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ABSTRACT
Effective drug development to combat metastatic disease in breast 

cancer would be aided by the availability of well-characterized preclinical 
animal models that (a) metastasize with high efficiency, (b) metastasize in 
a reasonable time-frame, (c) have an intact immune system, and (d) capture 
some of the heterogeneity of the human disease. To address these issues, 
we have assembled a panel of twelve mouse mammary cancer cell lines that 
can metastasize efficiently on implantation into syngeneic immunocompetent 
hosts. Genomic characterization shows that more than half of the 30 most 
commonly mutated genes in human breast cancer are represented within 
the panel. Transcriptomically, most of the models fall into the luminal A or 
B intrinsic molecular subtypes, despite the predominance of an aggressive, 
poorly-differentiated or spindled histopathology in all models. Patterns of 
immune cell infiltration, proliferation rates, apoptosis and angiogenesis 
differed significantly among models. Inherent within-model variability of the 
metastatic phenotype mandates large cohort sizes for intervention studies 
but may also capture some relevant non-genetic sources of variability. The 
varied molecular and phenotypic characteristics of this expanded panel of 
models should aid in model selection for development of antimetastatic 
therapies in vivo, and serve as a useful platform for predictive biomarker 
identification.

INTRODUCTION

Metastasis is the most lethal aspect of the 
carcinogenic process, and the prognosis for patients with 
disseminated disease at diagnosis is dismal, with five-
year survival rates of less than 25% in breast cancer [1]. 
While significant progress has been made in treatment 
of localized disease [1], results of three decades worth 
of randomized clinical trials in breast cancer patients 

receiving adjuvant chemotherapy who went on to 
develop metastases showed no evidence for an impact of 
subsequent therapy on patient survival [2]. Thus there is 
clearly a major problem with our current approaches to 
the development of therapeutics that effectively target the 
metastatic process.

The preclinical process for target identification and 
drug development in cancer has been justly criticized for 
the poor translatability of results into clinically useful 
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practice [3]. There are many factors that play into this 
problem, but one limitation of most preclinical therapeutic 
studies is that they have historically focused on effects of 
the intervention on the primary tumor. Metastasis burden, 
or survival endpoints driven by metastatic disease, are 
rarely used in preclinical drug testing. Furthermore, 
the information that we have about the biology of the 
metastatic process and the response of metastases to 
therapy is generalized from a very small number of 
widely-used models. In breast cancer, these include the 
MDA-MB-231 human breast cancer cell line xenografted 
into immunodeficient mice (see eg. [4, 5]), the 4T1 murine 
mammary cancer cell line allografted into syngeneic 
immunocompetent mouse hosts [6], and the genetically 
engineered MMTV-PyVT mouse model of metastatic 
breast cancer [7]. While these models have indisputably 
generated many useful mechanistic insights, they do not 
begin to capture the heterogeneity of human breast cancer. 

Metastasis is a highly complex multi-step process 
that involves a continual and reciprocal dialog between the 
tumor cells and the systemic and local microenvironments 
[8]. The steps involved include escape of tumor cells 
from the primary tumor site by intravasation, passage 
through the circulation to distant organs, extravasation 
and successful colonization of the distant site. Every step 
poses multiple challenges to the survival of the tumor cell, 
which has to face and evade threats that include loss of 
attachment-based survival signals, physical damage, active 
immune surveillance and consequences of interacting with 
inhospitable microenvironments to which it is not adapted. 
Thus in an ideal world, therapeutic intervention studies 
for metastasis would be performed in autochthonous 
models, such as the genetically engineered mouse (GEM) 
models, where the tumor and host components can co-
evolve as they would for the human disease. However, 
there are very few existing GEM models of breast cancer 
that metastasize with a reasonable efficiency. The most 
widely-used metastatic GEM model of breast cancer is 
the MMTV-PyVT model, in which female mice show an 
~90% incidence of lung metastases by 100 days of age 
[7]. The MMTV-Neu model is also metastatic, but with a 
lower incidence (~50%) and with a longer time-frame to 
development of clinically significant metastatic disease ( 
> 1 year) [9]. Metastasis from other intact GEM models is 
even less efficient, making GEM models more useful for 
natural history studies of the metastatic process than for 
therapeutic intervention studies. 

For the purposes of cost-effective drug screening 
in vivo, metastatic models with a high efficiency of 
metastasis and a shorter time-frame are needed. Currently 
these requirements can only be met using transplantation 
models. Ideally such models should capture at least some 
of the heterogeneity of human breast cancer. Additionally, 
it is increasingly appreciated that the full efficacy of 
conventional and targeted therapeutic approaches 
frequently depends in part on activation of anti-tumor 

immune responses [10]. Thus models with an intact 
immune system are desirable for development of most 
therapeutic strategies, not just immunotherapy. To address 
some of these issues in breast cancer, we have assembled 
a panel of 12 metastatic mouse mammary tumor cell line 
models for use in syngeneic, fully immunocompetent 
hosts. Here we describe the clinico-pathologic, genomic 
and transcriptomic characterization of these models. 
We explore their relationship to human breast cancer 
and address their advantages and challenges for the 
development of anti-metastasis therapies. 

RESULTS

Origins and metastatic properties of the model 
panel 

To assemble the panel, we searched the literature 
for reports of mouse mammary tumor cell lines with 
demonstrated metastatic ability, and we then obtained the 
lines directly from the originating laboratory/investigator 
so as to avoid problems with inter-laboratory subline 
drift. The origins of the 12 cell lines that comprised the 
metastatic mouse mammary tumor model panel are 
summarized in Table 1. Half the models were derived 
from spontaneously arising mammary tumors, and half 
were derived from genetically engineered mouse models 
(GEMM). Four different mouse strain backgrounds are 
represented in the panel. In these studies, we focused on 
lung as the predominant metastatic site, since metastases 
to other sites were only rarely seen following orthotopic 
implantation. The conditions in our laboratory that 
were used to generate metastases from each model, 
and the efficiency of lung metastasis in that format are 
summarized in Supplementary Table 1. Where possible, 
models were used in an orthotopic implantation format 
with surgical resection of the primary tumor at 7-10mm 
in diameter. However, we were unable to get all models 
to metastasize efficiently with this approach, in which 
case primary tumors were either left unresected, or the 
tumor cells were delivered by tail-vein injection, as 
indicated in the table. Some models that were described 
in the original publication as metastasizing from the 
orthotopic site did not do so efficiently in our hands (Eg. 
TSAE1). Contributing factors are likely to include mouse 
substrain drift leading to minor histocompatibility antigen 
mismatches, and inter-institutional variation in factors 
such as mouse diet, housing conditions, and microbiota. 
In general we find the metastatic phenotype to be much 
more sensitive to environmental and immunologic factors 
than the primary tumor phenotype, and our experience is 
that the same model can exhibit very different metastatic 
efficiencies in different facilities, despite using host mice 
from the same supplier and cells prepared under identical 
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conditions. Thus each model should be further optimized 
for the facility in which it will be used. Models that 
require tail-vein injection can be adapted to orthotopic 
implantation by repeated rounds of selection in vivo, but 

the results presented here represent the unmodified models 
from the original sources. 

Metastatic characteristics of two representative 
models are shown in Figure 1. The 4T1 model is a 

Table 1: Origin of cell lines used in the metastatic mammary tumor panel
Cell line 

designation 
in original 
publication

Simplified 
designation

Mouse 
strain

Tumor 
origin of 
cell line

Driver 
oncogenic 

event
Brief description of cell line origin Ref.

Investigator 
source of cell 
lines used in 

analysis

4T1 4T1 BALB/c Spont  Unknown
Derived from spontaneous tumor arising in a 
BALB/cfC3H mouse; selected as spontaneously 
resistant to thioguanine

[6]
Dr. Fred Miller, 

Karmanos Cancer 
Institute, Detroit

6DT1 6DT1 FVB/N GEMM Myc 
overexpression

Derived from mammary tumor arising in 
MMTV-Myc transgenic mouse [55]

Dr. Robert 
Dickson**, 
Georgetown 
University 

Medical Center, 
Washington DC, 

USA

D2A1 D2A1 BALB/c Spont  Unknown
Derived from spontaneous mammary tumor 
originating from a D2 hyperplastic alveolar 
nodule line

[56]; 
[57]

Dr. Ann 
Chambers, 

London Regional 
Cancer Center, 

London, Ontario, 
CANADA

E0771 E0771 C57BL/6 Spont  Unknown Derived from a spontaneous adenocarcinoma in 
the mammary gland of a C57Bl/6 mouse.  

