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ABSTRACT

The expression measurements of thousands of genes are correlated with the 
proportions of tumor epithelial cell (PTEC) in clinical samples. Thus, for a tumor diagnostic 
or prognostic signature based on a summarization of expression levels of the signature 
genes, the risk score for a patient may dependent on the tumor tissues sampled from 
different tumor sites with diverse PTEC for the same patient. Here, we proposed that the 
within-samples relative expression orderings (REOs) based gene pairs signatures should 
be insensitive to PTEC variations. Firstly, by analysis of paired tumor epithelial cell and 
stromal cell microdissected samples from 27 cancer patients, we showed that above 
80% of gene pairs had consistent REOs between the two cells, indicating these REOs 
would be independent of PTEC in cancer tissues. Then, by simulating tumor tissues with 
different PTEC using each of the 27 paired samples, we showed that about 90% REOs of 
gene pairs in tumor epithelial cells were maintained in tumor samples even when PTEC 
decreased to 30%. Especially, the REOs of gene pairs with larger expression differences 
in tumor epithelial cells tend to be more robust against PTEC variations. Finally, as a case 
study, we developed a gene pair signature which could robustly distinguish colorectal 
cancer tissues with various PTEC from normal tissues. We concluded that the REOs-based 
signatures were robust against PTEC variations.

INTRODUCTION

Based on gene expression profiles of clinical 
tumor tissues, many transcriptional signatures for cancer 
diagnoses [1] and prognoses [2-5] have been identified. 
Currently, most of transcriptional signatures are based 
on risk scores summarized from expression levels of the 
signature genes measured in clinical tumor tissues which 
are composed of tumor epithelial cells and stromal cells. 
However, because the proportions of tumor epithelial cell 
(PTEC) within different tumor sites are very different for 
the same tumor tissue [6] and epithelial cells and stromal 
cells in tumor tissues have different gene expression 
patterns [7, 8], the risk score for a patient could vary 

greatly in tumor tissues sampled from different tumor sites 
and thus tend to make unreliable risk prediction.

Several approaches have been proposed to reduce 
the influence of the PTEC in tumor tissues, including 
sampling with quality control, using the laser capture 
microdissection (LCM) technology to isolate pure tumor 
epithelial cells and using the deconvolution algorithm to 
estimate gene expression profiles of tumor epithelial cells 
from bulk tumor tissues. However, all these approaches 
have critical limitations. For sampling with quality control, 
the requirement of at least 60% [9] or 70% [10, 11] of tumor 
epithelial cells in tumor samples is quite rough and the 
common evaluation method of hematoxylin-eosin staining 
(HE) is rather subjective and uncertain [12, 13]. In addition, 
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for highly heterogeneous tumors, such as pancreatic 
adenocarcinoma and diffuse gastric cancer, it is hard to 
meet the sample quality criteria. The LCM technology 
can acquire a few pure tumor epithelial cells [14], but the 
LCM is expensive and time consuming, which makes it 
difficulty to be widely used in clinical settings. Although 
several deconvolution algorithms have been proposed to 
decompose gene expression profiles into cell-type specific 
profiles [15, 16], their applications are limited because the 
absolute expression measurements of cell-specific signature 
genes are sensitive to experimental batch effects [17].

In general, experimental batch effects make a major 
barrier to the application of the type of prognostic signatures 
based on risk scores summarized from the expression level 
measurements of signature genes. Especially, current 
data normalization algorithms for adjusting batch effects 
will introduce substantial uncertainty for the prognostic 
prediction of patients [18] and the classification of 
patients into known disease subtypes [19], depending 
on risk or subtype composition of the samples adopted 
for normalization together. In contrast, another type of 
prognostic signatures is based on the relative expression 
orderings (REOs) of gene pairs within individual samples, 
which is robust against experimental batch effects and 
invariant to monotonic data normalization [20-22]. Based 
on REOs, some methods such as TSP [21], k-TSP [22] and 
other adjusted methods [19, 23] have been proposed to 
identify disease signatures, usually based on two categories 
of patients [24-27]. Recently, avoiding the subjective pre-
grouping of samples into high- and low-risk groups, we 
have employed various tuned or adjusted strategies to 
identify REOs-based prognostic signatures for specific 
medical problems of different cancers. The identified REOs-
based prognostic signatures for colorectal cancer [28], 
non-small cell lung cancer [18], ER+ breast cancer [29] 
and other cancers [30, 31] have been successfully verified 
in multiple normalization-free data produced by different 
laboratories, providing strong evidences of the clinical 
feasibility of this type of prognostic signatures.

