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ABSTRACT
Intra-tumor heterogeneity is a pervasive property of human cancers that poses a 

major clinical challenge. Here, we describe the characterization, at the transcriptional 
level, of the intra-tumor topography of two prominent breast cancer biomarkers and 
drug targets, epidermal growth factor receptor 2 (HER2) and estrogen receptor 1 (ER) 
in 49 archival breast cancer samples. We developed a protocol for single-molecule 
RNA FISH in formalin-fixed, paraffin-embedded tissue sections (FFPE-smFISH), which 
enabled us to simultaneously detect and perform absolute quantification of HER2 and 
ER mature transcripts in single cells and multiple tumor regions. We benchmarked 
our method with standard diagnostic techniques, demonstrating that FFPE-smFISH is 
able to correctly classify breast cancers into well-established molecular subgroups. 
By counting transcripts in thousands of single cells, we identified different expression 
modes and levels of inter-cellular variability. In samples expressing both HER2 and 
ER, many cells co-expressed both genes, although expression levels were typically 
uncorrelated. Finally, we applied diversity metrics from the field of ecology to 
assess the intra-tumor topography of HER2 and ER gene expression, revealing that 
the spatial distribution of these key biomarkers can vary substantially even among 
breast cancers of the same subtype. Our results demonstrate that FFPE-smFISH is 
a reliable diagnostic assay and a powerful method for quantification of intra-tumor 
transcriptional heterogeneity of selected biomarkers in clinical samples.

INTRODUCTION

Intra-tumor heterogeneity (ITH) is a hallmark 
of human cancers that manifests itself at the genetic, 

epigenetic, and phenotypic level [1]. From the clinical 
standpoint, ITH of actionable mutations and more 
generally of any type of molecular biomarker is a major 
challenge, as the fraction of tumor cells expressing the 
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mutation or biomarker of interest and possibly their 
geographical distribution within the tumor will influence 
therapeutic response. Moreover, the spatial organization of 
different subclones - and not only their number - is likely 
to affect clinical outcome [2].

In the past few years, multi-region sequencing 
[3] and single-cell sequencing [4] technologies have 
revealed that ITH is prevalent in many cancer types. 
An important limitation of these approaches, however, 
is their intrinsic inability to provide information about 
the spatial arrangement of different subclones and the 
topography of cells expressing selected biomarkers. In 
contrast, in spite of the typically much lower throughput 
compared to sequencing technologies, in situ methods 
such as fluorescence in situ hybridization (FISH) can 
provide more robust quantitative information not only on 
the abundance, but also on the location of selected DNA 
and RNA targets inside their cellular and tissue context. 
For example, combined DNA FISH and immunostaining 
were used to study the spatial organization of different 
subclones in breast cancer samples obtained before and 
after neoadjuvant chemotherapy [5], and to compare 
genetic and phenotypic ITH in breast cancer metastases 
and matched primary lesions [6]. More recently, a novel 
in situ method named STAR-FISH was successfully 
applied, together with DNA FISH, to probe the temporal 
and spatial heterogeneity of PIK3CA mutations and HER2 
amplification in HER2-positive breast cancers treated 
with neoadjuvant therapy [7]. On the RNA side, single-
molecule RNA FISH (smFISH) [8] and RNAscope [9] 
have emerged as powerful methods enabling visualization, 
precise localization, and enumeration of individual RNA 
molecules within fixed cells and tissues (for a detailed 
review of these two methods, see for example ref. [10]). 
Padlock probes and rolling circle amplification have also 
been used to visualize RNA molecules in fixed cells and 
tissues [11]. Additionally, rolling circle amplification 
was recently applied to quantify spatial ITH of clinically 
relevant KRAS, EGFR and TP53 mutations in lung 
cancer [12]. Recently, we applied smFISH to quantify 
the intra-tumor transcriptional heterogeneity of the 
oncogenic fusion gene, BCR-ABL, in chronic myeloid 
leukemia [13], and to study the cell-to-cell variability of 

immunoglobulin gene expression in follicular lymphoma 
cell lines [14]. However, application of smFISH to 
clinical tissue samples, including formalin-fixed, paraffin-
embedded (FFPE) specimens, has been so far very limited. 
Moreover, a direct and rigorous comparison of smFISH 
with routine diagnostic methods has not been done yet. 
Here, we developed and validated a robust protocol for 
smFISH in FFPE breast cancer tissue sections (FFPE-
smFISH), and applied it to quantify transcriptional ITH 
and to perform spatial analysis, at single-cell level, of the 
two most clinically relevant breast cancer biomarkers: 
epidermal growth factor receptor 2 (HER2) and estrogen 
receptor 1 (ER).

RESULTS

Development of a HER2 and ER FFPE-smFISH 
assay for nascent and mature transcripts

In smFISH, individual transcripts are targeted by 
probes consisting of pools of 20 nucleotides (nt)-long 
complementary oligonucleotides, each conjugated to a 
single fluorophore, and are detected under a wide-field 
epifluorescence microscope as bright diffraction-limited 
spots that can be precisely enumerated and localized inside 
single cells (Figure 1A). In order to design smFISH probes 
targeting all the main isoforms of human HER2 and ER 
genes, we took advantage of our recently developed probe 
database that covers all the protein-coding transcripts 
annotated in Ensembl (see www.fusefish.eu [13]). We 
managed to cover each transcript with at least 48 oligos, 
which is sufficient to yield a robust smFISH signal, as 
previously demonstrated [8]. A full list of oligo sequences 
is available in Supplementary Table 1. Initially, we only 
applied standard deparaffinization of the FFPE tissue 
sections before performing smFISH. However, high 
background autofluorescence prevented robust smFISH 
signal detection (data not shown). After several trials, we 
identified an optimal pre-hybridization sample processing 
procedure that includes a post-fixation step in methanol-
acetic acid, and two RNA retrieval steps to partially 
reverse cross-links and ensure target accessibility. In 
addition, we included an autofluorescence-quenching step 
in sodium borohydride, which was previously applied to 
detect nascent mRNAs in prostate cancer FFPE biopsies 
[15]. A step-by-step FFPE-smFISH protocol is provided in 
Supplementary Information.

We applied our optimized FFPE-smFISH protocol to 
49 archival specimens of invasive breast cancer in which 
the HER2 and ER status had been thoroughly assessed 
by standard methods. Patients were all females, mostly 
post-menopausal (95.9% > 50 year-old) and treated with 
conservative surgery (59.2%, Table 1). Tumors were 
predominantly invasive ductal carcinomas (79.6%) of 

Table 1: Patient characteristics.
Age at diagnosis (Years) Number of cases (%)

<40 0 (0%)
40-50 2 (4.1%)
51-70 30 (61.2%)
>70 17 (34.7%)

Sex
M 0 (0%)
F 49 (100%)

Surgery type
Mastectomy 20 (40.8%)
Conservative 29 (59.2%)
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high histological grade (47% grade 3) and ER-positive 
(75.5%). 44.9% of cases were HER2-positive based on 
immunohistochemistry (IHC) and DNA FISH (Table 2).

In each sample, we simultaneously imaged 
HER2 and ER mature and nascent transcripts at high 
magnification (100X objective) in at least 32 regions 
(range: 32-79) inside macroscopic tumor areas that 
a pathologist had previously marked in an adjacent 
hematoxylin-eosin (H&E) stained section (Figure 1B and 
Supplementary Table 2). Individual transcripts appeared 
as bright diffraction-limited spots that could be identified 
and counted in an automated manner (Figure 1C and 1D, 
and Materials and Methods). Importantly, HER2 and 
ER transcripts were localized within regions containing 
many nuclei displaying morphologic features of cancer 
cells (as confirmed by a pathologist), while they were 

largely absent in stromal regions, as exemplified in Figure 
1B, and as it can be appreciated by visualizing all the 
images in the freely accessible supporting website, http://
tumorheterogeneity.eu/.

To further confirm that HER2 and ER smFISH 
signals overlap with tumor regions, we applied to selected 
cases a new pipeline, which we recently developed in 
our lab (unpublished data) that enables registration of 
smFISH images acquired at high magnification (100X) 
onto a large-field (up to 2 x 2 cm) scan of the same tissue 
section stained with H&E after smFISH, and imaged at 
low magnification (10X) (http://tumorheterogeneity.eu/ 
and Materials and Methods). We managed to detect HER2 
and ER transcripts in FFPE blocks as old as 3 years, and 
in FFPE tissue sections mounted on microscope slides and 
stored at room temperature up to 4 years, suggesting that 
FFPE-smFISH might be a robust method for biomarker 
analysis even in old archival samples.