[16]; 
[12]

Drs. Fengzhi Li/
Enrico Mihich, 
Roswell Park 

Cancer Institute, 
Buffalo, NY, USA

EMT6 EMT6 BALB/c Spont  Unknown

Derived from primary mammary tumor KHJJ 
arising in BALB/c mouse after implantation 
of a hyperplastic alveolar nodule.  EMT6 was 
selected in culture from the 25th transplant 
generation of KHJJ

[58]
Dr. Sara Rockwell, 

Yale Univ, New 
Haven, USA

F311 F311 BALB/c Spont  Unknown
Sarcomatoid clone derived from a transplantable 
ER-negative mammary adenocarcinoma (M3) 
that arose spontaneously in a Balb/c mouse.  

[59]

Dr. Daniel Alonso, 
Quilmes National 

University, 
Buenos Aires, 
ARGENTINA

HRM-1 HRM1 FVB/N GEMM Mutant 
PIK3CA

Derived from a recurrent tumor in a PIK3CA-
H1047R inducible transgenic mouse in which 
the tumor partially regressed and then recurred 
following transgene shutoff by Dox withdrawal.  

[60]*
Dr. Jean Zhao, 
Dana-Farber 

Cancer Institute, 
Boston, USA

M6 M6 FVB/N GEMM
Functional 
inactivation of 
p53 and Rb

Derived from mammary tumor arising in a 
C3(1)TAg transgenic mouse [61]

Dr. Jeffrey 
Green, National 
Cancer Institute, 
Bethesda, USA

Met-1 MET1 FVB/N GEMM
Functional 
activation of 
PI3K pathway

Derived from a transplanted MMTV-PyVT 
mammary tumor passaged in mammary fat pad [62]

Dr. Alexander 
Borowsky, 
UC Davis, 

Sacramento, USA

MVT1 MVT1 FVB/N GEMM
Myc  and 
VEGFA 
overexpression

Derived from mammary tumor arising in 
MMTV-Myc-VEGF bitransgenic mouse [55]

Dr. Robert 
Dickson**, 
Georgetown 
University 

Medical Center, 
Washington DC, 

USA

r3T R3T 129S3 GEMM

Unknown 
but with 
contributions 
from Src and 
Ras pathway 
activation

Parental cell line was derived from a mammary 
tumor in OPN knockout mice induced by MPA 
pellets followed by DMBA administration.  The 
line was transformed with PyMT and activated 
Ras, and a derivative of the transfomed line was 
re-isolated from fat pad tumors (r3T). 

[17]
Dr. Susan Rittling, 
Forsyth Institute, 
Cambridge, USA

TS/A-E1 TSAE1 BALB/c Spont  Unknown

 Parental TS/A cell line was derived from a 
spontaneous mammary tumor arising in a retired 
BALB/c breeder mouse.  TS/A-E1 is a subclone 
of TS/A line with epithelial morphology and 
higher metastatic potential. 

[63]
Dr. Carla di 

Giovanni, Univ of 
Bologna, Bologna, 

ITALY

Notes: Spont = spontaneous tumor; GEMM=genetically engineered mouse model; *Description of GEMM model as cell line 
is unpublished; **Deceased
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Figure 1: Metastasis in representative models. A. Timelines for a representative resection model (4T1), and a no resection model 
(MVT1) with or without cytoxan treatment. B.-D. Representative results from two independent experiments for each model. B, Tumor 
weights at resection (4T1) or endpoint (MVT1); C, number of metastases/lung; D, metastatic index, calculated as number of metastases 
normalized to weight of primary tumor. Black bars show the median values. % CV is the within-cohort % coefficient of variation. E. Low 
power image of metastases in lung lobe sections for the MVT1 model (scale bar is 7mm). F. High power image of MVT1 lung metastasis 
(scale bar is 300μm). G. Effect of cytoxan treatment on metastatic burden in the MVT1 model. Results are median +/- interquartile range 
(n = 15/group); Mann-Whitney test. 
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resection model in which the primary tumor is resected 
when it reaches 7-10mm diameter, while the MVT1 
model is a no-resection model with the primary tumor 
left in until the study endpoint in order to get a high 
metastatic burden (Figure 1A). In general, the primary 
tumor weights at resection (4T1) or at endpoint (MVT1) 
show relatively low variation within a cohort, with a % 
coefficient of variation (% CV) ranging from ~10-20% 
(Figure 1B). Results of two independent experiments 
are shown for each model. In contrast, the metastatic 
burden is an intrinsically very variable phenotype even 
under highly controlled conditions, with % CV ranging 
from ~40-65% (Figure 1C). Similar variability is seen in 
both resection and non-resection models suggesting that 
the resection surgery itself is not introducing additional 
variability. Furthermore, the variability is not decreased 
by normalizing the metastasis burden to the size of the 
matched primary tumor (Figure 1D), suggesting that 
variations in primary tumor size do not contribute in a 
major way to the within-cohort variation in metastatic 
burden. Representative low power (Figure 1E) and high 
power (Figure 1F) images of lung metastases from the 
MVT1 model are shown. The high intrinsic variability 
of the metastatic phenotype has practical consequences 
for the design of intervention experiments. A power 
calculation using the variance that we see in the 4T1 
and MVT1 models shows that an absolute minimum of 
12 mice/group must be used for a two group comparison 
in order to detect a 2-fold reduction of metastatic burden 
with a p-value < 0.05 and power of 80%. We typically 
use 15 mice/group. An example is shown for the effect 
of cytoxan treatment on metastatic burden in the MVT1 
model (Figure 1G). Thus study cohorts for metastasis 
intervention studies must be considerably larger than 
is commonly used when primary tumor volume is the 
endpoint. 

Histopathology of primary tumors and lung 
metastases

The histology of the primary tumors generated by 
the cell line models was assessed by a panel of veterinary 
pathologists and a human anatomic breast cancer 
pathologist to arrive at a consensus diagnosis. Tumors 
were described as carcinomas with either a spindle cell/
sarcomatoid or a poorly differentiated histopathology 
(Figure 2A-C; Supplementary Figure 1 and Supplementary 
Table 2). Despite the poorly differentiated and/or spindled 
morphology and the staining of some tumor cells for 
α-smooth muscle actin (Figure 2D), tumor cells from 
all but one of the models were immunohistochemically 
positive for cytokeratin 8 (CK8), confirming that they 
are epithelial in origin and not mouse fibroblast-derived 
(Figure 2E and Supplementary Figure 2). The E0771 
model was essentially negative for CK8, but the cuboidal 
morphology of the tumor cells suggests they are not 

fibroblast-derived (Figure 2F, Supplementary Figure 1). 
Many of the primary tumors showed extensive areas of 
necrosis, including most strikingly the E0771 model which 
was highly necrotic even at small tumor size. 

Immunohistologic characterization of primary 
tumors

The hormone receptor status of the models was 
determined by immunostaining the primary tumors for 
estrogen receptor (ER) and progesterone receptor (PR). 
Cytokeratin 8 staining on adjacent sections allowed 
tumor cells to be distinguished from mouse stromal cells, 
since mouse stromal cells show some ER positivity [11]. 
Four tumor models were found to be weakly ER positive 
(EMT6, F3II, TSAE1 and HRM1), with Allred scores of 
3-4 (shown for TSAE1 model in Figure 2G). None of the 
models was positive for PR (Figure 2H). The E0771 model 
has been referred to as ER+ [12], but it was derived and 
characterized in the 1950s before reliable ER assays were 
available, and it did not show ER positivity in our hands or 
those of our collaborators. Of the four ER+ tumor models, 
only TSAE1 was clearly growth-stimulated by estradiol in 
vitro (Supplementary Figure 3).