In this article, considering that tumor stromal 
cells and tumor epithelial cells show a mass of similar 
differential REOs of gene pairs in comparison with their 
normal controls [32], we supposed that the REOs of gene 
pairs within individual samples could also be robust against 
PTEC variations given that the variations are not too large. 
Using data for colon cancer and breast cancer, we firstly 
demonstrated that the expression measurements of thousands 
of genes were significantly correlated with PTEC. Then, we 
showed that above 80% of all gene pairs had consistent 
REOs between every paired samples of tumor epithelial 
and stromal cells microdissected from cancer tissues and 
thus these REOs would be independent of PTEC in cancer 
tissues. Afterward, we did simulation experiments to confirm 
that much more REOs of gene pairs, especially those with 
larger expression differences in tumor epithelial cells, would 
remain unchanged in the tumor samples even when the 

PTEC decreased to as low as 30%. Finally, as a case study, 
we identified a REOs-based signature which could robustly 
distinguish colorectal cancer samples with various PTEC 
from normal tissues. Thus, the REOs-based signatures could 
be robustly converted to clinical application.

RESULTS

Gene expression measurements widely correlated 
with PTEC

Using 278 colon cancer samples with PTEC data 
from TCGA, we found the expression measurements of 
2271 genes (see Supplementary Table 2) were significantly 
correlated with PTEC (Spearman correlation analysis, 
FDR<10%). Similarly, using 1076 TCGA samples with 
PTEC data for breast cancer, we found 2309 genes (see 
Supplementary Table 2) that their expression measurements 
were significantly correlated with PTEC (Spearman 
correlation analysis, FDR<10%). Notably, 840 of the genes 
correlated with PTEC in the colon tumor samples were 
also correlated with PTEC in the breast cancer samples, of 
which 98.81% had the same positive or negative correlation 
coefficients with PTEC in the two types of cancer tissues. 
The KEGG functional pathway enrichment analysis showed 
that these overlapped genes were significantly enriched in 
13 pathways, including “Tyrosine metabolism”, “Focal 
adhesion” and some signaling ways (Supplementary Table 
3), which could reflect the functional difference between 
tumor epithelial cells and tumor stromal cells [8, 32].

The correlations of gene expression measurements 
with PTEC could be introduced by genes differentially 
expressed between tumor epithelial cells and stromal cells. 
To validate this, we identified 6674 differentially expressed 
genes (DEGs) (Student’s t-test, FDR<10%) between 
colorectal tumor epithelial cells and tumor stromal 
cells using the microdissected data from the GSE35602 
dataset. Among these genes, the expression measurements 
of 1234 genes were also significantly correlated with 
PTEC (Spearman correlation analysis, FDR<10%). 
The concordance score of positive correlations with 
up-regulations and negative correlations with down-
regulations was 98.62%, which was highly unlikely to be 
observed by chance (Binomial test, P-value<2.2×10-16, see 
Materials and Methods). We did the same analysis using 
the nine paired profiles of the tumor epithelial cell and 
stromal cell of invasive breast cancer from the GSE14548 
dataset. The result showed that, among the 4288 DEGs 
between the tumor epithelial cells and stromal cells 
(Student’s t-test, FDR<10%), the expression measurements 
of 567 genes were also correlated with PTEC (Spearman 
correlation analysis, FDR<10%) and the concordance 
score of positive correlations with up-regulations and 
negative correlations with down-regulations was 94.53% 
(Binomial test, P-value<2.2×10-16). Similarly, we also 
detected 8728 DEGs (Student’s t-test, FDR<10%) between 
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the 10 paired profiles of epithelial cells and tumor stromal 
cells for triple negative breast tumor from the GSE81838 
dataset [33], among which 1159 genes were significantly 
correlated with PTEC and the concordance score was 
93.53% (Binomial test, P-value<2.2×10-16). These 
results confirmed that the correlation of gene expression 
measurements with PTEC is mainly introduced by the 
difference between tumor epithelial cells and stromal cells.