FFPE-smFISH scoring

We sought to develop a fast and robust scoring 
approach to quantify HER2 and ER smFISH signals, 
which would be easy to apply in the diagnostic setting. 
For this purpose, we segmented each 1,024 x 1,024 px 
image (1 px = 125 nm) with a regular grid of squared 
pseudo-cells, and defined as smFISH score the mean 
density of each transcript inside all the pseudo-cells of a 
given case. To choose the size of the pseudo-cells, we first 
segmented individual cells by using the boundary of nuclei 
stained with 4’,6-diamidino-2-phenylindole (DAPI) as a 
reference. In order to account for transcripts localized in 
the cytoplasm, we uniformly dilated the margins of the 
segmented nuclei by a constant length (Materials and 
Methods).

We first tested the reproducibility of the single-
cell segmentation approach by segmenting DAPI-stained 
nuclei in three replica samples of three different cell lines 
expressing variable levels of HER2 (Supplementary 
Figure 1A). We then manually segmented 38,191 cells 
(1,060 ± 699 cells per case, mean ± s.d.) in 36 out of the 
49 cases. On average, we analyzed 57 images per case 
(57 ± 11, mean ± s.d.) and segmented 19 cells per image 
(19 ± 10, mean ± s.d., Supplementary Table 2). Next, 
we computed the area of the segmented cells at different 
nucleus dilation lengths, and selected different pseudo-cell 
sizes so that the area of the pseudo-cells overlaps with the 
interquartile range of the area of the segmented cells at 
different dilation lengths (Supplementary Figure 1B). We 
calculated the Spearman correlation between differently 
sized pseudo-cells and nucleus dilation lengths using four 
different thresholds of the number of smFISH dots per 
pseudo- or segmented cell (≥ 0, 1, 2, 3). Both in the case 
of HER2 and ER, we observed a very strong correlation 
(Spearman ρ > 0.9 for HER2 and ρ > 0.85 for ER, P < 
0.001) between the smFISH scores calculated based on 

Table 2: Histological and molecular characteristics of 
tumors analyzed.

Histologic type Number of cases (%)
IDC 39 (79.6%)
ILC 7 (14.3%)
Others 3 (6.1%)

Histologic grade
1 11 (22.4%)
2 14 (28.6%)
3 23 (47%)
Undetermined 1 (2%)

ER status
0 12 (24.5%)
>1% 37 (75.5%)

HER2 status
IHC score DNA FISH

0 Not Amp 10 (20.4%)
Amp 0 (0%)

1+ Not Amp 7 (14.3%)
Amp 0 (0%)

2+ Not Amp 10 (20.4%)
Amp 7 (14.3%)

3+ Not Amp 0 (0%)
Amp 15 (30.6%)

Ki67 score
> 14% 35 (71.4%)
< 14% 14 (28.6%)

Molecular Subtype
LumA 10 (20.4%)
LumB/HER2-neg 12 (24.5%)
LumB/HER2-pos 15 (30.6%)
Triple-neg 5 (10.2%)
HER2 7 (14.3%)

IDC, invasive ductal carcinoma. ILC, invasive 
lobular carcinoma. ER, estrogen receptor. IHC, 
immunohistochemistry. FISH, fluorescence in situ 
hybridization.

http://tumorheterogeneity.eu/
http://tumorheterogeneity.eu/
http://tumorheterogeneity.eu/
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pseudo- vs. segmented cells (Supplementary Figure 1C and 
1D). In addition, we developed a segmentation algorithm 
that uses the spatial distribution of DAPI intensity to find 
cell-containing regions inside each image (Supplementary 
Figure 1E and Materials and Methods). As for segmented 
cells, we found a very strong correlation (Spearman ρ > 
0.95 for HER2 and ρ > 0.84 for ER, P < 0.001) between 
the mRNA density per pseudo-cell and the density inside 
the regions identified by our algorithm (Supplementary 
Figure 1F and 1G). Altogether, these results demonstrate 

that the pseudo-cell segmentation approach is a robust 
method to score smFISH signals that, while retaining 
information about inter-regional differences, is much 
faster than single-cell segmentation and is therefore ideal 
in the diagnostic setting.

Assay validation and reproducibility

Next, we aimed to systematically validate our 
method and assess its reproducibility. First, we determined 

Figure 1: FFPE-smFISH. A. Scheme of smFISH. A pool of usually 30-50 oligos, each of 20 nucleotides (nt) length and labeled with a 
single fluorophore (red), is hybridized in situ to a complementary target RNA (gray line). As a rule of thumb, a transcript that can be targeted 
with at least 20 oligos can be detected by smFISH. B. Example of HER2 (cyan) and ER (red) mRNA detection in a FFPE breast cancer 
tissue section. Each spot corresponds to a diffraction-limited fluorescent signal that is generated upon binding of the fluorescently labeled 
oligos forming the smFISH probe to their target. Gray, DAPI-stained nuclei. The white dashed lines mark the boundary between tumor and 
stroma. Tumor regions are typically characterized by a high density of large nuclei with peripheral chromatin, whereas the nuclear density 
is much lower in stromal areas. (C-D) Magnification of the region encircled by the white square in B. C. HER2 transcripts (cyan dots). D. 
ER transcripts (red dots). The yellow circles mark individual mRNA molecules automatically identified by our custom software.
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which pseudo-cell size and threshold combination gives 
the best diagnostic performance, by applying the Receiver 
Operating Characteristic (ROC) method [16] to compare 
the pseudo-cell based scores with the IHC and DNA FISH 
scores determined for the same samples according to the 
ASCO/CAP guidelines [17] (Materials and Methods). For 
HER2, the highest diagnostic performance values (AUC 
> 0.90) were obtained with a threshold of 2-3 dots per 

pseudo-cell (Figure 2A). In the case of ER, the diagnostic 
performance was slightly lower (this could be explained 
by the low ER positivity threshold used to score IHC 
results, see Materials and Methods), with the highest AUC 
values ( > 0.85) obtained with a threshold of 1 dot per 
pseudo-cell (Figure 2B). A grid of 13 x 13 pseudo-cells 
and a threshold of 3 dots per pseudo-cell for HER2 and 
1 dot per pseudo-cell for ER maximized the following 

Figure 2: Diagnostic performance of HER2 and ER FFPE-smFISH. A. Heatmap showing different values of the HER2 area 
under the curve (AUC) obtained for different pseudo-cell sizes and thresholds of the number of mRNA dots per cell based on the ROC 
curve method (see Materials and Methods). Cyan box, pseudo-cell and threshold combination yielding the HER2 ROC curve shown in C., 
and used in all subsequent pseudo-cell analyses. B. Same as in A., but for ER. Red box, pseudo-cell and threshold combination yielding the 
ER ROC curve shown in C., and used in all subsequent pseudo-cell analyses. C. Diagnostic performance of HER2 and ER FFPE-smFISH 
obtained with the pseudo-cell size and threshold combinations indicated by the cyan and red boxes in A. and B., respectively. D. Mean 
HER2 transcript density in tumors categorized as HER2-positive or negative based on IHC and DNA FISH. E. Mean ER transcript density 
in tumors categorized as ER-positive or negative based on IHC. Each dot in D. and E. corresponds to the mean pseudo-cell transcript 
density in one of the 49 analyzed cases. Horizontal black bars represent the mean of all cases in the corresponding group. P values were 
obtained with the Mann-Whitney test (two-tailed).

https://paperpile.com/c/4QN0HG/8ihda
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three parameters: 1) area of pseudo- vs. segmented cells; 
2) Spearman correlation coefficient of the mean transcript 
density in pseudo- vs. segmented cells; and 3) diagnostic 
performance assessed by the ROC method (Figure 2C). 
Hence, we used these settings in all subsequent analyses 
based on pseudo-cells.