To address other biological properties of the models, 
immunohistochemical assessment of proliferation, 
apoptosis, angiogenesis and immune cell infiltration 
was also performed on the primary tumors (Figure 2I-
R). Tumor cell proliferation varied over a ~ 5x range 
between models (Figure 2S; models grouped by origin 
from spontaneous vs GEMM tumors). Apoptosis and 
angiogenesis were more variable among models (Figure 
2T,U). Note that MVT1 scores as having very low 
angiogenesis despite the presence of the VEGF transgene, 
because blood vessels in MVT1 tumors were collapsed 
with no apparent lumens (Supplementary Figure 4A). 
Dropping the outlier MVT1 model, a significant negative 
correlation between angiogenesis and apoptosis was 
seen (Supplementary Figure 4B). None of the other 
parameters were significantly correlated. The models 
showed variable degrees of leukocytic infiltration, 
with leukocytes approaching 50% of the cells in the 
tumor for the EMT6 model (Figure 2V). There was also 
heterogeneity between models in the relative proportions 
of granulocytes (Gr1+) and T-cells (CD3+) within the 
tumors. In general, the spontaneous models showed a 
higher proportion of granulocytes in the tumor infiltrates, 
while the GEMM-derived models typically showed 
more T-cells (Supplementary Figure 4C). Using the pan-
leukocyte marker CD45, distinct patterns of leukocyte 
distribution within and around the tumor were seen 
between models (Figure 2O-R). HRM1, R3T, M6 and 
TSAE1 showed a relatively weak immune response 
overall; MET1 and F3II showed a strong immune response 
primarily around the tumor periphery with little infiltration 
into the tumor; 4T1, D2A1, MVT1 and 6DT1 showed 
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strong infiltration of immune cells into the tumor; and 
E0771 and EMT6 showed massive infiltration particularly 
at sites of necrosis. While it is possible that these 
patterns of leukocyte distribution may correspond to the 
immunologically “ignorant”, “excluded” and “inflamed” 
classes that have been described for human tumors 
[13], more extensive immunophenotyping of leukocyte 
populations and activation state in the mouse tumors will 
be necessary to make these comparisons compelling. In 
general, individual tumors from the same cell line showed 
consistent patterns of immune cell infiltration, though the 
M6 model showed some heterogeneity, with occasional 
tumors showing a strong inflammatory response.

Genomic characterization: single nucleotide 
variants

To assess the presence of mutations in the various 
tumor models, exome sequencing of gDNA from the 
cell lines was performed. After filtering out polymorphic 
variants, the majority (10/12) of the cell lines had between 
50 and 800 single nucleotide variants (SNVs) in coding 
genes (Figure 3A). The mean ratio of non-synonymous to 
synonymous SNVs was 2.48 +/- 0.51 (range 1.42-3.19) 
when averaged across all models (see Supplementary 
Table 3), which is close to the ratio of ~2:1 that is seen 
in many human cancers [14, 15]. E0771 (C57BL/6 
background) and R3T (129S3 background) were outliers 
with over 2000 total SNVs each. For E0771, this may 
reflect the long period of time since the parent tumor was 
originally derived in 1940 [16], with a high likelihood of 
spontaneous mutation and substrain drift in the intervening 
decades. The most frequent mutation in E0771 is A > C 
(Supplementary Figure 5A), which has previously been 
associated with oxidative stress [14]. For R3T , the high 
mutation burden likely relates to the 7,12-dimethylbenz[a]
anthrathracene (DMBA) mutagenesis of the parent mouse 

[17]. Indeed, analysis of the mutational pattern of the 
nsSNVs shows that R3T has a very high frequency of A 
> T transversions (Supplementary Figure 5B), which is 
characteristic of DMBA-induced mutations [18, 19]. Aside 
from these two outlier models, among the other models, 
C > G transversions and C > T transitions were the most 
frequent events (Supplementary Figure 5C), and these 
are also the highest frequency alterations in human breast 
cancers [20], suggesting that similar mutational processes 
may be involved in the mouse models and in the human 
disease. The SNV burden/genome was significantly 
higher ( > 2-fold) for the models that were derived from 
spontaneously arising tumors than for models from 
genetically engineered mice (Figure 3B). This greater 
genetic complexity in the spontaneous models may reflect 
the absence of a strong driver oncogene and the longer 
time to development for the original tumors. 

Mutation frequencies across the genome have been 
assessed for human breast cancer [21]. Taking the top 30 
genes that are most frequently mutated in breast cancer, 
we assessed the occurrence of SNVs in these genes in 
the mouse model panel (Table 2). Details of specific 
mutations are given in Supplementary Table 4. 16 of the 
human top 30 genes have SNVs in one or more of the 
mouse models. Pik3ca mutations, which are very frequent 
in human breast cancer, are found spontaneously in two 
of the models (6DT1 and MVT1), and as a transgene in 
one model (HRM1). The incidence of Tp53 mutations in 
the mouse panel (42%) is similar to that in human breast 
cancer (32%), though it should be noted that the enormous 
difference in size of the human and mouse datasets 
precludes any firm conclusions being drawn about relative 
mutation frequencies in the two species. The 4T1 model 
has previously been described to be p53 null [22], despite 
being genetically wildtype in our analysis. However, 
by Western blot, we find that the 4T1 model may be 
phenotypically null as the p53 protein is not detectable 
in vitro following treatment with a DNA-damaging agent 

Figure 2: Histologic and immunohistochemical characterization of transplantable mouse mammary tumors. A.-
C. Histology of representative tumors including: A, 6DT1 poorly differentiated carcinoma; B, MET1 poorly differentiated carcinoma 
with areas of focal necrosis; and C, D2A1 spindle cell carcinoma. D.-H. Immunostaining for epithelial and mesenchymal markers and 
hormone receptors. Spindle cell tumors such as F3II (D) have cells that are positive for α-smooth muscle actin. However, nearly all 
tumors including those with a spindled morphology were positive for cytokeratin 8, shown for F3II (E). The one exception was E0771 (F) 
which was cytokeratin 8 negative but did not have a spindled histology. Inset shows normal mammary gland positive control from same 
slide. G-H. Hormone receptor staining. Four of the models were weakly positive for estrogen receptor, shown here for TSAE1 (G), while 
none were positive for progesterone receptor, as shown for TSAE1 (H). Insets show positive normal mammary glands from same slides. 
Scale bars are 60μm for A-C and 200μm for D-H. I.-N. Representative staining patterns for immunohistochemical markers of biological 
properties and immune infiltration in a TSAE1 primary tumor. (I), Nuclear Ki67 proliferation marker; (J), activated caspase-3 apoptosis 
marker; (K), CD34 angiogenesis marker; (L), CD45 pan-leukocyte marker; (M), CD3 T cell marker; (N), Ly6G granulocyte marker. Tu, 
tumor; St, stroma. Scale bars represent 200μm. Arrows show positive cells. O.-R. Low power views showing different patterns of CD45+ 
leukocyte infiltration into the tumors. O, HRM1 showing little peripheral accumulation or infiltration of leukocytes; P, MVT1 tumor 
showing infiltration with little peripheral accumulation; Q, MET1 tumor showing strong peripheral accumulation; R, EMT6 tumor showing 
strong peripheral accumulation and infiltration. LN, lymph node. Scale bars are 3mm for HRM1, MVT1, MET1 and 2mm for EMT6. S.-V. 
Quantitation of immunostaining data for three representative tumors/model. Bars show mean +/- SD. Models are ordered by the nature of 
their originating tumor type (spontaneous vs genetically-engineered mouse model, GEMM). In the leukocyte infiltration stackplot, mean 
values/model are plotted and the category of “other leukocytes” represents CD45+ cells that are not either T-cells (CD3+) or granulocytes 
(Ly6G+).
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Figure 3: Genomic alterations in metastatic model cell lines. A. Mutation burden in individual models. Single nucleotide variants 
(SNVs) in the cell lines of the model panel were identified by exome sequencing. SNVs were classified as synonymous or non-synonymous. 
B. Mutation burden (total SNVs/genome) as a function of the origin of the cell line from a spontaneous tumor (Spont) or a tumor arising in a 
genetically engineered mouse model (GEMM). Each point represents one model. Results are median +/- interquartile range. Mann-Whitney 
test. C. Copy number variation (CNV) in individual models. CNV loss or gain for each model is expressed as the fraction of the whole 
genome involved, or as the frequency across the genome. D. CNV burden as a function of the origin of the cell line, as in (B). E. Genome 
browser view of CNVs across entire genome for each line. Blue represents losses and red represents gains. 
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(Supplementary Fig 6). The most frequently mutated 
gene in the mouse panel is K-Ras which is present in 
5/12 models, including both spontaneous and GEMM-
derived lines. This mutation is relatively rare in human 
breast cancer ( < 2% of cases in most studies). However, 
activation of the ras/MAPK pathway is seen frequently, 
particularly in triple negative breast cancer [23], and 
KRASG12D was recently shown to induce tumorigenesis of 
normal human breast epithelial cells with high efficiency 
as a single oncogenic event [24].

