfDNA assays between benign 
diseases and malignant tumors was estimated. Sensitivity 
and specificity were 0.75 (95% CI, 0.71–0.79) and 0.79 
(95% CI, 0.73–0.84), PLR was 2.40 (95% CI, 1.13–5.12), 
NLR was 0.29 (95% CI, 0.12–0.74), and DOR was 9.49 
(95% CI, 1.76–51.03) (Figure 2D). 

Furthermore, the observed data, together with the 
confidence and predictive ellipses, are presented in SROC 
curves to determine their diagnostic heterogeneity. The 
satisfactory diagnostic performance for cfDNA assays for 
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diagnosis of cancer patients from healthy individuals was 
demonstrated by the SROC curve in Figure 3A. The AUC 
was 0.9314, the LRT_I2 statistic was 78.60%, the LRT_Q 
(χ2) was 107.52 (p < 0.001), and the Spearman correlation 
coefficient was -0.061 (p = 0.777), indicating considerable 
heterogeneity between studies caused by non-threshold 
effects.

SROC curves were also applied for the 
methodological groups. In the quantitative group 
(Figure 3B), the AUC was 0.9116 (0.9193 specific for 
qPCR assays), indicating acceptable levels of diagnostic 
accuracy. The LRT_I2 value was 84.30%, presenting 
some evident heterogeneity in these studies. The LRT_Q 
(χ2) was 82.76 (p < 0.001) and Spearman correlation 
coefficient was −0.191 (p = 0.513), indicating that the 
heterogeneity was likely the result of non-threshold 
effects. In the qualitative group, the AUC was 0.9919 
(0.9886 when four aforementioned studies were excluded; 
seen in Figure 3C), suggesting higher diagnostic accuracy 

compared with the quantitative group. The LRT_ I2 was 
49.80% and the LRT_Q (χ2) was 17.94 (p = 0.036), and 
Spearman correlation coefficient was -0.383 (p = 0.275), 
revealing no significant heterogeneity. 

The SROC curve of cfDNA assays for diagnosis 
of cancer patients from benign disease populations 
generated an AUC of 0.8213, the LRT_I2 was 91.20%, 
the LRT_Q (χ2) was 79.25 (p < 0.001), and the Spearman 
correlation coefficient was −0.096 (p = 0.821), indicating 
heterogeneity between studies was caused by non-
threshold effects (Figure 3D).

Meta-regression analysis and publication bias

To reveal sources of heterogeneity resulting from 
non-threshold effects, we assessed major characteristics 
of these studies, including “publication year (recent 5 
years)”, “country (Asian regions)”, “case number (≥ 100 
cases)”, “sampling (plasma)”, and “assay methods 

Figure 1: Study identification, inclusion, and exclusion for meta-analysis. BCa = breast cancer; cfDNA = cell-free DNA;  
vs = versus.
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(microsatellite/ methylation/ sequencing analysis as 
qualitative analyses; qPCR/ the rest as quantitative 
analyses)”. These characteristics were used in the meta-
regression analyses to assess their effects on the RDOR in 
the diagnosis of breast cancer. The results suggested that 
none of the methodological covariates may produce major 
heterogeneity (p > 0.05) among different groups (Table 2).

Publication biases in these diagnostic analyses were 
evaluated using the Deek’s funnel plot asymmetry test. The 
DOR of all 24 studies to distinguish breast cancer patients 
from healthy individuals aligned in a fairly symmetric 
linear regression with a coefficient of 2.71 (95% CI, 
−19.22–24.64; p = 0.80). A non-zero slope coefficient is 
suggestive of significant study bias when p < 0.10. Thus, 
publication bias was not significant in these studies. The 
test result for 8 studies applying cfDNA to distinguish 
breast cancer from benign breast diseased patients was also 
presented. The coefficient was −25.98 (−59.20–7.14) and 
the p-value was 0.10. This comparatively less symmetric 

plot of linear regression also indicated no significant 
publication biases for this group (Figure 4). 