According to current guidelines, patients with 
IHC 3+ score and patients with IHC 2+ score and HER2 
amplification confirmed by DNA FISH are considered 
HER2-positive and thus eligible to anti-HER2 therapy 
[17]. We observed that the amount of HER2 smFISH 
signals increased with the IHC score, with the highest 
expression observed in 3+ samples (Supplementary Figure 
2A). Accordingly, the mean HER2 transcript density 
per pseudo-cell determined by FFPE-smFISH (HER2 
FFPE-smFISH score) was significantly higher in positive 
samples (mean = 0.13 vs. 0.04 dots/µm3, Mann-Whitney 
test, P < 0.001, Figure 2D). Of note, one case (case 21) in 
the positive group had a very low smFISH score (0.024 
dots/µm3) confirmed by the three replicate experiments, 
while ER was expressed in the same case, ruling our RNA 
degradation. Accordingly, repetition of HER2 IHC in the 
same sample and re-evaluation of the data by a pathologist 
revealed a heterogeneous IHC 2+ score with borderline 
DNA FISH positivity, placing this case rather in the 
negative group (Supplementary Table 3). We also observed 
that the mean HER2 score was significantly higher in 
the IHC 3+ group as compared to the IHC 2+ amplified 
group (mean HER2 score = 0.15 vs. 0.07 dots/µm3, Mann-
Whitney test, P = 0.0021, Supplementary Figure 2B). 
Although patients in these two tumor groups are currently 
treated with the same anti-HER2 therapy regimens, it is 
possible that tumors with higher HER2 mRNA levels 
as detected by smFISH might respond better to HER2-
targeted therapy. In line with this, a significant association 
between the level of HER2 amplification detected by DNA 
FISH and overall survival was recently described [18], 
suggesting that scoring HER2 on a continuous scale might 
be better than categorical scoring. For 6 selected cases for 
which additional sections were available, an independent 
experimenter, in a different laboratory and using a 
different microscope setup (Materials and Methods) 
successfully replicated the inter-sample differences 
observed in our initial screening, demonstrating the 
reproducibility of our assay (Supplementary Figure 2C). 
Furthermore, we compared smFISH with an independent 
RNA-based method - reverse transcription quantitative 
PCR (RT-PCR) - obtaining a good correlation between 
the two measurements (Spearman ρ = 0.75, P = 0.06, 
Supplementary Figure 2D and Materials and Methods). 
Notably, comparison of the clinical samples with the 
SKBR3 breast cancer cell line, both by smFISH and RT-
PCR, demonstrated that, while smFISH has a relatively 
broad dynamic range and is capable of detecting high 
mRNA levels, the expression of HER2 in breast cancer 
cell lines might not reflect the actual transcript abundance 

in clinical samples, similarly to what we previously 
observed for the oncogenic fusion transcript, BCR-ABL1, 
in chronic myeloid leukemia clinical samples and cell 
lines [13].

In analogy to HER2, the mean ER transcript density 
per pseudo-cell determined by FFPE-smFISH (ER FFPE-
smFISH score) was on average significantly higher in 
tumors scored positive by IHC (mean ER score = 0.04 
vs. 0.02 dots/µm3, Mann-Whitney test, P < 0.001, Figure 
2E). However, many tumors expressed mRNA levels 
comparable to the negative group (Figure 2E), which 
might at least in part depend on the criteria used for 
scoring samples as positive and/or on the antibody used for 
IHC (Materials and Methods). Another possibility is that 
some of the cases scored positive by IHC express shorter 
ER isoforms [19, 20] so that a smaller number of smFISH 
oligos can actually hybridize to the target compared to the 
full-length ER mRNA, thus resulting in a weaker signal.

Next, we examined if the HER2 and ER FFPE-
smFISH scores correlate with the molecular subtype, 
which was surrogated using the results of IHC markers 
as described in Materials and Methods. In the case of 
HER2, Luminal A, Luminal B/HER2-negative, and triple-
negative subtypes had low expression levels (mean HER2 
score = 0.047, 0.044, and 0.031 dots/µm3, respectively), 
whereas the Luminal B/HER2-positive and HER2 groups 
had higher scores. The HER2-positive subtype expressed 
significantly higher levels in comparison to the Luminal B/
HER2-positive subtype (mean HER2 score = 0.17 vs. 0.11 
dots/µm3, Mann-Whitney test, P = 0.05, Supplementary 
Figure 3A). In the case of ER, as expected HER2-positive 
and triple-negative subtypes had the lowest ER scores 
(mean ER score = 0.02 and 0.01 dots/µm3, respectively), 
whereas Luminal A and Luminal B/HER2-positive 
samples had the highest scores (mean ER score = 0.042 
and 0.044 dots/µm3, respectively). Two tumors in the 
latter group had an ER score three times higher than the 
mean score of all the cases in the same group (0.12 vs. 
0.04 dots/µm3) although the IHC scores were comparable 
(Supplementary Figure 3B and Supplementary Table 3).

To further validate our approach, we compared 
HER2 FFPE-smFISH with three other methods that can 
assess the HER2 status in clinical breast cancer samples: 
DNA FISH, Multiplex Ligation-dependent Probe 
Amplification (MLPA) [21] and Proximity Ligation Assay 
(PLA) [22]. In line with our previous observations [23], 
we found a positive correlation between the HER2 DNA 
copy number assessed by either DNA FISH (Spearman ρ 
= 0.79, P < 0.0001, Supplementary Figure 3C) or MLPA 
(Spearman ρ = 0.81, P < 0.0001, Supplementary Figure 
3D) and HER2 mRNA levels. A weaker, but statistically 
significant correlation was also observed between RNA 
levels and protein levels determined by PLA (Spearman 
ρ = 0.63, P < 0.0001, Supplementary Figure 3E). Overall, 
these results demonstrate that pseudo-cell transcript 
densities measured by FFPE-smFISH are a robust metric 

https://paperpile.com/c/4QN0HG/63kJh
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of HER2 and ER abundance that may be implemented in 
routine clinical breast cancer diagnostics.

Single-cell analysis of HER2 and ER expression

We then asked whether FFPE-smFISH is a 
valid method to assess the intra-tumor transcriptional 

Figure 3: HER2 and ER gene expression in single cells. A. Distribution of the HER2 mRNA density per cell in 36 segmented 
cases grouped by molecular subtype. The number in each box indicates the case ID (see Supplementary Table 3). B. Same as in A., but 
for ER. C. Representative spatial HER2 mRNA patterns in selected cases belonging to the HER2-positive or Luminal B/HER2-positive 
molecular subtype. For each case, we randomly selected 36 images and plotted all the cells segmented in each image (nucleus expansion 
margin = 20 px; threshold = 0 dots/cell) as polygons filled with a different color depending on the mRNA density in the cell. Finally, we 
arranged the plots in a 9 x 4 matrix plot, as shown here. Therefore, adjacent plots in the matrix must not be interpreted as coming from 
physically adjacent regions in the tumor. The histogram on top of each matrix shows the distribution of mRNA density among all the 
cells in the case, independently of their location (same as in A. and B.). The number above each histogram represents the case ID (see 
Supplementary Table 3). The color bar on the right shows the colors encoding for the mRNA density in each cell. D. Same as in C., but for 
ER. Similar maps for all the 36 segmented cases can be browsed on the supporting website, http://tumorheterogeneity.eu/.

http://tumorheterogeneity.eu/
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heterogeneity of HER2 and ER. For this purpose, we first 
analyzed in detail the data obtained from the single-cell 
segmentation approach described above (Supplementary 
Figure 1B). The distribution of pairwise distances between 
all segmented cells in each image was similar in all the 
segmented cases (coefficient of variation of the means 
= 4%), indicating that the manual segmentation was 
performed homogeneously (Supplementary Figure 4A). 
We observed that in triple-negative, HER2-positive, and 
Luminal B/HER2-positive tumors the nuclei were on 
average slightly, but significantly larger in comparison 
to Luminal A and Luminal B/HER2-negative samples 
(75.47 vs. 63.84 µm2, Mann-Whitney test, P = 0.019, 
Supplementary Figure 4B), possibly reflecting the 
difference in biological and clinical aggressiveness 
between these subtypes. Next, we again applied ROC 
analysis in order to choose the nucleus expansion margin 
and threshold of dots per cell to apply in subsequent 
analyses. As shown in Supplementary Figure 4C-E, an 
expansion margin of 20 px (2.5 μm) and a threshold of 
0 dots per cell in the case of HER2 and 1 dot per cell in 
the case of ER, gave the highest diagnostic performance. 
Thus, we used these settings in all subsequent single-cell 
analyses.