REOs of gene pairs are highly robust against 
PTEC variations

Then, using the GSE31279 dataset for eight paired 
expression profiles of the tumor epithelial cells and 
stromal cells microdissected from eight patients with 
colorectal cancer, we evaluated the consistency of REOs 
of gene pairs between the two types of cells extracted from 
each patients. The results showed that the concordance 
scores took values ranging from 82.02% to 89.40%. 
Similarly, for the nine paired invasive breast cancer 
samples from the GSE14548 dataset, the concordance 
scores of REOs between the two types of cells were 86.72-
91.22% for all measured gene pairs. Also, for the 10 paired 
triple negative breast tumor samples from the GSE81838 
dataset, the concordance scores of REOs between the two 
types of cells were 85.38%-93.24% for all measured gene 
pairs. Obviously, if the REOs of gene pairs in the tumor 
epithelial cells are consistent with those in the stromal 
cells, then they will not be affected by PTEC. Thus, above 
80% of REOs of gene pairs in clinical tumor tissues would 
remain unchanged as PTEC varies.

Then, we did simulation experiments to demonstrate 
that much more REOs of gene pairs, especially those 
with larger expression differences in the tumor epithelial 
cells, would not be readily disrupted by PTEC variations. 
Using each of the eight paired profiles of tumor epithelial 
and stromal cells for colorectal cancer, by successively 
replacing 10% of tumor epithelial cells with stromal 
cells, we generated gene expression profiles of simulated 
mixed-cell tumor tissues with decreased PTEC following 
equation (2) (see Material and Methods), and then 
evaluated the stability of REOs of gene pairs as PTEC 
decreased. As shown in Figure 1A, for the simulations 
based on the data for the eight patients, at least 93.96% 
of the REOs of gene pairs in the simulated tumor tissues 
with 70% of PTEC were consistent with their REOs in 
the corresponding tumor epithelial cells. When PTEC 
decreased to 50%, at least 90.57% of REOs of gene 
pairs in the corresponding tumor epithelial cells were 
unchanged in the eight individual simulations. Even 
when PTEC decreased to 30%, at least 87.34% of REOs 
of gene pairs were still maintained in the eight individual 
simulations. As shown in Figure 1C, after deleting 10% 
of gene pairs with the smallest absolute expression rank 
differences in each patient’s tumor epithelial cell, at least 
96.76%, 93.71% and 90.50% of REOs of gene pairs were 

stable when PTEC were 70%, 50% and 30% in the eight 
simulation experiments for colorectal tumor tissue. Similar 
simulation results were observed based on the GSE14548 
dataset for nine paired profiles of the tumor epithelial cell 
and stromal cell extracted from invasive breast cancer 
patients, as shown in Figure 1B and Figure 1D. Similarly, 
based on each of the 10 paired tumor epithelial cells and 
stromal cells extracted from 10 triple negative breast 
cancer patients (the GSE81838 dataset), the simulation 
experiments showed that at least 96.37%, 93.57% and 
90.74% of the REOs of gene pairs were unchanged when 
PTEC of the simulated tumor tissues were 70%, 50% and 
30%, respectively. After deleting 10% of gene pairs with 
the smallest absolute expression rank differences in each 
patient’s tumor epithelial cell, at least 99.02%, 96.74% 
and 93.75% of the REOs for all the measured gene pairs 
were unchanged when PTEC were 70%, 50% and 30%, as 
shown in Figure 1 and Figure 2.