DISCUSSION

Our work is the first meta-analysis to calculate the 
overall accuracy of circulating cell-free DNA assays for 
detection of breast cancer. The sensitivity and specificity 
of cfDNA assays based on 24 primary studies were 
0.70 and 0.87 respectively, indicating that a correct 
diagnosis could often be made through these assays. 
The AUC calculated for SROC curves was 0.9314, well 
above common standards for diagnosis (> 0.8). Among 
other serum-based breast cancer markers, CA15-3 
exhibited acceptable sensitivity, specificity, and AUC 
at 0.73, 0.85, and 0.78, respectively [61]; the estimated 
sensitivity, specificity, and AUC of human epidermal 
growth factor receptor 2 (HER2) were measured at 
0.51, 0.86, and 0.65 [62]. The accuracy of the cfDNA 

Table 1: Summary of included studies
Study/year Country No.of BCa/BD/Ctrl Sample Assay 

methods Cutoff of BCa vs Ctrl  (BCa vs BD) Sens/Spec of BCa vs Ctrl 
(%)

Sens/Spec of BCa vs BD 
(%) Groups

Leon/1977 USA 32/-/55 serum RIA 50 ng/ml 38/93 - quantitative

Chen/1999  Switzerland 21/2/10 serum MA LOH reduced by 30% 48/100 48/50 qualitative

Shaw/2000 UK 71/-/9 plasma MA LOH 31/100 - qualitative

Silva/2002 Spain 142/-/35 plasma MA LOH reduced by 75% 42/100 - qualitative

Muller/2003 Austria 86/-/10 serum MSP hypermethylation 22/90 - qualitative

Dulaimi/2004  USA 34/8/20 serum MSP hypermethylation 76/100 76/100 qualitative

Gal/2004  UK 96/-/24 serum RT-qPCR 100 ng/ml 72/88 - quantitative

Skvortsova/2006 Russia 20/15/10 plasma MSP hypermethylation 95/100 95/40 qualitative

Huang/2006  China 61/33/27 plasma RT-qPCR 19 ng/ml (22 ng/ml) 95/89 93/67 quantitative

Umetani/2006  USA 51/-/51 serum RT-qPCR integrity of 0.17 69/80 - quantitative

Korshunova/2008 USA 21/-/21 serum BPS cytosine-methylation 95/100 - qualitative

Catarino/2008  Portugal 175/-/80 plasma RT-qPCR 106 ng/ml 43/91 - quantitative

Kohler/2009 Switzerland 52/26/70 plasma RT-qPCR 1866GE/ml (463282GE/ml) 81/69 53/87 quantitative

Beck/2010 USA 10/-/87 serum NGS repetitive elements 90/95 - qualitative

Roth/2011 Germany 63/20/28 serum ELISA - 72/86 13/65 quantitative

Gong/2012 China 200/100/100 serum RT-qPCR 471 ng/ml 95/92 95/90 quantitative

Dawson/2013 UK 30/-/22 plasma TADS - 97/100 - qualitative

Stotzer/2014 Germany 112/-/28 plasma RT-qPCR - 94/95 - quantitative

Madhavan/2014 Germany 82/-/100 plasma RT-qPCR - 72/78 - quantitative

Kirkizlar/2015 USA 11/-/30 plasme NGS 0.45% AAI 73/100 - qualitative

Tangvarasittichai/2015  Thailand 100/-/100 plasma RT-qPCR 100 ng/ml 97/93 - quantitative

Zhang/2015 China 100/-/104 serum RT-qPCR RC of 0.30 80/68 - quantitative

Wu/2015 USA 47/-/42 plasma RT-qPCR T/R ratio of 91.40 92/75 - quantitative

Agassi/2015 Israel 38/-/16 serum FSGS 600 ng/ml 72/75 - quantitative

Mahmoud/2015 Egypt 50/30/- serum RT-qPCR 2236 copy/ul - 76/70 quantitative

BCa = patients with breast cancers; BD = patients with benign breast diseases; Ctrl = healthy controls; TP = true positive; FP = false positive; FN = false negative; TN = true negative; RIA = radioimmunoassay; 
MA = microsatellite analysis; LOH = loss of heterozygosity; MSP = methylation specific PCR; RT-qPCR = real-time quantitative PCR; RC = relative concentration; T/R = copy number of telomere 
relative to copy number of LINE reference sequence; ELISA= enzyme linked immunosorbent assay; BPS = bisulphate pyrosequencing; NGS = next-generation sequencing; AAI = average allelic imbalance; 
TADS = tagged-amplicon deep sequencing; FSGS = fluorochrome SYBR Gold stain.
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Figure 2: Forest plots of estimates of sensitivity and specificity for different cell-free DNA assay groups. Forest plots of 
sensitivity and specificity for assays of circulating cell-free DNA in the diagnosis between healthy individuals and breast cancer patients 
(A), and between benign breast disease and breast cancer patients (D). Forest plots of sensitivity and specificity for methodological groups 
using quantitative (B) and qualitative (C) analysis of circulating cell-free DNA in the diagnosis of breast cancer.  = points estimates of 
sensitivity and specificity from each study; error bars = 95% CI.
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assay appears to be modestly stronger than either of 
these traditional markers, yet few studies have directly 
compared the diagnostic performance of cfDNA with 
other biomarkers.