Next, we plotted the single-cell distribution of 
HER2 and ER expression in all the segmented tumors 
grouped according to their molecular subtype (Figure 
3A-B). As expected, HER2 was very lowly expressed 
in triple-negative, as well as in most Luminal B/HER2-
negative tumors (HER2 score ≤ 0.05 dots/µm3). However, 
two cases in the latter group (case 14 and 37) featured 
a small sub-population of highly expressing cells (~5% 
of cells with HER2 score ≥ 0.3 dots/µm3) coexisting with 
a much larger population of lowly expressing cells ( > 
50% of cells with HER2 score ≤ 0.05 dots/µm3) despite 
the fact that these tumors were diagnosed as HER2-
negative by IHC. Indeed, re-evaluation of the IHC data by 
a pathologist identified two different populations of tumor 
cells (30% of cells with HER2 score 2+ and 70% with 
score 1+ in case 14, see Supplementary Table 3). Among 
Luminal A tumors, case 5 had a small fraction of high-
expressing cells (~5% of cells with HER2 score ≥ 0.3 
dots/µm3), while the majority of cells in case 40 expressed 
HER2 at levels similar to the HER2-positive cases (~50% 
of cells with HER2 score ≥ 0.2 dots/µm3). In some cases 
(case 8, 9, and 18) we observed a clear transcriptionally 
‘off’ population of cells ( > 30% of cells with HER2 score 
≤ 0.05 dots/µm3) together with an ‘on’ population of cells 

Figure 4: Single-cell correlation between HER2 and ER mRNA density in all the 36 segmented tumors grouped by 
molecular subtype. Each dot in the scatter plots represents a single cell. ρ, Spearman correlation. P values were obtained with the 
Student’s t test (two-tailed).
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expressing higher levels of HER2 mRNA (HER2 score 
≥ 0.2 dots/µm3). In the case of ER, ER mRNA was, as 
expected, almost undetectable in the triple-negative and 
HER2-positive tumors analyzed (ER score ≤ 0.05 dots/
µm3). However, single-cell expression levels were also 
markedly low in one Luminal A (case 40, 100% of cells 
with ER score ≤ 0.05 dots/µm3), as well as in several 
Luminal B tumors (case 2, 18, 29, 33, 38, 42, and 43, > 
95% of cells with ER score ≤ 0.05 dots/µm3). In some 
cases, cells expressing low ER levels coexisted with cells 
expressing moderate-to-high levels (ER score ≥ 0.2 dots/
µm3), while some tumors (case 5, 31, and 44) showed 
one transcriptionally ‘off’ population of cells ( > 50% of 
cells with ER score ≤ 0.05 dots/µm3) together with an ‘on’ 

population of cells expressing higher levels of ER mRNA 
(ER score ≥ 0.1 dots/µm3), which was also detected at the 
protein level by careful re-evaluation of the IHC images 
by a pathologist (Supplementary Table 3).

To further investigate our sample cohort at the 
single-cell level, we used heatmap plots to visualize 
the spatial distribution of the density of HER2 and ER 
transcripts in the segmented cells inside each field of view 
(Figure 3C and 3D and http://tumorheterogeneity.eu/). 
To quantify the inter-regional variability of the spatial 
distribution of transcript densities (i.e., the difference 
between all the fields of view in a tumor), we computed 
the mean transcript density per cell per field of view in 
HER2-positive (for HER2) and ER-positive (for ER) 

Figure 5: Spatial heterogeneity of HER2 and ER gene expression. A. Coefficient of variation (CV) of HER2 and ER local 
diversity scores calculated for each field of view in HER2-positive and ER-positive cases, respectively (in the HER2 group case 21 was 
excluded due to the low number of tumor regions that were imaged). Each dot represents the CV of the vector of local diversity index values 
obtained for all the fields of view of each case. Horizontal black bars represent the mean of all cases in the corresponding group. The P 
value was obtained with the Mann-Whitney test (two-tailed). B. Waterfall plot of the Spearman correlation between the difference in HER2 
mRNA density and the Euclidean distance separating two pseudo-cells in the same field of view in HER2-positive cases. D. Same as in C., 
but for ER. The asterisks indicate statistically significant correlations (P < 0.05, Student’s t test, two-tailed).

http://tumorheterogeneity.eu/
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tumors. On average, the inter-regional variability was 
higher in the case of ER than HER2 (mean coefficient of 
variation = 0.84 vs. 0.44, Mann-Whitney test, P < 0.0001, 
Supplementary Figure 5A). Interestingly, even in the 
same molecular subtype, we observed different spatial 
patterns, with some cases displaying homogeneously high 
expression levels in all the fields of view (e.g., HER2 
in case 16), other cases with an admixture of lowly and 
highly expressing cells in all the images (e.g., HER2 in 
case 4), and other cases with local homogeneity (either 
low or high expression) and global heterogeneity (‘cold’ 
and ‘hot’ fields, see for example HER2 and ER in case 
7). Notably, in some bimodal cases the ‘on’ and ‘off’ 
populations were spatially segregated (e.g., HER2 in 
case 8 and ER in case 44), whereas in others there was 
more promiscuity between ‘on’ and ‘off’ cells within the 
same field of view (e.g., HER2 in case 18, and ER in 
case 5 and 17) (Figure 3C and 3D). Importantly, careful 
re-assessment of all the cases displaying bimodality 
by a pathologist confirmed that these transcriptionally 
silent cells are indeed localized inside tumor regions and 
have a nuclear morphology compatible with tumor cells 
(see corresponding images in the supporting website, 
http://tumorheterogeneity.eu/), thus excluding that the 
‘off’ populations observed come from stroma. We also 
wondered whether in tumors with broad or bimodal 
HER2 or ER expression we would detect a morphological 
difference between cells expressing low versus high 
transcript levels, following the recent observation that 
tumors carrying a high mutational burden and high levels 
of copy number alterations have on average larger nuclei 
[24]. In the case of HER2, we found that highly expressing 
cells had slightly, but statistically significantly larger 
nuclei (68.31 vs. 65 µm2, Mann-Whitney test, P < 0.0001, 
Supplementary Figure 5B), whereas we observed the 
opposite for ER (62.60 vs. 65.17 µm2, Mann-Whitney test, 
P = 0.0007, Supplementary Figure 5C). Altogether, these 
results indicate that, although the average expression level 
of HER2 and ER may be similar among breast cancers of 
the same molecular subtype, the spatial distribution and 
expression level of single tumor cells may substantially 
vary, which in turn might influence responsiveness to 
therapy.

Correlation between HER2 and ER transcript 
levels in single cells

Clinical and laboratory evidence indicate that the 
cross-talk between HER2 and ER signaling pathways has a 
critical role in mediating the response to endocrine therapy 
[25, 26]. Since smFISH allows simultaneous visualization 
of two transcripts in the same cell, we checked whether 
a co-dependency between HER2 and ER mRNA levels 
could be detected and serve as a proxy of the crosstalk 
between the two pathways. While in the majority of cases 

we found no significant correlation between the HER2 and 
ER expression levels in single cells (Spearman ρ < 0.1, P 
> 0.05), in some cases there was a weak, but statistically 
significant positive correlation (0.2 < ρ < 0.4, P < 0.05, 
Figure 4). Interestingly, in the two Luminal A cases that 
were found to express relatively high levels of HER2 
mRNA (case 5 and 10, see Figure 3A), there was a small, 
but clearly visible subpopulation of cells with positively 
correlated levels of HER2 and ER mRNA (Spearman ρ 
= 0.35, P = 10-24 for in case 5, and ρ = 0.21, P = 10-16 in 
case 10, Figure 4). These results demonstrate the ability 
of FFPE-smFISH to pinpoint differences in the population 
structure of a tumor that might have important biological 
and clinical consequences, but that would go undetected 
with standard diagnostic techniques.