Finally, in the simulated colorectal tumor data for 
the eight patients, we demonstrated the robustness of 
REOs against PTEC variations by analyzing two genes, 
SFRP1 remarkably under-expressed in colorectal tumor 
tissues [34] and ACTA2 over-expressed in malignant 
colorectal tumor stromal cells [35]. As shown in Figure 
3, the expression measurements of the two genes were 
markedly affected by the PTEC, and the largest fold 
changes of gene expression levels of SFRP1 and ACTA2 
in the simulated samples with 70% PTEC, compared 
with their expression levels in the corresponding tumor 
epithelial cells, were 1.26 and 1.10, respectively; while 
the largest fold changes dramatically increased to 1.60 and 
1.24, when the PTEC in the simulated samples decreased 
to 30%. However, the REOs of these two genes within 
each of the eight simulated samples remained unchanged 
even when PTEC was 30%. In addition, we also analyzed 
a pair of genes, LIMS2, down-regulated in colon cancer 
epithelial cells compared with normal epithelial colon 
cells [36], and MYH11 significantly up-regulated in 
colorectal tumor tissues compared with normal colon 
tissues [37]. As shown in Figure 3, compared with their 
expression levels in the corresponding tumor epithelial 
cells, the largest fold changes of gene expression levels 
of LIMS2 and MYH11 in the simulated samples with 70% 
PTEC were 1.14 and 1.22, respectively; while the largest 
fold changes increased to 1.34 and 1.51 when the PTEC in 
the simulated samples decreased to 30%. In contrast, the 
REOs of these two genes within all the eight simulated 
samples remained unchanged even when PTEC decreased 
to 30%, as illustrated in Figure 3.

A case study for a REOs-based signature for 
colorectal cancer diagnosis

The above results showed that REOs of gene pairs 
are robust against PTEC variations, indicating that REOs-
based tumor transcriptional signatures will be highly 
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Figure 1: The consistency scores of REOs between tumor epithelial cells and simulated tumor tissue samples with 
70%, 50% and 30% tumor epithelial cells. The scores for all the gene pairs for the simulated colorectal tumor tissues (A), for the 
simulated invasive breast tumor tissues (B) and for the simulated triple negative breast tumor tissues (E). After deleting 10% of gene pairs 
that had the smallest expression rank differences in tumor epithelial cells, the increased scores for the remaining gene pairs for the simulated 
colorectal tumor tissues (C), for the simulated invasive breast tumor tissues (D) and for the simulated triple negative breast tumor tissues 
(F). The samples were simulated based on the paired samples of tumor epithelial cells and stromal cells from GSE31279, GSE14548 and 
GSE81838, and the description of the simulated samples corresponding to the paired samples is listed in Supplementary Table 1. CRC 
represents the colorectal tumor tissues, BC represents the invasive breast tumor tissues and TNBC represents the triple negative breast 
tumor tissues.
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Figure 2: The summary line plot for means and SD of all the simulated sample consistency scores with 70%, 50% and 
30% tumor epithelial cells. The means and SD of all the simulated sample consistency scores with 70%, 50% and 30% tumor epithelial 
cells in Figure 2 (A, B, E) and after deleting 10% of gene pairs that had the smallest expression rank differences in tumor epithelial cells, 
the means and SD of all the simulated sample consistency scores with 70%, 50% and 30% tumor epithelial cells in Figure 2 (C, D, F).

Figure 3: The influence of PTEC on the expression measurements and the REO of two pairs genes (SFRP1 and 
ACTA2) and (LIMS2 and MYH11) in colorectal samples. (A) The expression measurements and the REO of SFRP1 and ACTA2 in 
pure tumor epithelial cells. (B) The expression measurements and the REO of SFRP1 and ACTA2 in simulated tumor tissues with 70% of 
PTEC. (C) The expression measurements and the REO of SFRP1 and ACTA2 in simulated tumor tissues with 30% of PTEC. The red nodes 
denote the gene of SFRP1 and the blue nodes the gene of ACTA2. The simulated tissue samples with 70% or 30% PTEC were simulated 
based on eight paired samples of tumor epithelial cells and stromal cells from GSE31279. Similarly, the expression measurements and the 
REO of LIMS2 and MYH11 were showed in Figure 3 (E-G). And the description of the tumor epithelial cells numbered 1-8 and simulated 
samples numbered 1-8 is listed in Supplementary Table 1.
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likely to be applicable when the sample quality is quite 
low. As a case study, we developed a gene pair signature 
to distinguish colorectal cancer samples from normal 
samples measured by different laboratories.