Genomic characterization: copy number variants

Copy number variation (CNV) across the mouse 
genome was assessed using the Affymetrix® Mouse 
Diversity Genotyping array. The genome-wide burden 
of losses and gains varied widely across the model panel 
(Figure 3C), with a trend to a higher CNV fraction in 
the spontaneous models (Figure 3D). HRM1 and D2A1 
showed a relatively high copy number loss fraction and 
frequency, while M6 had a high frequency of small copy 
number gains (Figure 3C,E). Among the genes commonly 
amplified or deleted in human breast cancer, only 
amplifications in Myc and Mdm2 and deletions of Cdkna, 
Cdkn4b, Csmd1 and Ptprd were seen in the mouse tumor 
panel (Supplementary Table 5). 6DT1 and MVT1 showed 
focal amplifications of Myc, reflecting the presence 

of the MMTV-Myc transgene in these models. D2A1, 
E0771, HRM1 and TSAE1 all had larger amplicons that 
included the entire Myc locus, and extended to include 
the adjacent Pvt1 locus (Figure 4A). Approximately 
10% of all human breast cancers show co-amplification 
of MYC and PVT1, with a particularly high proportion 
(62%) among HER2+ tumors [25]. Pvt1 encodes a long 
non-coding RNA that stabilizes Myc protein expression, 
and low copy number gains in Myc and Pvt1 cooperate 
to promote breast cancer development in mouse models 
[25]. Cdkn2b was homozygously deleted in 4T1 and 
E0771, while in 6DT1 and MVT1, the region of deletion 
extended to include Cdkn2a as well as Cdkn2b Figure 4B). 
Deletions in these cyclin-dependent kinase inhibitors are 
found in ~4% of human breast cancers [26]. Few other 
recurrent amplifications or deletions were seen across the 
panel. The HER2/ERBB2/Neu locus, which is a frequent 
site of amplification in human breast cancers, was not 
amplified in any models. However the Erbb4 locus 
on chromosome 1qC3 showed recurrent internal focal 
deletions encompassing exons 2 and/or 3 in four of the 
models (6DT1, D2A1, HRM1 and MVT1) (Figure 4C). 
ERBB4/HER4 is the receptor for the Neuregulin family 
of ligands, with conflicting reported roles in breast cancer 
that may depend on the splice variant considered [27] [28]. 
Oncogenic gain-of-function mutations in the extracellular 
domain of ERBB4 that increase ligand-independent 

Table 2:  Single nucleotide variation incidence in mouse model panel for top 30 genes most frequently mutated in 
human breast cancer. 

Mouse model

4T1 6DT1 D2A1 E0771 EMT6 F3II HRM1 M6 MET1 MVT1 R3T TSAE1
Mutation 
rate in 
human 
BrCa (%)

Mutation 
rate in 
mouse 
panel 
(%)

TC
G

A
 m

ut
at

ed
 g

en
e

Pik3ca 0 1 0 0 0 0 2* 0 0 1 0 0 32.6 25
Trp53 0† 0 0 2 0 1 0 0** 2 0 2 2 31.5 41.7
Ncor1 0 0 0 0 0 0 0 0 1 0 0 0 3.8 8.3
Map2k4 0 0 0 1 0 0 0 0 0 0 0 0 3.7 8.3
Pten 0 0 0 0 2 0 0 0 0 0 0 0 3.5 8.3
Akt1 0 0 0 0 1 0 0 0 0 0 0 0 2.1 8.3
Spen 0 0 2 2 1 0 0 0 0 0 0 0 2 25
Tbx3 0 0 0 0 0 0 0 0 1 0 0 0 2 8.3
Sf3b1 0 0 1 0 0 0 0 0 0 0 0 0 1.9 8.3
Arid1a 0 0 0 0 1 0 1 0 0 0 0 0 1.9 16.7
Erbb2 0 0 0 0 0 0 0 0 1 0 0 0 1.7 8.3
Med23 0 0 0 1 0 0 0 0 0 0 0 0 1.6 8.3
Tbl1xr1 0 0 1 2 0 0 0 0 0 0 0 0 1.1 16.7
Casp8 0 0 0 0 0 0 0 0 0 0 1 0 1.1 8.3
Cul4b 0 0 0 0 0 0 0 0 1 0 0 0 0.8 8.3
Kras 0 2 0 2 0 0 2 0 0 2 0 2 0.7 41.7

Mutations were identified by exome gDNA sequencing of cell lines. Gene mutation status is given by 0 (wildtype), 1 
(heterozygous) and 2 (homozygous). Details of individual mutations are given in Supplementary Table 4. The top 30 most 
frequently mutated genes in human breast cancer were taken from Lawrence et al [21]. Genes in the top 30 with no mutations 
in the panel were Gata3, Map3k1, Mll3, Cdh1, Runx1, Pik3r1, Ctcf, Cbfp, Tbx3, Foxa1, Rb1, Mll, Stag2, Myb, Hist1h3b, 
Cdkn1b, Rab40a. *Activating mutation is in the human transgene. †p53 is genetically wildtype but protein is undetectable. 
**p53 is functionally inactivated in this model by the SV40 T transgene.
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Figure 4: Recurrent local amplifications and deletions in the metastatic models. Genome browser view of CNVs in the 
vicinity of the Myc/Pvt1 locus A., the Cdkn2a/Cdkn2b locus B., and the Erbb4 locus C. 
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receptor activation have been described in melanoma [29], 
and it will be interesting to determine whether the focal 
deletions in the ERBB4 extracellular domain in the mouse 
models might have a similar effect. 

Transcriptomic architecture of mouse model 
panel

To probe more of the tumor biology captured in the 
model panel, the transcriptomes of four orthotopically-
implanted primary tumors from each of the 12 models 
were analyzed using the Affymetrix® Mouse Gene 1.0ST 
array. Unsupervised hierarchical clustering showed that 
the mouse models fell into three main transcriptomic 
clusters (Figure 5A). Models from different mouse strains 
were distributed between the three clusters, indicating 
that genetic background was not the major driver of the 
transcriptomic differences. Cluster 1 (primarily M6 and 
MET1) was characterized most notably by low expression 
of chemokines and immune modulators (eg. CCL2, 
CCL13, CCL7, CXCL3, CXCL10, CXCL16, CSF1, 
IL1, IL18, IL24) and indications of low cytotoxic T-cell 
function (low granzyme B). IPA® upstream regulator 
analysis of differentially expressed genes predicts that the 
immunosuppressive cytokine IL10 is active in the Cluster 
1 tumors, while activity of pro-inflammatory cytokines 
is suppressed (Figure 5B). IPA® biofunction analysis 
further predicts that Cluster 1 tumors are relatively 
immunologically silent, with decreased inflammation, 
immune cell recruitment and activation in these models 
(Figure 5B). Similarly, a core interferon-γ gene signature 
that is associated with response to immune checkpoint 
inhibitors has much lower score in this cluster (Figure 
5C; Supplementary Figure 7A for individual models). 
As noted earlier, immunostaining for the pan-leukocyte 
marker CD45 showed little leukocyte infiltration into the 
M6 tumors, and leukocytes predominantly localized round 
the tumor margins for MET1 tumors. 