Intra-tumor topography of HER2 and ER 
expression

We then sought to characterize the spatial 
heterogeneity of HER2 and ER in a more systematic way. 
For this purpose, we adapted several diversity metrics 
that were previously applied to characterize genetic 
ITH in breast cancer [5, 6]. First, we used the Shannon 
entropy - a metric originally developed in information 
theory and used, for example, to characterize the diversity 
of species in an ecosystem - to compare how the HER2 
and ER expression levels vary among all the pseudo-
cells in the same field of view (local diversity index) or 
in the whole tumor (global diversity index) (Materials 
and Methods). The local diversity index indicates how 
many different expression levels are detected inside each 
imaged tumor region, whereas the global entropy reflects 
how many different expression levels are overall present 
in all the tumor regions analyzed. For both HER2 and 
ER, the mean local and global diversity indexes were 
positively correlated, but the local values were typically 
higher (Supplementary Figure 6A-D). In the case of ER, 
the global diversity was significantly lower than the mean 
local diversity and more heterogeneous among different 
cases (mean = 0.69 vs. 0.57, Mann-Whitney test, P = 
0.0009, Supplementary Figure 6D). On average, the mean 
local diversity was higher in the case of HER2 than for 
ER (mean = 0.85 vs. 0.69, Supplementary Figure 6C and 
6D), but interestingly the ER local diversity index was 
significantly more variable from region to region of the 
same tumor (mean coefficient of variation = 0.2 for ER vs. 
0.08 for HER2, Mann-Whitney test, P < 0.0001, Figure 
5A), possibly reflecting differences in the mutational or 
dispersal rates of different sub-clones expressing various 
levels of HER2 and ER. Molecular subtype HER2-
positive tumors had on average a significantly higher 
local diversity compared to Luminal B/HER2-positive 
tumors (mean = 0.87 vs. 0.84, Mann-Whitney test, P = 
0.045, Supplementary Figure 6E), whereas there was no 

http://tumorheterogeneity.eu/
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significant difference in the ER local diversity among 
different luminal subtypes (Supplementary Figure 6F).

We then analyzed the difference in mRNA levels 
between adjacent pseudo-cells (Materials and Methods). 
Both for HER2 and ER, the mean mRNA density per 
pseudo-cell and the difference in transcript counts between 
adjacent pseudo-cells were strongly positively correlated 
(Spearman ρ = 0.86 for HER2 and ρ = 0.95 for ER, P < 
0.0001, Supplementary Figure 7A-B). In both cases, we 
also found a weaker, but statistically significant positive 
correlation between the mean difference in transcript 
levels among adjacent pseudo-cells and the average local 
diversity index (Spearman ρ = 0.6, P = 0.0008 for HER2 
and ρ = 0.7, P = 0.015 for ER, Supplementary Figure 
7C-D). The HER2-positive subtype had a statistically 
significantly higher average HER2 transcript absolute 
difference between adjacent tumor pseudo-cells, in 
comparison to Luminal B/HER2-positive tumors, 
indicating a higher level of spatial heterogeneity (13.3 vs. 
8.7, Mann-Whitney test, P = 0.04, Supplementary Figure 
7E). In contrast, no significant difference was observed for 
ER among different subtypes (Supplementary Figure 7F).

Lastly, we assessed how the difference in mRNA 
expression scales with the physical distance separating 
two cells, both using pseudo-cell and manually segmented 
cell data (Materials and Methods). In the case of HER2, 
we found that in most HER2-positive tumors there was 
a slight, but statistically significant positive correlation 
between local mRNA differences and physical distances 
among cells (Figure 5B and Supplementary Figure 8A-
B). In contrast, ER-positive tumors comprised two 
groups: in some tumors, the local inter-cellular difference 
in ER transcript levels was positively correlated with the 
physical distance separating two cells, whereas in other 
tumors there was a weak, but statistically significant 
inverse correlation between the two metrics (Figure 5C). 
Overall, these data demonstrate that FFPE-smFISH is not 
only a robust diagnostic assay for assessing the HER2 
and ER status, but that unlike standard HER2 and ER 
diagnostic methods, it can also be used to measure the 
spatial organization of these two key biomarkers within 
the tumor, yielding measures of spatial diversity that could 
in turn be correlated with clinical outcome.

DISCUSSION

We have developed and validated a robust single-
molecule RNA FISH protocol for the detection of both 
mature and nascent RNA in FFPE tissue sections (FFPE-
smFISH), and applied it to quantify the expression and 
the intra-tumor spatial heterogeneity of two prominent 
breast cancer biomarkers, HER2 and ER. Single-molecule 
RNA visualization in FFPE tissue sections was previously 
achieved in prostate cancer biopsies [15] by combining 
the original single-molecule RNA FISH method [27] - 
which uses cDNA-derived probes labeled with multiple 

fluorophores instead of oligonucleotides with the use 
of sodium borohydride to reduce fixative-dependent 
autofluorescence, which is usually very high in clinical 
FFPE samples. However, this approach was shown to 
detect only native transcripts accumulated at the site of 
transcription in cells undergoing so-called transcriptional 
bursting [28], thus limiting a broader applicability. In 
contrast, the FFPE-smFISH protocol described here is able 
to detect both nascent as well as mature transcripts, and 
features the following improvements: 1) smFISH probes 
consist of single fluorescently labeled oligonucleotides  
[8] rather that cDNA labeled with multiple fluorophores 
(see also the scheme in Figure 1A), which provides more 
versatility and specificity and is easier to implement; 2) 
in addition to sodium borohydride, two RNA-retrieval 
steps are used to minimize autofluorescence (see the 
step-by-step FFPE-smFISH protocol in Supplementary 
Information), enabling the detection not only of bright 
transcription sites in the nucleus, but also of lower 
intensity signals corresponding to mature RNA. We note 
that although in this study we have produced HER2 and 
ER smFISH probes as described in the original smFISH 
method [8], more cost-effective and scalable probe 
production methods are now available (our unpublished 
data and [29, 30]). (These methods are designed to 
produce target-specific primary oligos that carry one 
or two genome-orthogonal sequence flap(s) to which a 
secondary fluorescently labeled oligo is hybridized).

A distinguishing feature of FFPE-smFISH over 
the methods that are routinely used for HER2 and ER 
diagnostics, such as IHC, DNA FISH, and chromogenic 
in situ hybridization (CISH), is that the signal generated 
by smFISH (i.e., fluorescent dots) is digital rather 
than analog. In IHC and CISH assays, the readout is a 
continuous or color spectrum, for which an arbitrary 
positivity threshold needs to be applied to discriminate 
signal from background. The fact that thresholding is 
very subjective challenges inter-laboratory and inter-
operator reproducibility. In contrast, smFISH generates 
discrete, diffraction-limited fluorescence spots that can 
be robustly and automatically counted. Moreover, in 
contrast to DNA FISH which produces only a few signals 
per cell, in smFISH a few up to hundreds of individual 
RNA molecules per cell can be resolved, providing high 
sensitivity and statistical power (ultimately, the resolution 
depends on the number of transcripts and on the cell 
volume. For highly expressed genes, such as ribosomal 
RNA genes, it is not possible to resolve individual RNA 
molecules, but the total fluorescence intensity can be used 
as a proxy).

By imaging HER2 and ER transcripts in 49 
archival breast cancer samples with HER2 and ER status 
previously established by IHC and DNA FISH, and by 
applying a simple and computationally efficient approach 
to segment the images in a regular grid of pseudo-cells, 
we demonstrate that FFPE-smFISH is able to accurately 
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classify tumors belonging to different molecular subtypes, 
and has an excellent diagnostic performance (best 
AUC = 0.92 and 0.95 for HER2 and 0.86 and 0.90 for 
ER using pseudo-cells and manually segmented cells, 
respectively). Importantly, while the IHC and DNA 
FISH scores currently used in the clinic are categorical 
variables that provide limited information about inter-
tumor heterogeneity, the FFPE-smFISH score (mRNA 
density per pseudo-cell) is a continuous variable that 
enables a more resolved patient stratification. Indeed, we 
observed that tumors in each IHC or DNA FISH group had 
considerable variability in HER2 and ER transcript levels. 
Improved stratification might be very useful in particular 
for the IHC 2+/DNA FISH-negative group, which is 
currently not eligible for anti-HER2 targeted therapy. We 
found that one tumor in this group had HER2 expression 
levels similar to tumors in the IHC 2+/DNA FISH-positive 
and IHC 3+ groups, suggesting that anti-HER2 therapy 
might have been applicable. Conversely, several tumors 
from patients in the IHC 2+/DNA FISH-positive group, 
who received targeted therapy in agreement with current 
guidelines [17], showed HER2 expression levels close to 
those in the IHC 2+/DNA FISH-negative group, raising 
the question whether some of these patients might have 
been overtreated (Supplementary Figure 2B). In the future, 
application of HER2 FFPE-smFISH to larger prospective 
cohorts of samples will be fundamental to clarify the 
clinical relevance of a more resolved IHC 2+ patient 
stratification.