In grouped analyses, the sensitivity, specificity, and 
AUC of 14 quantitative studies were slightly lower (0.78, 
0.83, and 0.9116) than those of the overall group. When 
only PCR-based studies were included, the sensitivity and 
AUC subtly increased, suggesting that qPCR achieved 
marginally improved diagnostic efficiency compared to 
the other quantitative assays [22, 54, 55]. However, the 
limited number of other quantitative studies hindered 
analysis of their diagnostic values. In the group of 10 
qualitative studies, the sensitivity dramatically reduced to 
0.50; whereas, the specificity and AUC notably improved 
to 0.98 and 0.9919. The qualitative group included studies 
applying various methods to detect epigenetic and genetic 

abnormalities of cell-free DNA. Among these qualitative 
methods, microsatellite analyses [45–47] and methylation 
specific PCR [38] produced very limited sensitivity 
ranging from 0.22–0.48. By removing these, the remaining 
studies achieved satisfactory specificity as high as 0.88. 
The more modern high-throughput molecular methods, 
including next-generation sequencing and multiplexed 
PCR [51, 53], have proven to be potent strategies for 
breast cancer screening.

To further evaluate diagnostic effectiveness, we also 
analyzed the diagnostic odds ratio (DOR), which is a single 
indicator of test accuracy [63]. The value of DOR > 10  
indicates good discriminatory test performance. In this 
meta-analysis, the DOR for cfDNA assays to discriminate 
breast cancer cases from healthy controls was 32.31, 
while the DOR to distinguish malignant breast tumors 
and benign breast diseases was much lower at 9.49. The 

Figure 3: SROC curves for cell-free DNA assays in diagnosis of breast cancer. SROC curves for cell-free DNA assays in 
diagnosis of breast cancer. SROC curves for cell-free DNA assays in diagnosis between healthy individuals and breast cancer patients 
(A), and between benign breast disease and breast cancer patients (D). SROC curves for methodological groups using quantitative (B) and 
qualitative (C) analysis of cell-free DNA in the diagnosis of breast cancer.  = each study in the meta-analysis (the size of each study is 
indicated by the size of the solid circle); red line = weighted regression; and blue line = unweighted regression. SROC curves summarize 
the overall diagnostic accuracy. The confidence ellipse indicates that the mean values for sensitivity and specificity were more likely to be 
in this region. The prediction ellipse (increased uncertainty) indicates that individual values for sensitivity and specificity were more likely 
to be in this region.
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fact that cfDNA may elevate among patients with benign 
diseases limited the potential of the quantitative cfDNA 
assay as a tool to discriminate benign hyperplasia and 
malignancy [21, 22]. The DOR of qualitative assays 
of cfDNA (68.45) is significantly higher than that of 
quantitative assays (24.40). The DOR was further 
improved to 256.60 with 4 earlier published low-sensitive 
studies excluded. In established studies applying cfDNA 
for cancer diagnoses, the DOR of quantitative analyses 
in lung [64], ovarian [65], and hepatocellular cancer 
(HCC) [66] were 20.33, 26.05, and 16.35, respectively; 

the DOR of qualitative methods for HCC diagnosis was 
19.49. The DOR of qualitative cfDNA analysis for breast 
cancer was notably higher than that of HCC, and the DOR 
of quantitative analysis was comparable with those of 
other cancer types, indicating a strong ability to correctly 
diagnose breast cancer using cfDNA assays, especially 
qualitative molecular methods.

PLR and NLR were also presented to measure 
overall diagnostic accuracy [67]. Likelihood ratios of 
a PLR > 10 and an NLR < 0.1 indicate high accuracy. 
The group of quantitative assays had a PLR value of 

Table 2: Weighted meta-regression of effects of methodological characteristics on diagnostic 
accuracy of cfDNA

Covariates Coefficient RDOR (95%) P value Coefficient RDOR (95% CI) P value

Breast cancer versus healthy controls: 
overall analysis

Breast cancer versus benign disease:
overall analysis

Country 0.748 2.11 (0.42–10.59) 0.346 2.846 17.21 (0.63–472.03) 0.0802
Year 0.705 2.02 (0.49–8.40) 0.3152 −0.472 0.62 (0.01–36.47) 0.7862
Case No. 0.859 2.36 (0.50–11.14) 0.2633 3.383 29.47 (0.34–2537.67) 0.1125
Sampling −0.835 0.43 (0.11–1.79) 0.2346 −0.758 0.47 (0.01–27.94) 0.6660
Method −1.003 0.37 (0.08–1.74) 0.1946 −1.641 0.19 (0.03–1.32) 0.0811