Cluster 3 tumors (D2A1, EMT6, MVT1, 
E0771, 6DT1) were strikingly characterized by very 
low expression of claudin genes. Indeed, models in 
cluster 3 could largely be segregated based just on the 
expression of E-cadherin and three claudins (Figure 
5D). A “claudin-low” subtype of human breast cancers 
was originally identified in gene expression analysis of 
combined mouse and human mammary tumor datasets, 
and was subsequently shown to capture a poor prognosis, 
metaplastic cancer subtype with features of mammary 
stem cells [30]. The tumor models in cluster 3 were also 
predicted to be claudin-low using a published human 
1390-gene claudin-low predictor [31] (data not shown). 
Consistent with their claudin-low status, the Cluster 3 
tumors had a high score for a consensus gene signature 
that defines cancer-associated epithelial to mesenchymal 
transition (EMT) (Figure 5E; Supplementary Fig 7B 

for individual models). The 6DT1 model split between 
Clusters 1 and 3, but all four tumors had a high EMT score 
so the model is probably claudin-low.

In cluster 2 tumors (F311, TSAE1, 4T1, R3T, 
HRM1), β-estradiol was predicted to be the most highly 
activated upstream regulator (Figure 5F), consistent with 
enrichment of models that were immunohistochemically 
ER-positive (Figure 5G). Proinflammatory cytokines 
such as TNF and IL1B were also predicted to be 
activated. Thus, although cluster 2 tumors have lower 
total leukocyte numbers than cluster 3 tumors as 
assessed by immunohistochemistry (Supplementary 
Figure 7C)), the leukocytes in cluster 2 tumors may be 
more highly activated, or these cytokine pathways may 
be activated in the tumor cells themselves. It will be 
important in the future to do comprehensive FACS-based 
immunophenotyping to get a more detailed assessment of 
functional leukocyte subtypes and their activation status. 
As expected ZEB1, a key regulator of EMT, was less 
active in cluster 2 than cluster 3 (claudin-low) tumors. 
Analysis for enriched biofunctions suggested that cluster 2 
tumors would be more invasive and proliferative than the 
cluster 3 claudin-low tumors, as well as more differentiated 
and more angiogenic (Figure 5F). Significantly higher 
angiogenesis in cluster 2 tumors was confirmed by 
immunohistochemistry (Supplementary Figure 7D). The 
lower proliferation signal in cluster 3 tumors was not seen 
at the immunohistochemical level (Supplementary Figure 
7E), but is consistent with data suggesting that the claudin-
low human breast cancers lack a strong proliferation 
signature [30]. The lower invasion/migration signal in 
the claudin-low cluster 3 tumors is unexpected and needs 
further investigation. Key transcriptomic features of the 
three clusters are summarized in Figure 5H.

Optimization of subtype assignment strategies for 
mouse models

Transcriptomes of human breast cancer have 
been classified into 5 intrinsic subtypes with prognostic 
significance [32]. To determine which mouse allograft 
models map to which intrinsic human subtypes, seven 
different computational methods were evaluated using 
four different gene lists as detailed in Methods, to identify 
the optimal combination for subtype calling across 
species. The results of the analysis indicated that the 
clustering method was the most robust at subtype calling, 
as measured by Area Under the Curve (AUC) analysis 
(Supplementary Table 6), followed by the Principle 
Component Analysis (PCA) method. All four of the 
method/gene list combinations that involved clustering 
as the computational method gave high AUC scores, with 
the clustering method/G1841 genelist combination being 
best overall. When applied to the mouse models, the seven 
computational methods were similar in their classification 
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Figure 5: Transcriptomic architecture of the mouse tumor panel. A. Unsupervised hierarchical clustering of transcriptomes 
from primary tumors of mouse model panel for 4 tumors/model identifies 3 distinct clusters. B. Biofunction and upstream regulator 
enrichment analysis in differentially expressed genes from cluster 1 vs clusters 2 and 3. Blue indicates downregulated in cluster 1 and red 
indicates upregulated. C. The interferon-γ (IFNg) gene signature score is lowest in cluster 1 tumors. C2 vs C1, p < 0.001; C3 vs C2, ns; C3 
vs C1, p < 10e-04 D. Cluster 3 could be segregated from the other two clusters based just on the low expression of E-cadherin and three 
claudins. Cluster 3 represents the “claudin-low” phenotype. E. The EMT gene signature score is highest in cluster 3 tumors. C2 vs C1, ns; 
C3 vs C2, p < 10e-08; C3 vs C1,  p < 0.001. F. Biofunction and upstream regulator enrichment analysis of differentially expressed genes 
from cluster 2 vs cluster 3. Blue indicates downregulated in cluster 2 and red indicates upregulated. G. Fraction of tumor models in each 
cluster that are ER+ by immunohistochemistry. H. Summary of characteristic properties of the different model clusters predicted from 
transcriptomic analyses. Properties in bold were validated by orthogonal techniques (immunohistochemistry or histopathology).
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of the majority (11/12) of models as non-basal, but there 
were differences in their assignment of models to the 
luminal B and HER2-enriched classes (see Supplementary 
Table 7 for results with the G1841 list). In relation to 
optimal genelists for the analysis, the distribution and 
robustness of subtype calls for the mouse (G1841) and 
human (G1918) intrinsic gene lists were highly similar 
(Supplementary Table 8) demonstrating that the mouse 
and human gene lists were approximately equal in their 
ability to discriminate human breast cancer subtypes.

Intrinsic subtype assignment of mouse allograft 
models

Using the clustering method with the G1841 
mouse intrinsic genelist, the majority of the mouse 
allograft models were assigned to the Luminal A class 
(Figure 6A). Exceptions were E0771 and D2A1 which 
were predominantly luminal B. Only the M6 model, 
derived from the C3(1)TAg transgenic mouse, was 
transcriptomically basal. Using the much smaller PAM50 
genelist with the Cluster method, again only M6 was 
classified as basal, though some of the other models 
showed a higher luminal B component with this genelist, 
and HRM1 was classified as predominantly HER2 
enriched (Supplementary Figure 8). The assignment of M6 
to the basal subclass is consistent with published reports 
that tumors from the parental C3(1)TAg transgenic model 
are also classified as basal [33, 34]. 

The assignment of the other models to the luminal 
subclasses was more unexpected so we looked at other 
properties that are expected to correlate with the luminal 
subtype. Despite a uniformly aggressive and poorly 
differentiated or spindled histopathology, four of the nine 
models assigned to the luminal A subclass were weakly 
ER-positive (Figure 6B), consistent with observations 
that the majority of ER+ human breast cancers fall into 
luminal A intrinsic subtype [30]. Similarly, three of the 
nine luminal A mouse models had Pik3ca mutations, 
which are also enriched in human luminal A tumors 
[35]. An MMTV-Pik3ca-H1047R transgenic model was 
previously described to be ER+ [36] and with a luminal 
expression profile [33]. TP53 mutations are found at 
very high frequency (80%) in human basal breast cancer, 
but they are also seen in a significant fraction of human 
luminal A (12%) and luminal B (29%) tumors, so the 
presence of Tp53 mutations in 5 of the 11 models that 
were classified as either luminal A or B is at higher 
incidence than seen in the human counterparts, but not 
entirely implausible. MVT1 and 6DT1 were both derived 
from transgenic models that included the MMTV-Myc 
transgene and these models were subtyped as luminal, 
but could not be unambiguously assigned to luminal A vs 
luminal B. The parental MMTV-Myc transgenic model 
was linked with both basal-like and luminal B subtypes 

in a previous study ([33]. Human basal breast cancers 
are characterized by a proliferation gene cluster and 
a more aggressive biology [30]. We did not see a clear 
correlation between intrinsic subtype in the mouse models 
and biological parameters that might associate with more 
aggressive disease (Figure 6C). If anything, there was a 
trend toward increased apoptosis and reduced immune cell 
infiltration and reduced microvessel density in the luminal 
B and basal mouse tumors compared with the luminal A 
tumors. However, it should be emphasized that this is a 
small dataset and that the mouse models were pre-selected 
for clinically aggressive metastatic disease.