Another important advantage of FFPE-smFISH 
over IHC or CISH is that, because DAPI-stained nuclei 
are imaged together with RNA molecules and their 
boundary is easy to segment, single-cell segmentation 
can be readily performed for large numbers of cells 
within the same tumor sample (in this study, we chose 
to manually segment over 38,000 cells in order to 
be maximally accurate in selecting only tumor cells. 
However, automatic segmentation of DAPI-stained nuclei 
is possible and technically less cumbersome and more 
accurate compared to cell segmentation in H&E or IHC 
images). This opens up a unique opportunity to quantify 
transcriptional heterogeneity at the single-cell level and at 
the same time explore the spatial organization of different 
cell populations in the tumor ecosystem. Indeed, by 
counting HER2 and ER transcripts in thousands of single-
cells, we discovered that tumors belonging to the same 
subtype may harbor different population structures, with 
some tumors showing distinct transcriptionally ‘on’ and 
‘off’ sub-populations. Notably, while in the case of ER 
the observed bimodality was also detected at the protein 
level after careful re-evaluation of the IHC images, in the 
case of HER2 the coexistence of ‘on’ and ‘off’ populations 
could not be detected at the protein level. This discrepancy 
might be explained by the fact that the IHC signal is not 
quantified on a continuous scale as the smFISH signal, or 
alternatively by the fact that, while smFISH quantification 

is done automatically on a large number of cells, IHC 
quantification is performed by eye on a limited number 
of cells. Alternatively, HER2 RNA levels might oscillate 
due to transcriptional bursting [28], while protein levels 
might be more stable. Furthermore, the ability to measure 
HER2 and ER transcripts simultaneously in the same cell 
gave us a unique opportunity to explore the crosstalk, 
at the transcriptional level, between the HER2 and ER 
pathways. We found no evidence of correlated HER2 
and ER gene expression, except for two interesting cases 
which harbored distinct tumor cell sub-populations, 
including one with correlated HER2 and ER transcript 
levels. In the future, it will be important to extend these 
analyses to prospective patient cohorts in order to assess 
whether differences in the tumor population structure hold 
prognostic and/or predictive information.

Another key advantage of our approach is that, 
by performing quantitative measurements at multiple, 
distinct spatial locations in the tumor, we were able to 
measure various aspects of intra-tumor transcriptional 
heterogeneity, which might be very helpful to understand 
how the complex ecosystem of tumors influences therapy 
response and resistance. We used a mathematical tool 
originally developed in information theory - Shannon 
entropy - to characterize both the local and the global 
heterogeneity of HER2 and ER gene expression in all 49 
samples in our cohort. The Shannon entropy metric has 
been widely used in ecology and was recently introduced 
in cancer research to measure genetic diversity in breast 
cancer [5-7] and to characterize the spatial heterogeneity 
of immune infiltrates in breast cancer [31]. We found 
that the diversity of HER2 and ER expression levels was 
higher locally in comparison to the whole tumor, but 
also that there was considerable intra- and inter-patient 
variability. Importantly, tumors belonging to the same 
molecular subtype had different transcriptional ITH 
profiles, suggesting that not only the type and average 
expression level, but also the spatial distribution of cells 
expressing a given biomarker might influence how a 
tumor evolves and responds to therapy. Along these lines, 
analysis of gene expression differences between adjacent 
cells - as demonstrated by our proof-of-principle analysis 
- could be very useful to model tumor evolution. We 
envision several forces that might be at work to shape the 
observed transcriptional variability among adjacent cells: 
1) in one scenario, each tumor clone is relatively stable 
in its genetic and epigenetic state, however dispersive 
migration and physical mixing of different clones creates 
local heterogeneity (in this scenario, adjacent cells rarely 
originate from the same cell division, but rather come 
close to each other by active motion). 2) In the second 
scenario, high mutational rates (resulting, for instance, 
in rapid copy number changes or promoter mutations) or 
short-lasting epigenetic memory (resulting, for example, 
in a high frequency of transcriptional bursts) cause 
expression levels to rapidly diverge among adjacent 
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cells. This in turn would generate diversity among clonal 
progenies that might increase the fitness of the tumor in the 
face of the constantly changing tumor microenvironment. 
In the future, it will be fascinating to test these hypotheses 
by combining FFPE-smFISH with other methods such 
as DNA FISH (we have previously shown that smFISH 
and high-resolution DNA FISH can be effectively 
combined in the same sample [23]) and STAR-FISH [7] 
to measure simultaneously copy number levels, selected 
mutations and gene expression in single cells, followed 
by mathematical modeling of the experimental data, for 
example by applying tools like the Chaste cell dynamics 
simulator (https://www.cs.ox.ac.uk/chaste). In particular, 
future applications of FFPE-smFISH and spatial analysis 
of gene expression in prospective patient cohorts will 
be extremely important to determine whether measuring 
transcriptional ITH is clinically useful.

Other methods have been used to detect RNA 
molecules in situ in FFPE tissue sections, including 
padlock probes and rolling circle amplification [11] and the 
branched FISH probes commercialized as RNAscope [9]. 
However, these methods typically require more steps and 
have a lower detection efficiency compared to smFISH. In 
contrast, the FFPE-smFISH protocol described here is a 
straightforward procedure with a relatively fast turnaround 
time (approx. 16-18 man-hours from deparaffinization to 
imaging). Importantly, fluorophore coupling of amino-
modified oligos is easy to implement in any research 
laboratory, and does not require dedicated equipment. In 
the diagnostic setting, an important advantage of FFPE-
smFISH over IHC is that the assay conditions are very 
robust and no de novo optimization is required for new 
probes. Moreover, FFPE-smFISH is particularly valuable 
for gene targets for which good antibodies are currently 
unavailable or when antibody staining is not sufficiently 
sensitive. One limitation is that, especially in FFPE tissue 
sections with high autofluorescence, a 100X magnification 
lens is needed to detect a clear signal, therefore limiting 
the portion of the tumor that can be imaged in a relatively 
short time. However, our study shows that 30-50 fields 
of view sparse throughout a single tumor section (which 
can be imaged in a fully automated manner in approx. 
2 hours) are completely sufficient to perform a reliable 
determination of the HER2 and ER status, and to quantify 
transcriptional ITH. In conclusion, FFPE-smFISH is a 
versatile, easy-to-implement and robust method, which 
can find numerous applications in diagnostics, and paves 
the way for studies aimed at assessing the clinical impact 
of intra-tumor transcriptional heterogeneity.

MATERIALS AND METHODS

Samples

FFPE samples from 49 patients diagnosed with 
breast cancer between 2010 and 2013 were retrieved at 

the Breast Unit of ‘Azienda Ospedaliera Universitaria 
Città della Salute e della Scienza di Torino’, University 
of Turin, Italy. The study was conducted under ethical 
permission granted by the Committee for human 
Biospecimen Utilization (DSM-ChBU) of the Department 
of Medical Sciences, University of Turin, Italy. Written 
informed consent was obtained from all cancer patients 
for collection, storage and research use of both fresh 
and archival tumor samples. Clinical and pathological 
information is summarized in Table 1 and 2 and in 
Supplementary Table 3.