Breast cancer versus healthy controls: 
quantitative analysis

Breast cancer versus healthy controls: 
qualitative analysis

Country 1.313 3.72 (0.70–19.88) 0.1136 – – –
Year 0.968 2.63 (0.47–14.78) 0.2450 2.007 7.44 (0.18–308.17) 0.2491
Case No. 1.414 4.11 (0.75–22.55) 0.0955 −0.349 0.71 (0.00–115.88) 0.8787
Sampling −0.907 0.40 (0.07–2.34) 0.2831 −0.712 0.49 (0.02–10.14) 0.6024
Method −0.005 1.00 (0.09–11.36)) 0.9965 1.414 4.11 (0.84–20.12) 0.0741

Figure 4: Funnel graphs for the assessment of potential publication bias in cell-free DNA assays. Funnel graphs for the 
assessment of potential publication bias in cell-free DNA assays to distinguish breast cancer patients vs. healthy individuals (A), and assays 
to distinguish breast cancer vs benign breast disease patients (B). The funnel graph performs linear regression of log odds ratios on inverse 
root of effective sample size (ESS).  = each study in the meta-analysis; center line = regression line. The results of Deek’s funnel plot 
asymmetry test for publication bias of studies to distinguish breast cancer patients vs healthy individuals (A) and studies to distinguish 
breast cancer patients vs benign disease patients (B) were not significant (p = 0.80 and 0.10, respectively).
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6.22, suggesting that patients with breast cancer have 
an approximately 6-fold higher chance of being cfDNA 
assay-positive compared with healthy controls. The NLR 
of quantitative analyses was found to be 0.25, implying 
that the probability for cases with negative test results to 
have breast cancer is one fourth. These data suggest that 
circulating DNA assay results should not be used alone 
as a biomarker to make a breast cancer diagnosis. The 
qualitative analysis was more promising with a PLR of 
16.52 and NLR of 0.32, indicating that an approximately 
sixteen times greater chance of a breast cancer case 
being indicated by a positive test result, but a 32% error 
rate would be present when a healthy individual was 
determined in the negative test. According to the results, 
cfDNA assessments may be applied in early detection 
of breast cancer, but as an auxiliary test it should be 
combined with cytological or histological examination of 
breast tissue to ensure correct diagnosis.

Considering the effect of publication bias, the results 
could have been biased if positive results were more likely 
to be published. The Deek’s funnel plot asymmetry test 
compared diseased and healthy groups, or malignant 
and benign groups, but did not indicate publication bias. 
Although we found a statistically significant heterogeneity 
for sensitivity, specificity, PLR, NLR, and DOR among 
these studies, we found none of the study characteristics 
including publication year, country, case number and 
assay types of these studies to represent a major source of 
heterogeneity. The heterogeneity could have been derived 
from differences on other methodological characters, 
such as prospective/retrospective designs and TNM 
staging of patients enrolled, which were not included in 
meta-regression analysis due to incomplete information 
provided by the primary studies. In addition, two studies 
included less than 20 cancer patients [51, 53], which 
may have contributed to the poor robustness. Despite 
significant heterogeneity, the insignificant publication bias 
suggested that the results of included studies had depended 
mostly on the objective quality of the research.

Contradictory conclusions on validation of cell-free 
DNA assays for breast cancer screening have long existed, 
led by poor method standardization and variable analytical 
factors. Hence, the present study conducted comprehensive 
meta-analyses to evaluate the diagnostic accuracy of 
cfDNA assays. The results show high levels of accuracy of 
circulating DNA analyses, especially through qualitative 
assays. The overall accuracy of circulating DNA analysis 
was higher than the routinely used biomarkers CA15-3 
and CA27.29 [68]. The mean sensitivity and specificity 
(0.88 and 0.98) of 6 studies applying more modern 
qualitative cfDNA assays were higher than those (0.87 and 
0.89) of digital mammography, the current benchmark of 
breast cancer screening [4]. Although the likelihood ratio 
(LR) based on 24 studies showed imperfect robustness, 
the LR of a subgroup of 6 recent qualitative studies was 
satisfactory [39–41, 51–53]. Thus, these newly-emerging 
cfDNA tests are highly recommended as a complement to 

conventional cytological and histological examinations for 
breast cancer diagnosis. 