Relatedness to human patient derived xenografts 

Human patient-derived xenografts (PDXs) are 
increasingly being explored as useful avatars of human 
disease [37]. We assessed the transcriptomic relatedness 
of the immunocompetent mouse allograft models to 
a published panel of 25 human breast cancer PDXs 
[38]. After normalization and batch effect removal, 
unsupervised hierarchical clustering of the merged datasets 
showed that mouse model cluster 1 (predominantly M6 
and MET1) clustered in the same arm of the dendrogram 
as the human PDXs while mouse cluster 2 and cluster 3 
were distinct (Figure 7). The mouse cluster 1 allografts 
were more closely related to the human basal PDXs than 
the human HER2 PDXs, which occupied a separate arm 
on the dendrogram. No luminal PDXs were represented 
in this dataset. The biological basis of the transcriptomic 
relatedness of the mouse cluster 1 models to the human 
PDXs needs to be further explored, but could in part 
reflect the observation that the cluster 1 models mouse are 
predicted to be relatively immunologically silent, and the 
human PDXs were implanted in immunodeficient mouse 
hosts.

DISCUSSION

Human breast cancer is a heterogenous disease [39]. 
Considerable variation in clinical course, histopathology, 
genetic characteristics and transcriptomic profiles is seen 
between patients, and disease within a given patient can 
also show locoregional and chronological variation. 
Metastasis is the lethal end-stage of cancer progression, 
and few if any effective treatments exist for established 
metastatic disease [1]. One reason for this failure is the 
paucity of preclinical drug development studies that use 
metastatic burden as an endpoint. Another is the reliance 
on a very small number of metastatic models that may 
lack predictive power because they capture too little 
of the heterogeneity of the human disease. To address 
these issues, we have characterized a panel of 12 cell 
line-based mouse allograft models of metastatic breast 
cancer. Conditions were established in which the models 
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Figure 6: Intrinsic Subtypes and Related Biological Properties of Primary Tumors from the Mouse Model Panel. A. 
Subtype call probabilities for orthotopic tumors were generated from the tumor transcriptomic datasets using the G1841 gene list and cluster 
method as described in Methods. Results are mean values for 4 tumors/model. Models are ordered by decreasing luminal A component. B. 
Molecular and histopathological features of the models, ordered as in A. ER status was determined by IHC and the numbers in the boxes 
represent the Allred score. Pik3ca and Tp53 mutation status were assessed by exome sequencing. *Functionally p53 null. Claudin-low 
status was determined using the transcriptomic Claudin-low predictor. †2/4 tumors were called as claudin-low. Cluster number refers to the 
transcriptomic subtype from Figure 5, with cluster 3 being the claudin-low cluster. Histopathological diagnosis uses human nomenclature. 
C. Proliferation, apoptosis, immune cell infiltration and angiogenesis indices were assessed quantitatively by immunohistochemistry and 
the mean value for 3 tumors/model was determined. Mean values for each model were then median-centered across the model panel for 
heatmap generation. Models are ordered as in A.
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metastasize to the lungs with a frequency at least 50%, and 
in most cases metastasis incidence rates of 80-100% were 
achieved. Further optimization is still possible, and the use 
of alternative delivery routes (eg. intracardiac injection) 
could expand the range of metastatic sites to include bone, 
brain and viscera. 

Heterogeneity captured by the model panel

The allograft panel captures at least some of the 
heterogeneity seen in human breast cancer. At a genetic 
level, over half of the 30 most frequent mutation events 
in human breast cancer and several of the most frequent 
copy number variation events are represented in the panel. 
Kras mutations, Myc amplification and Cdkn2a/b deletions 
are somewhat over-represented when compared with their 
incidence in human breast cancer. Since frequent MYC 

amplification and CDKN2A/B deletions were also seen in 
a recently established bank of human breast cancer PDXs 
[40], these genetic events may contribute to efficient 
engraftment. In addition to the range of somatic tumor 
mutations found in the panel, the use of models from four 
different mouse strains also contributes some of germline 
genetic variation seen in humans. Histologically the 
models all formed poorly differentiated or sarcomatoid/
spindled tumors at the primary site, which are not common 
histologies in human breast cancer. However, there was 
cross-panel heterogeneity in many other clinically relevant 
biological properties, including proliferative index, 
angiogenesis, and patterns of leucocyte infiltration into 
the primary tumors. The transcriptomic data suggested that 
the models may fall into immunologically active (cluster 2 
models) and immunologically suppressed (clusters 1 and 
3 models). It will be of interest to see if these correspond 
to the “T-cell inflamed” vs “non-T-cell inflamed” 

Figure 7: Relationship of mouse tumor allografts to human patient-derived xenografts Unsupervised hierarchical 
clustering of mouse model (Mm) primary tumor transcriptomes with transcriptomes of human breast cancer-derived 
xenografts (PDX). Metastasis-relevant characteristics of the PDXs are indicated. Post-treatment indicates that the PDX was established 
from a patient who had received systemic neoadjuvant therapy.
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human tumor classes that correlate with response to 
immunotherapy [41]. This immunologic heterogeneity 
may be useful in the development of immune-based 
therapies for metastasis. 

Classification of the models in relation to human 
disease subtypes

Multiple different strategies for sub-classifying 
human breast cancer are currently in use. All emphasize 
different types of information, which may or may not be 
directly interrelated. The simplest molecular classification 
used to guide therapy involves three markers, namely 
estrogen receptor (ER), progesterone receptor (PR), 
and HER2 amplification status. Using that classification 
scheme, the majority (8/12) of the mouse models in the 
panel are “triple negative” for all three markers. Four 
of the models (EMT6, F311, TSAE1 and HRM1) were 
weakly ER-positive by immunohistochemistry and all 
of these except EMT6 fell into a transcriptomic cluster 
(Cluster 2) that had predicted activation of estrogen as an 
upstream regulator. Since the mouse GEMM models of 
breast cancer are generally ER-negative [34], the presence 
of ER-positive models in the allograft panel is a potential 
strength. However, currently it is not known whether the 
allograft models are hormone-dependent for tumor growth 
or metastasis. 

More recently, human breast cancers have been 
classified into different molecular subtypes on the basis 
of transcriptomic characteristics [42], with or without 
additional genomic information [43]. The most widely-
used transcriptomic classification identifies 5 distinct 
“intrinsic” subtypes (luminal A, luminal B, HER2-like, 
normal-like and basal). Applying this classification scheme 
to the mouse model panel, the majority of the models 
were found to be luminal A or luminal B. Only a single 
model (M6) classified as basal, which was consistent with 
the basal classification of the parental C3(1)Tag GEM 
model from which the M6 cell line was derived [34]. 
The transcriptomic classification of most of the allograft 
models as luminal A or B was unexpected, given their 
aggressive histopathology and clinical behavior, and the 
low or absent hormone receptor expression. However, 
this class assignment was robustly seen with a variety 
of different classifier genesets and algorithms, and was 
consistent with the ER-positivity of four of the models, 
and the presence of Pik3ca mutations in another two. 
There are human/mouse differences in hormone receptor 
expression in the normal mammary gland, including much 
lower ERa expression in mouse luminal progenitors [44]. 
This may lead to mouse tumors that are transcriptomically 
luminal, but nevertheless are “triple negative” by marker 
analysis. Indeed, it has been suggested that the human 
“luminal” transcriptome has two components, one driven 
by ER and the other by GATA3, and that the ER-driven 

component is largely missing in mouse tumors [34]. 
Thus the “triple negative” designation in mouse may not 
encompass the same biology as it does in human.