Immunohistochemistry and DNA FISH

IHC data for estrogen receptor (ER), progesterone 
receptor (PR), and Ki67 were retrieved from the original 
pathology reports. The following antibodies were used for 
IHC: for HER2, the HercepTestTM Kit (Dako, Cat. K5207); 
for ER, the rabbit mAb, clone SP1 (Ventana-Diapath, 
Tucson, AZ); for PR the rabbit mAb, clone 1E2 (Ventana-
Diapath). The proliferation index was assessed using 
the Ki67 mouse mAb (clone MIB-1, Dako). Thresholds 
for positivity were according to the 2013 ASCO/CAP 
guidelines [17]: ≥ 1% for ER, > 20% for PR, score 3+ 
or score 2+/HER2-amplified for HER2 and > 14% for 
Ki67. In all the samples we also performed DNA FISH 
using probes for HER2 and CEP17 (Abbott Laboratories, 
PathVysion HER-2 DNA Probe Kit II CE, Cat. 06N46-
035). For analysis, 10 invasive areas on each slide were 
selected and automatically acquired at 40X magnification 
with the motorized Metafer scanning system (Zeiss) and 
the Axio Imager epifluorescence microscope (Zeiss). The 
PathVysion V2 software was used to analyze the results. 
DNA FISH data were scored according to the 2013 ASCO/
CAP guidelines [17]. HER2 positivity was defined as IHC 
score 3+ or IHC score 2+ with HER2 amplification. For 
molecular subtypes, we used the IHC-based surrogate 
classification proposed by the St. Gallen International 
Expert Consensus, which includes five categories: 
Luminal A (ER-positive/PR-positive/HER2-negative/
Ki67-low); Luminal B/HER2-negative; Luminal B/HER2-
positive (ER-positive/HER2-positive); HER2-positive; 
and triple-negative (ER-negative/PR-negative/HER2-
negative) [32]. The Luminal B/HER2-negative category 
included ER-positive carcinomas with Ki67 > 14% [33] 
and/or PR < 20% [34].

smFISH

Probes targeting HER2 and ER were designed based 
on our previously described database covering all human 
transcripts (www.fusefish.eu [13]). Probes consisted of 
the oligonucleotides listed in Supplementary Table 1. 
We purchased oligos with a 3’-TEG amino modification 
from Biosearch Technologies, and coupled them to either 
Cy™5 (GE Healthcare, cat. Q15108) or Alexa Fluor® 594 
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(Molecular Probes, cat. A20004). A step-by-step protocol 
is available in Supplementary Information. Briefly, 3 
μm-thick FFPE tumor block sections were mounted on 
coverglasses coated with poly-L-lysine (Sigma). After 
deparaffinization in xylene, tissue sections were post-fixed 
for 5 min in methanol-acetic acid 3:1 (v/v), rehydrated, 
and then heated for 45 min at 80 °C in 0.01 M sodium 
citrate pH 6 supplemented with ribonucleoside vanadyl 
complex (RVC, NEB, cat. S1402S) diluted 1:20 (v/v). 
All deparaffinization steps were performed in special 
plastic jars (EMS, cat. 71385) that had been thoroughly 
decontaminated with RNaseZap® (Ambion, cat. AM9780). 
After dehydration, 22x22 mm “Secure Seal” hybridization 
chambers (EMS, cat. 70333-10) were mounted on each 
coverglass, covering as much tumor tissue as possible. 
Tissues were rehydrated and treated for 15 min with 
0.025% pepsin in 10 mM HCl. Auto-fluorescence was 
reduced by repeatedly flushing the chamber with freshly 
prepared 1% NaBH4 in 1X PBS solution, over a period of 
15 min at room temperature. After washing in RNase-free 
water, samples were stored in 2X SSC buffer (Ambion, 
cat. 9763) at 4 °C until hybridization was performed. 
Samples were hybridized as previously described [13]. 
All solutions were prepared in RNase-free water (Ambion, 
cat. AM9939).

Image acquisition

We imaged all 49 cases at 100X magnification on 
an inverted epifluorescence microscope (Nikon) equipped 
with a high-resolution CCD camera (Pixis, Princeton 
Instruments) controlled by MetaMorph. Per region of 
interest, we acquired an image stack consisting of 5 focal 
planes spaced 0.4 µm apart.

For the proof-of-principle visualization of smFISH 
dots on top of a scan of the same tissue section stained 
with H&E presented in the supporting website http://
tumorheterogeneity.eu/ we used a custom-designed 
inverted epifluorescence microscope (Eclipse Ti-E, 
Nikon) equipped with an EMCCD camera (iXON Ultra 
888, Andor) controlled by NIS Elements software (Nikon). 
First, we imaged smFISH signals at 100X magnification 
in selected tumor regions. For each region of interest, 
we acquired an image stack consisting of 5 focal planes 
spaced 0.3 µm apart. Afterwards, we washed the tissue 
section, stained it with Hoechst 33342, and scanned it with 
a 40X magnification objective. The size of the tissue scan 
was 1 x 1 cm. Lastly we stained the same tissue section 
with H&E and scanned it using a 10X magnification 
objective.

smFISH signal quantification

In each field of view, we identified smFISH 
signals corresponding to individual mRNA molecules 

using custom-made scripts in MATLAB®, as previously 
described [13]. For the analysis based on pseudo-cells, 
we split each image into a regular grid of squares (i.e., 
pseudo-cells). We compared seven grids (9 x 9, 10 x 10, 11 
x 11, 12 x 12, 13 x 13, 14 x 14, and 16 x 16 pseudo-cells) 
for which the pseudo-cell area would fall in the inter-
quartile range of the area of manually segmented cells at 
six different expansion margin lengths (see Supplementary 
Figure 1B). For each pseudo-cell, we calculated the 
mRNA density (dots/µm3) by dividing the total number 
of mRNA spots in the pseudo-cell by the number of focal 
planes minus one times the distance between each plane 
times the pseudo-cell area. In order to account for possible 
background dots, we compared four different thresholds 
of the number of transcripts per pseudo-cell (≥ 0, 1, 2, or 
3 transcripts).

For the analysis based on single-cell segmentation, 
we first manually segmented the edge of tumor cell 
nuclei stained with DAPI using segmentation polygons 
of a variable number of edges. In order to define an 
approximate cell boundary, we uniformly dilated the 
segmentation polygons by 0, 5, 15, 20, or 25 pixels 
(1 pixel = 125 nm). Since the cells were not imaged 
throughout their full thickness in the z direction, we 
computed mRNA densities by dividing single-cell mRNA 
counts by the volume of the prism with base corresponding 
to the segmentation polygon, and height equal to 0.4 µm 
multiplied by the number of image planes minus one. 
All data analyses were performed in MATLAB® using 
custom-made scripts.

Automatic identification of regions containing 
cells

To count smFISH dots only in image regions 
containing cells, we first quantified the local structure 
variations of the z-projection of each DAPI image, 
assuming that the variation is higher inside nuclei in 
comparison to the rest of the image. To this end, we 
calculated the gradient structure tensor [35] using σ 
gradient = 250 nm and σ tensor = 875 nm and manually 
set a threshold, common to all images, on the determinant 
of the structure tensor. We then computed the density 
of smFISH dots within the identified nuclei-containing 
regions, and compared the results with the smFISH score 
obtained using pseudo-cells.

Registration of smFISH dots on hematoxylin-
eosin tissue scans

First, we used the DAPI channel to register each 
100X image onto the large scan of the same tissue section 
consisting of multiple 40X images stitched together. In 
order to match the resolution of the stitched 40X image, 
we first downscaled all the 100X images. We then applied 
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normalized cross-correlation to find the best location of 
each 100X image within the 40X stitched image, capturing 
the scaling and translation in the affine transformation 
matrix, A1. Next, we downscaled the 40X stitched DAPI 
image to match the size of the 10X stitched H&E image. 
By manually selecting a few reference points in each 
image, we set up a transformation matrix, A2, mapping 
between the images. Lastly, we loaded the smFISH dots, 
D from each 100X image and converted their coordinates 
into the coordinate system of the H&E image by the 
transformation: D’ = A2 A1 D. All these operations 
were run in MATLAB® using custom-made scripts. To 
interactively visualize the smFISH dots overlaid onto the 
H&E images, we created deepzoom images (http://search.
cpan.org/~drrho/Graphics-DZI-0.05/script/deepzoom) 
and displayed them using OpenSeadragon (https://
openseadragon.github.io/).