Our meta-analysis had some limitations. First, it was 
impossible for us to determine all sources of heterogeneity. 
We did not include some covariates because the required 
data were not available from the selected articles. These 
probable covariates included tumor size, metastasis, 
TNM staging, flow, and timing of these studies. Second, 
though we performed a thorough literature search, a 
smaller number of studies were included in the qualitative 
analysis group, which might have weakened the statistical 
significance. Third, the inclusion of only English-language 
studies might have introduced bias to the analysis. 
Consequently, further longitudinal studies focusing on 
advanced molecular methods to characterize cell-free 
DNA in breast cancer are desired to support the results of 
our meta-analyses.

MATERIALS AND METHODS

Literature source and search 

The studies included in this meta-analysis were 
independently retrieved and reviewed by two authors 
(Z Lin and J Neiswender). A systematic literature search 
was performed in PubMed, Web of Science, and Embase 
databases to identify eligible studies. Studies from 
different databases were imported to EndNote for further 
review. The search terms included “breast cancer”, “breast 
tumor”, “cell-free DNA”, “circulating DNA”, “plasma 
DNA”, “serum DNA”, “sensitivity and specificity”, and 
“accuracy”. No limit on start date for publications was 
applied, and only studies prior to 20 September 2016 were 
evaluated. Additional articles were identified by manually 
reviewing the references of included articles. When 
necessary, the authors of included articles were contacted 
for further study details. 

Inclusion and exclusion criteria 

Studies that met the following criteria were 
included: (a) cohort studies that evaluated indicators 
originating from circulating cfDNA in plasma or serum; 
(b) sufficient data was presented for describing or 
calculating sensitivity and specificity values. Studies 
meeting any of the following criteria were excluded: (a) 
the article included specific evaluation indicators that 
were studied so rarely that they could not be included in 
a grouped analysis; (b) reviews, letters, technical reports, 
case reports, comments; (c) studies consisting of less than 
10 breast cancer patients. 

Data extraction 

Two reviewers (Z Lin and J Neiswender) 
independently extracted data from the included articles 
and integrated the final results with assistance from a third 
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author (X Ma). Data extracted from the articles included 
lead author, publication year, participant characteristics, 
experimental methods, assay indicators, cutoff values, 
sensitivity and specificity data. True positive (TP), true 
negative (TN), false positive (FP), and false negative 
(FN) were also collected directly or calculated according 
to the sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV) in every 
selected study.

Statistical analysis 

Standard methods for meta-analyses of diagnostic 
tests were performed [69] using statistical software 
programs (Stata, version 12.0; Stata Corporation; College 
Station; and Meta-Disc for Windows). To measure the 
accuracy of cfDNA assays, sensitivity and specificity, 
positive likelihood ratio (PLR), negative likelihood 
ratio (NLR), diagnostic odds ratio (DOR) were yielded 
by TP, FP, FN, TN from grouped studies. To summarize 
the overall accuracy, summary receiver operating 
characteristic (SROC) curves were constructed by the 
Moses-Shapiro-Littenberg method [70].

The term heterogeneity refers to the degree of 
variability in results across studies. Statistically significant 
heterogeneity among these studies was verified using 
likelihood ratio test (LRT)_I2 statistic [71] and LRT_Q 
(χ2) statistics. I2 ≥ 50% or P < 0.10 for LRT_Q indicates 
substantial heterogeneity. Meta-regression analysis 
was used to explore the sources of heterogeneity [72]. 
Covariates on DOR including sampling of patients 
and experimental methods were assessed. The relative 
DOR (RDOR) was calculated to analyze the change 
in diagnostic precision in the study per unit in the 
covariate [73]. The Deek’s funnel plots were used to 
examine potential presence of publication bias [74]. For 
each analysis, a result was considered to be statistically 
significant if the P-value was < 0.05.

CONCLUSIONS

In conclusion, our study is the first comprehensive 
meta-analysis on the overall accuracy of circulating cell-
free DNA assays in breast cancer screening. This study 
suggested that the diagnostic accuracy of quantitative 
analysis of circulating DNA is better than conventional 
tumor biomarkers, and the accuracy of advanced 
qualitative analysis demonstrated even higher level of 
discriminatory power in breast cancer detection. Although 
the high specificity of qualitative methods is encouraging, 
further research must address ways to make this approach 
more sensitive through identification of more reliable 
cfDNA properties associated with breast cancer. Due 
to lack of robustness, the quantitative cfDNA assays 
cannot be used alone in cancer diagnosis without parallel 
cytological or histological examinations. Meanwhile, 

some modern qualitative assays of circulating cell-free 
DNA have strong potential to be applied as an independent 
tool to improve the benchmark for early breast cancer 
detection and diagnosis. 
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