Finally, using an orthogonal transcriptomic 
classifier, five of the luminal models were found to also 
be “claudin-low” (EMT6, MVT1, 6DT1, E0771, D2A1). 
The claudin-low signature is associated with a relatively 
rare metaplastic subtype of human breast cancer, and 
has hallmarks of a stem-like, epithelial-to-mesenchymal 
transition state [30]. This signature is enriched in 
human breast cancers following endocrine therapy or 
chemotherapy [45], so the claudin-low tumors may be 
useful as models of recurrent disease. The claudin-low 
phenotype is also over-represented in human breast 
cancer cell lines [46], suggesting it may confer a selective 
advantage in tissue culture.

Relationship of mouse models to PDXs

Patient-derived tumor xenografts are an emerging 
tool for drug development or selection studies. They 
largely recapitulate the histological and transcriptomic 
characteristics of the original tumor [40], and to the extent 
that it has been tested, the response of the PDX to drugs 
correlates well with clinical outcome when the patient 
is treated with a drug selected through a PDX screen 
[47]. Thus there is hope that PDXs will enable precision 
medicine approaches to cancer therapy. Realistically, the 
routine generation of PDXs from every individual patient 
is likely to be cost- and time-prohibitive for guiding 
therapy selection in real time. It will be more feasible 
to map the tumor from any given patient onto a closely-
related avatar from an established panel of representative 
PDXs for which the response to different therapeutic 
agents/strategies has already been assessed [37]. However, 
one key limitation of these PDXs currently is the lack of 
an immune component. Here we addressed whether it 
would be possible to find mouse avatars of the human 
avatars by comparing the transcriptomes of the mouse 
panel tumors with a panel of human breast cancer PDXs. 
Interestingly our Cluster 1 mouse models (MET1, M6 and 
some 6DT1) cluster in with the human PDXs, suggesting 
that with an expanded panel of mouse allograft models, 
this approach might be feasible.

How to use the models

All models have strengths and limitations that need 
to be recognized so that they can be used optimally. The 
advantages of the mouse allograft models include that 
they are fully immunocompetent, there is no species 
incompatibility in paracrine interactions between tumor 
and stroma, the disease course is rapid, and metastasis 
burden can realistically be used as an endpoint in 
therapeutic intervention studies. On the negative side, the 
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histology of the primary mouse allograft tumors is unlike 
that of most human breast cancers, the rapid time course 
may skew the biology, and the use of established cell lines 
may introduce bias due to selection of properties that allow 
propagation on plastic. However, we would argue that for 
the development of anti-metastatic therapies, the robust 
metastatic phenotype and the presence of an intact immune 
system trumps the other limitations of these models for 
now. In the future, further advances may come from the 
use of never-on-plastic mouse allograft models [48, 49] 
or metastatic PDXs in mice with reconstituted human 
immune systems [37]. It should also be fully appreciated 
that there will be no simple one-to-one mapping of any 
mouse model onto human cancer subtypes with respect 
to every characteristic. The mapping is multidimensional, 
with different results in different dimensions (genetic, 
transcriptomic, histopathology, clinical behavior etc). 
Model selection should be driven by which aspect of the 
biology is most important for the question being asked.

In summary, we have extensively characterized 
a panel of metastatic mouse allograft models of breast 
cancer that captures some of the heterogeneity of the 
human disease. This panel should serve as a useful 
platform for anti-metastatic drug screening and predictive 
biomarker development. 

MATERIALS AND METHODS

Ethics statement

All animal studies were conducted under protocol 
LC-070 approved by the Animal Care and Use Committee 
of the National Cancer Institute, The Frederick National 
Laboratory and the Center for Cancer Research are 
accredited by AALAC International and follow the Public 
Health Service Policy for the Care and Use of Laboratory 
Animals. Animal care was provided in accordance with 
the procedures outline in the “Guide for Care and Use of 
Laboratory Animals” (National Research Council; 2011 
National Academies Press; Washington, DC).

Model acquisition and cell culture

Metastatic murine mammary cancer cell lines 
were obtained from the originating laboratories and/
or investigators as detailed in Table 1. Cell lines were 
maintained in culture using growth media and optimal 
split ratios as indicated in Supplementary Table 9. Care 
was taken not to use very high split ratios and not to let 
the cells go confluent at any time. All lines were tested 
and shown to be free of mouse viral pathogens and 
mycoplasma. To assess effects of estrogen on tumor cell 
growth in vitro, tumor cells were seeded at 20,000 cells/
well in 24 well plates in their normal growth medium but 
using phenol red-free medium and charcoal-stripped serum 

supplemented with 10ng/ml EGF and 10μg/ml insulin, 
and were treated with 17-β-estradiol (Sigma E2758) at 
a final concentration of 100nM, or vehicle control. Cell 
proliferation over 42h was assessed by measuring culture 
confluence using an IncuCyte ZOOM® Live Cell Analysis 
System (Essen Biosciences).

Animal studies and tissue collection

Pilot experiments using different cell innocula, 
different experimental formats and different time-frames 
were run to optimize the metastatic efficiency for each 
model. Ideally we wished to find conditions that gave lung 
metastases in at least 40% of the mice on study following 
orthotopic implantation of the primary tumors, with 
surgical resection when tumors reached 5-8mm diameter, 
and metastatic burden being detectable within 60 days 
of tumor cell implantation. The detailed experimental 
conditions used to generate metastases from all these 
models in our facility are given in Supplementary Table 1. 
However, note that there is room for further optimization 
and that results are likely to be facility-dependent. The #4 
mammary fat pad (mfp) was the preferred site for tumor 
cell implantation because primary tumor resection with 
clean margins is easier at this site and tumors can grow to 
a larger size without impairing animal mobility. The fatpad 
was surgically exposed to ensure that cells were actually 
implanted into the mfp rather than in the vicinity of it. If 
metastatic efficiency was too low from the #4 mfp, the #2 
mfp was tried as this generally gives a higher frequency 
of metastases, but the surgery is more complex because 
of the high vascularity of tumors at this site and there is 
then a higher risk of local recurrence and post-operative 
complications. For the EMT6 model, cells were implanted 
in a 1:1 mix with reduced growth factor Matrigel (BD 
Biosciences). If metastatic frequency following tumor 
resection was low, the model was run without resection 
(E0771, MVT1, R3T). If metastatic frequency was still 
undesirably low following orthotopic implantation, cells 
were introduced into the mice via the tail vein (F3II, 
MET1 and TSAE1). At the experimental endpoint, mice 
were euthanized by carbon dioxide narcosis followed 
by thoracotomy. Primary tumors were bisected and snap 
frozen in liquid nitrogen for molecular analyses, or fixed 
in 10% neutral buffered formalin (NBF). Lungs were 
inflated with 10% NBF and fixed, and the individual 
lung lobes were separated prior to embedding in a single 
block. Fixed tissues were paraffin embedded for histology 
and metastases were enumerated on an H&E-stained 
cross-section of all lung lobes. For the chemotherapy 
intervention study, mice were implanted with 200,000 
MVT1 cells in the #4 mammary fat pad, and three once-
weekly injections of cytoxan (10mg/Kg i.p. in PBS) 
were given to each animal starting when tumors became 
palpable (3mm diameter). A control cohort received 
injections of PBS. 
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Histopathology and immunohistochemistry

Histopathology. Hemotoxylin and eosin (H&E) 
stained sections of three representative primary tumors 
for each tumor model were assessed initially by one 
veterinary pathologist (MRA) and a consensus diagnosis 
was achieved through a pathology slide conference 
with two additional veterinary pathologists (DCH and 
PM), including information from slides immunostained 
for additional diagnostic markers, including wide-
spectrum cytokeratin, cytokeratin 8, α-smooth muscle 
actin and vimentin. Details of the antibodies used for all 
immunohistochemistry and the immunostaining conditions 
are summarized in Supplementary Table 10. A human 
anatomic pathologist (PHW) contributed diagnoses from 
a human pathology perspective. 