We used 177 tumor samples collected from the 
GSE17536 dataset and 84 normal samples collected 
from four datasets (GSE4183, GSE8671, GSE9254 and 
GSE21510) as the training data. Firstly, we selected 
153,912,895 gene pairs each with the same REO in 
more than 95% of the tumor samples and 121,990,135 
gene pairs each with the same REO in more than 95% 
of the normal samples. The two lists of gene pairs 
had 1,012,296 overlaps which showed reversal REOs 
between normal tissues and tumor tissues. From these 
gene pairs, we selected a gene pair (CLDN8 and 
MMP3) with the largest reversal degree between the 
normal and tumor samples, defined as the signature 
(see Materials and Methods). If CLDN8 has a higher 
expression measurement than MMP3 in a sample, the 
sample is identified as a normal sample; otherwise, 
a tumor sample. In the training data, 98.31% of the 
tumor samples and 98.81% of the normal samples were 
correctly predicted by this signature.

We validated the signature using the 278 colon 
cancer samples with PTEC data and 41 normal samples 
from TCGA. The results showed that 96.76% of the 
tumor samples and 92.68% of the normal samples were 
correctly predicted. Notably, as showed in Figure 4, 35 
of the 37 tumor samples with less than 60% of PTEC, 
including 15 samples with 30%-50% of PTEC, were 
correctly predicted. This indicated that the signature could 
predict correctly two types of samples with low PTEC. We 
further validated this signature using 628 colorectal tumor 
samples derived from GSE39582 and GSE35896 and 78 

normal samples collected from two datasets (GSE56789 
and GSE37364). The results showed that 96.02% of 
the 628 colorectal tumor samples and 97.44% of the 78 
normal samples were correctly predicted. The details of 
the prediction accuracies for all the validation datasets 
were described in Table 1.

DISCUSSION

As demonstrated in this study, the expression 
measurements of thousands of genes are significantly 
correlated with PTEC in clinical tumor tissues. Thus, for 
transcriptional signatures based on risk scores summarized 
from expression levels of signature genes, the diagnostic 
or prognostic predictions for a patient could be uncertain 
when using tissues sampled from different sites of the 
patient’s tumor. In contrast, we showed that about 90% 
of REOs of gene pairs in tumor epithelial cells can be 
maintained in clinical tumor tissues even when PTEC 
decreases to as low as 30%. Especially, the REOs of gene 
pairs with larger expression differences in tumor epithelial 
cells tend to be more robust against PTEC variations in 
clinical tumor tissues. As demonstrated in the case study 
for colorectal cancer diagnosis, the identified REOs-based 
signature can be robustly used for analyzing samples with 
different PTEC. Certainly, because a small percentage 
of REOs in tumor epithelial cells could be disrupted in 
clinical tumor tissues as PTEC decrease, it should be still 
necessary to sample tumor tissues with as high PTEC as 
possible to provide reliable diagnoses or prognoses.

The robustness of REOs-based signatures against 
PTEC variations in clinical tumor tissues makes this type 
of signatures being more feasible to clinical application. 

Figure 4: The validation rate binned by tumor cellularity for the tumor/normal signature validation on the 278 TCGA 
samples.
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Arguably, some subtle quantitative information of 
gene expression could be lost when gene expression 
levels are translated into REOs. However, the subtle 
quantitative information of gene expressions measured 
by current high-throughput as well as low-throughput 
biotechnologies is in fact quite error-prone and uncertain 
due to the serious problem of experimental batch effects 
[17] and data normalizations [38, 39]. In contrast, the type 

of REOs–based signatures are insensitive to batch effects 
and data normalizations [21, 22] and thus could provide 
more accurate patient-specific information for clinical 
applications [40]. In addition, different from the traditional 
risk-score based signatures, the REOs–based signatures 
could perform robustly in low quality disease samples 
such like the samples with low PTEC, as demonstrated in 
this study, and the disease samples (including formalin-