Receiver operating characteristic (ROC) analysis

We set 200 arbitrary cutoff values for calling the 
smFISH score positive or negative, by multiplying each 
value in the integer interval [1,200] by 0.001. For each 
cutoff value, t we calculated the number of true positive 
(TP), false positive (FP), true negative (TN) and false 
negative (FN) cases as follows:

TP = (smFISH score ≥ t) AND (reference test is 
positive)
FP = (smFISH score ≥ t) AND (reference test is 
negative)
TN = (smFISH score < t) AND (reference test is 
negative)
FN = (smFISH score < t) AND (reference test is 
positive)
where the reference test was IHC and DNA FISH 

for HER2, and IHC for ER (as described above, HER2 
positivity was defined as IHC score 3+ or IHC score 2+ 
with HER2 amplification, whereas ER positivity was 
defined as ≥ 1% of positive tumor cells). For each cutoff 
value, we then calculated the sensitivity and the specificity 
as follows:

sensitivity = TP / (TP + FN)
specificity = TN / (TN + FP)
Lastly, for each cutoff value we plotted the 

corresponding (1 - specificity) value on the x-axis and 
the sensitivity on the y-axis (ROC curve). For both 
HER2 and ER, we computed the maximum specificity 
and sensitivity (i.e., the (x,y) pair closest to the top 
left corner of the graph), as well as the area comprised 
between the ROC curve and the plot diagonal (AUC). 
All the calculations were run using a custom-made script 
written in MATLAB®. We separately calculated the AUC 
for different pseudo-cell sizes and thresholds of dots per 
pseudo-cell (for pseudo-cells) as well as for different 
expansion lengths of the segmentation polygons (for 
manually segmented cells), and then plotted as heatmap 
the resulting vectors or matrices.

RNA extraction and real-time PCR

From each of the selected FFPE tumor blocks, we cut 
five consecutive 10 µm-thick sections and collected them 
in a 1.5 ml RNAse-free Eppendorf tube. We performed 
RNA isolation using the MasterPure™ Purification kit 
(Epicentre, cat. MC85200). We deparaffinized the sections 
by incubations in xylene followed by incubations in 100% 
ethanol. After the washes in ethanol, we air-dried the pellet 
for several minutes at room temperature before Proteinase 
K treatment, according to the ‘‘Method 3’’ for FFPE tissues 
described in [36]. We resuspended the RNA pellet in 
nuclease-free water, and measured the RNA concentration 
with a NanoDrop™ Spectrophotometer (Thermo Fisher 
Scientific). We performed a DNase treatment step with the 
TURBO DNA-freeTM Kit (Ambion, cat. 1907), after which 
we reverse transcribed a total of 4 μg of RNA to cDNA 
using the High-Capacity cDNA Reverse Transcription 
Kit (Thermo Fisher Scientific, cat. 4368814). As negative 
controls for DNA contamination, we repeated the same 
procedure skipping the reverse transcriptase. We amplified 
the obtained cDNA by real-time PCR using the Power 
SYBR® Green PCR Master Mix and the StepOne machine 
(Applied Biosystems), according to the manufacturer’s 
protocol. The following primers (final concentration 50 
nM) were used to perform real-time PCR:

ACTB forward: 5’-CTCACCATGGATGATGATA 
TCGC

ACTB reverse: 5’-AGGAATCCTTCTGACCC 
ATGC

ERBB2 forward: 5’-GTGTGGACCTGGATGA 
CAAGGG

ERBB2 reverse: 5’-GCTCCACCAGCTCCGTTT 
CCTG

For each primer pair, we included one no-template 
control. We carried out the real-time PCR reaction as 
following: 10 min incubation at 95 °C followed by 40 
cycles at 95 °C for 15 s and 60 °C for 1 min for annealing 
and elongation. To reduce the risk of contamination from 
previously amplified products, separate areas were used 
for RNA isolation and PCR. We used ACTB as a reference 
gene to normalize the gene expression data of ERBB2 
between the samples. We applied the 2−ΔΔCt method to 
determine and analyze the relative changes in ERBB2 
expression between the different samples.

Multiplex ligation-dependent probe amplification 
(MLPA)

We dewaxed two 4 μm-thick paraffin sections and 
mesodissected them manually as follows: we scraped 
off tumor areas with a pipet tip and collected them into a 
DNase-free tube, as previously reported [37] (infiltrating 
carcinoma were recognized by comparison with a serial 
H&E stained slide, and areas of ductal carcinoma in situ 
were discarded). We extracted genomic DNA using the 

http://search.cpan.org/~drrho/Graphics-DZI-0.05/script/deepzoom
http://search.cpan.org/~drrho/Graphics-DZI-0.05/script/deepzoom
https://openseadragon.github.io/
https://openseadragon.github.io/
https://openseadragon.github.io/
https://paperpile.com/c/4QN0HG/NTH6B
https://paperpile.com/c/4QN0HG/Kp1n9


Oncotarget18696www.impactjournals.com/oncotarget

PureLink® Genomic DNA kit (Thermo Fisher Scientific, 
cat. K182001) following manufacturers’ instructions. We 
performed MLPA reactions with 100-200 ng of purified 
genomic DNA using the P004-C1 ERBB2 probe mix 
(MRC-Holland) and a MJ Thermalcycler (MJ Research). 
We separated the PCR products on an ABI 3130 capillary 
sequencer (Applied Biosystems) and analyzed gene copy 
numbers using GeneMapper 4.0 (Applied Biosystems) 
and Coffalyser (version 8.0 MRC-HOLLAND) software. 
Because four probes targeting HER2 are included in the 
kit (17-035.1 ERBB2 exon 07, 17-035.1 ERBB2 exon 22, 
17-035.1 ERBB2 exon 28, 17-035.1 ERBB2 exon 29), 
we calculated the mean of each probe-specific normalized 
ratio of the HER2 gene. A mean value below 1.3 was 
defined as normal, between 1.3 and 2.0 as gain and above 
2.0 as high level amplification, as previously reported [38, 
39].

In situ proximity ligation assay (PLA)

We performed HER2 PLA using the Duolink 
II detection kit (O-Link Bioscience) according to the 
manufacturer’s instructions. As primary antibody 
directed against HER2 we used the Polyclonal Rabbit 
Anti-Human c-erbB-2 (Dako, cat. A0485). We imaged 
the samples using the Metafer Scanning System and 
AxioImager epifluorescence microscope equipped with a 
40X objective. We consistently acquired an image stack 
consisting of 9 focal planes spaced 0.3 μm apart per region 
of interest (in total, 10 regions of interest per case). We 
analyzed the data using the Duolink Image Tool.

Statistical comparisons

For all comparisons, we determined the statistical 
significance using the Mann-Whitney test (two-tailed). 
For correlation analyses, we calculated the non-parametric 
Spearman correlation coefficient and performed linear 
regression whenever shown. All statistical analyses were 
done either using GraphPad Prism or MATLAB®.

Intra-tumor heterogeneity analysis

The local diversity index was calculated using 
pseudo-cell data as follows: for each image, i in a given 
case, we first computed how many different expression 
levels, Li (i.e., the number of smFISH dots per pseudo-
cell) were detected (for HER2 we considered only pseudo-
cells with ≥ 3 dots, whereas for ER only pseudo-cells with 
≥ 1 dot). We then calculated the probability, pil defined as 
the fraction of pseudo-cells in the image, i with expression 
level, li. Lastly, for each image, we calculated the Shannon 
diversity index as:

In order to compare different images within the 
same tumor as well as different tumors, we normalized  
Hi as:

This normalized value was defined as our local 
diversity index. The global diversity index was obtained 
in a similar way, except that expression levels were 
calculated by pooling together all pseudo-cells from 
different fields of view. Local and global diversity indexes 
for either HER2 or ER were only computed for tumors 
previously scored as positive by IHC and/or DNA FISH.

To assess the spatial variation of HER2 and ER 
transcripts based on pseudo-cells, we first calculated the 
difference of mRNA counts between each pseudo-cell 
in a field of view and each of its 8 neighbors (for HER2 
we considered only pseudo-cells with ≥ 3 dots, whereas 
for ER only pseudo-cells with ≥ 1 dot)  . Additionally, we 
computed all the pairwise Euclidean distances as well 
as the absolute difference of transcript counts between 
all the thresholded pseudo-cells in a given field of view. 
As a result, for each tumor we obtained one vector of 
inter-pseudo-cell physical distances and one vector 
of expression differences. To assess whether the two 
vectors were correlated, we calculated the Spearman 
correlation coefficient and the P value for its statistical 
significance. The same type of analysis was done using 
manually segmented cells, with the exception that in this 
case we calculated the distance and expression difference 
between each segmented cell in a given field of view and 
the other segmented cells in the same image. We only 
analyzed tumors that had been scored as positive by IHC 
and/or DNA FISH. All data analyses were performed in 
MATLAB® using custom-made scripts.
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