Table 2: The datasets analyzed in the study

Data type Accession Platform
Sample size

Tumor Normal

COAD† (Mbatch¶) TCGA RNAseqV2 278 ―
BRCA† (Mbatch¶) TCGA RNAseqV2 1076 ―
CRC* GSE39582 Affymetrix GPL570 566 ―
CRC* GSE17536 Affymetrix GPL570 177 ―
CRC* GSE35896 Affymetrix GPL570 62 ―
CRC* GSE8671 Affymetrix GPL570 ― 32
CRC* GSE9254 Affymetrix GPL570 ― 19
CRC* GSE21510 Affymetrix GPL570 ― 25
CRC* GSE56789 Illumina GPL10558 ― 40
CRC* GSE37364 Affymetrix GPL570 ― 38
CRC* GSE4183 Affymetrix GPL570 ― 8
COAD† TCGA IlluminaHiseq_RNAseqV2 278 41

Tumor 
epithelial cell

Tumor 
stromal cell

TNBC(LCM§) GSE81838 Affymetrix GPL6244 10 10
BC(LCM§) GSE14548 Affymetrix GPL1352 9 9
CRC*(LCM§) GSE35602 Agilent GPL6480 13 13
CRC*(LCM§) GSE31279 Illumina GPL6104 8 8

Note: ¶Mbatch represents the batch effect-free expression profiles; §LCM represents the tumor tissues are microdissected by 
LCM technology. †COAD and BRCA represent colon adenocarcinoma samples and breast invasive carcinoma from TCGA. 
*CRC represents the colorectal tumor tissues, BC represents the invasive breast tumor tissues, TNBC represents the triple 
negative breast tumor tissues.

Table 1: The prediction accuracies for the validation data

Data set
Sample size

prediction accuracy
Tumor Normal

TCGA 278 ― 97.12%

TCGA ― 41 92.68%

GSE39582 566 ― 95.76%

GSE35896 62 ― 98.39%

GSE56789 ― 40 100%

GSE37364 ― 38 94.74%
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fixed paraffin-embedded samples) with certain RNA 
degradation [41]. Taking these practical factors into 
consideration, we believe that it should be definitely 
necessary to develop the REOs-based signatures for all 
important cancer types, aiming at ultimately developing 
clinically feasible signatures for personalized cancer 
diagnoses or prognoses.

MATERIALS AND METHODS

Data preprocessing

All datasets analyzed in this research were 
downloaded from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome 
Atlas (TCGA, http://cancergenome.nih.gov/), as described 
in detail in Table 2. The MBatch expression profiles with 
batch effects adjustment for two cancers types (colon and 
breast cancer) were download from the TCGA MBatch Web 
Portal (http://bioinformatics.mdanderson.org/tcgambatch/) 
[42] and the clinical information for each sample was 
downloaded from the TCGA data portal, they were used to 
detected the genes significantly correlated with PTEC. For 
the same solid tumor tissue sample (01A) with multiple 
slide information of ‘percentage of tumor cells’, we used 
the mean [43] of percentage of tumor cells within multiple 
slides in performing Spearman correlation analysis and if the 
information of ‘percentage of tumor cells’ in one of multiple 
slides was unavailable, the samples would be deleted.

The eight paired colorectal tumor epithelial cells and 
stromal cells microdissected samples from the GSE31279 
dataset and the nine paired tumor epithelial cells and stromal 
cells of invasive breast cancer microdissected samples from 
the GSE14548 dataset were used to simulate the clinical 
tumor tissues with different PTEC, respectively. The other 
datasets except GSE35602 were used to train and validate 
the signature. The raw data (.CEL files) from each dataset 
measured by the Affymetrix platform was processed using 
the Robust Multi-array Average (RMA) algorithm [44]. For 
the data measured by the Illumina and Agilent platforms, 
the processed expression profiles were directly downloaded. 
Every Probe-set ID was mapped to an Entrez gene ID 
with the corresponding platform files. If multiple probe-
sets were mapped to the same gene, the mean of multiple 
probe-sets was the expression value for the gene. Probe-set 
IDs with no corresponding to Entrez gene ID or Probe-set 
IDs that corresponding to more than one Entrez gene ID 
were deleted. And the other mRNA-seq profiles of level 3 
measured by RNA-sequencing platform were downloaded 
from the TCGA web portal.

Correlation analysis and differential 
expression analysis

The Spearman correlation analysis was used 
to assess the correlation between genes expression 

measurements and PTEC. The Student’s t-test was used 
to detect DEGs between tumor epithelial cells and stromal 
cells. In the article, all P values were adjusted using 
Benjamini-Hochberg (BH) procedure [45] and the false 
discovery rate (FDR) was less than 10%.

Concordance score

If the expression level of a gene was positively (or 
negatively) correlated with PTEC and correspondingly 
up-regulated (or down-regulated) in tumor epithelial cells 
versus tumor stromal cells, then we defined that the two 
observations were concordant, indicating that the observed 
correlation could be explained by the differential gene 
expression between the two types of cells. If k genes were 
both correlated with PTEC and differentially expressed 
between tumor epithelial cells versus tumor stromal cells, 
among which s genes had concordant observations, then the 
concordance score was calculated as s/k. The probability of 
observing the concordance score by chance was calculated 
by the cumulative binomial distribution model as following:

∑ ( )( )= − −
=

− −
P Pe Pe1 1

i

k

i

s i k i

0

1

 (1)

where Pe=0.5 is the probability of one gene having 
concordant observation in two types of gene lists by 
chance.

Simulation of tumor samples with different 
PTEC

Based on each paired profiles of tumor epithelial 
cells profiles and stromal cells from the same patient, we 
produced data to simulate the clinical tumor tissues with 
different PTEC by the equation as following:

E = EePi + Es - Pi , Pi  (1 ) (0,1)Î  (2)

where E, Ee and Es represent the gene expression profiles 
of the simulated clinical tumor tissue, tumor epithelial 
cell and stromal cell, respectively. Pi is the PTEC in the 
simulated clinical tumor sample.

Developing an REOs-based signature for 
distinguishing tumor samples from normal 
samples

Firstly, a gene pair (Gi and Gj) was selected when 
its REO, Gi > Gj in expression level, was identical in 
more than 95% of the normal samples, and was reversed 
(Gi <Gj) in more than 95% of the tumor samples. After 
selecting all such reversal gene pairs, we calculated for 
each gene pair the rank difference in each of the tumor or 
normal samples by the equations as following:
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Rij Ri R j| - |=  (3)

Ri and Rj represent the ranks of gene i and j in a sample, 
respectively, and Rij is the absolute rank difference 
between the two genes. Here, all the genes in a sample are 
ranked according to their expression levels in ascending 
order.

avgRij = median Rij N median Rij T[ ( )]+ [ ( )]
2

 (4)

Let median [Rij(N)] and median [Rij(T)] represent the 
medians of absolute rank differences of the gene pair (i, j) 
in all normal samples and all tumor samples, respectively. 
Then, we calculated the arithmetic mean of the median 
[Rij(N)] and the median [Rij(T)] to evaluate the reversal 
degree of the gene pair. The larger this arithmetic mean, 
the larger the reversal degree of the REO for the two genes 
between the disease and normal tissues.

Finally, among all the reversal gene pairs, the gene 
pair with the largest arithmetic mean of the absolute rank 
differences in normal and cancer samples was selected 
as the signature. For a given sample, if the REO of the 
signature gene pair in the sample is the same with the REO 
pattern of the normal training samples, the samples was 
identified as the normal tissue; otherwise, the tumor sample.
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PTEC: proportions of tumor epithelial cell; REOs: 
relative expression orderings; LCM: laser capture 
microdissection; FDR: false discovery rate; DEGs: 
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