Hormone receptor status. To determine estrogen 
receptor and progesterone receptor status, immunostained 
sections of three representative primary tumors from 
each model were assessed independently by a veterinary 
pathologist (MRA) and a surgical pathologist (PHW). 
Where results were discrepant, additional tumors were 
examined for discrepant models (F311 and HRM1) and 
a consensus was reached. ER status was determined in 
parallel with adjacent sections stained for cytokeratin 8 
(CK8) since mouse mammary stromal cells are estrogen 
receptor positive [11] and in many of the models, the 
tumor cells had a spindled morphology. Parallel CK 
staining, cell morphology and growth patterns allowed 
positive tumor cells to be distinguished from positive 
stromal cells. The extent of ER positivity in tumors was 
scored by the surgical pathologist using the Allred scale 
[50], which scores the % of cells stained on a scale of 0 
to 5 and the intensity of staining on a scale of 0 to 3, for a 
maximum possible total score of 8. 

Additional immunohistochemical markers. Three 
representative primary tumors for each model were 
immunostained for Ki67 (proliferation), Caspase3 
(apoptosis), CD34 (angiogenesis), CD45 (pan-leukocyte), 
CD3 (T-cell), Ly6G (granulocyte) markers. Details of the 
antibodies and conditions used for immunostaining are 
given in Supplementary Table 10. All immunostaining 
steps from deparaffinization through counterstaining 
were performed using a BondMax Autostainer (Leica 
Biosystems). Immunostained slides were scanned at 
20x magnification using an Aperio Scanner. Images of 
the entire tumor section were manually segmented to 
exclude regions of intra-tumoral necrosis and of stroma 
surrounding the tumor, and automated Aperio-designed 
algorithms were run to assess the positive cells as % 
total nuclei in the segmented region (Ki67, caspase3 
and leukocyte markers) or microvessel density (CD34: # 
microvessels/μm2).

Western blot analysis for p53 and p21

Cultured cells were treated with 0.5μM Adriamycin 
for 6 hours to induce p53. Western blots of the cell lysates 
were run to assess expression of p53 and the canonical p53 
target p21. Tubulin was the loading control. Antibodies 
used were p53, sc-1312, Santa Cruz Biotechnology; p21, 
sc397, Santa Cruz Biotechnology; α-tubulin, T6199, 
Sigma-Aldrich.

Genomic characterization of tumor cell lines

Copy number variant (CNV) analysis. RNA-
free genomic DNA (gDNA) was prepared from each 
cultured cell line using the Gentra Puregene Cell Kit 
(Qiagen) according to manufacturer’s protocol and 
resuspended in low EDTA TE buffer. DNA was labeled 
using the Affymetrix® SNP 6.0 protocol and hybridized 
to the Affymetrix® Mouse Diversity Genotyping array, 
which interrogates more than 623,000 single nucleotide 
polymorphisms (SNPs) and 916,000 non-polymorphic 
regions across the genome, allowing mapping to a 
resolution of 4.3 kb. Arrays were scanned using the 
Affymetrix GeneChip 3000 7G Plus scanner. Images 
and intensity data were collected using the Affymetrix 
GeneChip Command Console (AGCC) software, and data 
were analyzed using the R package MouseDivGeno [51]. 
Data from normal tissue of matched mouse strains (http://
cgd.jax.org/datasets/diversityarray/CELfiles.shtml) were 
used as references to identify strain-specific regions of 
copy number gain or loss, which were then removed from 
the processed datasets. CNV data have been deposited in 
GEO under accession # GSE69902. CNV fraction was 
calculated by adding up genomic regions affect by CNV 
loss or gain and dividing by the total genome size. CNV 
frequency was calculated by counting the number of 
genomic regions affected by CNV loss or gain. 

Single nucleotide variant (SNV) analysis. gDNA 
was prepared as for CNV analysis. Exome libraries were 
prepared using the Agilent SureSelect Mouse all-Exon 
target enrichment kit. Deep sequencing was performed on 
a HiSeq 2000 with TruSeq V3 chemistry, multiplexing of 
3 samples/lane. Mean target coverage depth was 85-141X 
with 84% of regions having > 30x coverage. Samtools 
mpileup was used to call sequence variants for the 12 cell 
lines with mm10 as the reference genome. Mouse strain-
specific single nucleotide polymorphisms (SNPs) were 
filtered out using dbSNP137 and the Sanger database for 
variants identified from whole genome sequencing of 17 
mouse strains (ftp://ftpmouse.sanger.ac.uk/current_snps/
mgp.v3.snps.rsIDdbSNPv137.vcf.gz). Variants after 
removing dbSNP137 and mgpSNPs were annotated with 
ANNOVAR (http://annovar.openbioinformatics.org/en/
latest) [52]. Exonic SNPs were identified and variants 
were classified as synonymous or non-synonymous by 

http://cgd.jax.org/datasets/diversityarray/CELfiles.shtml
http://cgd.jax.org/datasets/diversityarray/CELfiles.shtml
ftp://ftpmouse.sanger.ac.uk/current_snps/mgp.v3.snps.rsIDdbSNPv137.vcf.gz
ftp://ftpmouse.sanger.ac.uk/current_snps/mgp.v3.snps.rsIDdbSNPv137.vcf.gz
http://annovar.openbioinformatics.org/en/latest
http://annovar.openbioinformatics.org/en/latest
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ANNOVAR. Variants that were present in all cell lines 
from the same strain background, and variants with a 
Phred-scaled quality score of < 30 were removed. The 
exome fastq data have been deposited in NCBI SRA 
database under accession # SRP096980. A searchable 
Excel spreadsheet with the processed data is available 
for download at ftp site ftp://helix.nih.gov/collab/leemax/
public/Lalage_Wakefield/paper/exome

Gene expression analysis 

Primary tumors from cells implanted orthotopically 
into the #4 mammary fatpad of syngeneic mouse hosts 
were harvested when they reached 0.5-1.0 cm diameter. 
RNA was prepared from four representative tumors of 
each of the 12 models using the RNeasy kit (QIAGEN). 
RNA quality was checked using an Agilent Bioanalyzer 
and all but two samples (both from 6DT1 model with 
RIN~7) had a RIN > 8. RNA samples were processed and 
hybridized to the Affymetrix Mouse Gene 1.0 ST array 
using standard manufacturer-recommended protocols, and 
scanned on the Affymetrix GeneChip 3000 Scanner. Raw 
data were collected using Affymetrix AGCC software. 
The 48 CEL files were normalized by the RMA method 
using Affymetrix Expression Console. The probes without 
gene names were removed and expression values of the 
multiple probes for the same gene were combined into 
one by averaging. The unsupervised hierarchical cluster 
method was applied to divide the 48 tumor samples into 
three clusters. To derive differentially expressed genes, 
transcriptomes of tumor samples in one group were 
compared to those in another group, where each group 
is one of the clusters or the union of two clusters. The 
differentially expressed genes from each test (absolute 
fold-change cutoff > 1.5; p < 0.001) were analyzed for 
pathway enrichment and upstream regulator identification 
using Ingenuity ® Pathway Analysis (QIAGEN). Upstream 
regulator analysis in this program is based on prior 
knowledge of expected effects between transcriptional 
regulators and their target genes stored in the Ingenuity® 
Knowledge Base and examines how many known targets 
of a given transcriptional regulator are present in the 
dataset as well as comparing the direction of change with 
that expected from the literature. (http://pages.ingenuity.
com/rs/ingenuity/images/0812%20upstream_regulator_
analysis_whitepaper.pdf) In an independent analysis, the 
scores for an EMT signature and an interferon-γ (IFNγ) 
activation signature were also assessed across the panel. 
The EMT signature used was a 130 consensus genelist 
(Supplementary Table 11) derived from a meta-analysis 
of gene expression signatures defining EMT during 
cancer progression [53]. The IFNγ signature geneset 
(Supplementary Table 12) came from a core list of 
IFNγ-related genes associated with response to immune 
checkpoint inhibitor therapy (https://www.google.com/
patents/WO2015094992A1?cl=en). The EMT score for 

each sample was defined as the weighted sum of the 
expression of the core 130 genes, with weights 1 and -1 
for up and down indicating the direction of expression 
change. The IFNγ score for each sample was defined 
as the sum of the expression of all the genes on the list. 
Mouse tumor transcriptomes were then compared with 
the transcriptomes from a published set of human breast 
cancer patient-derived xenografts [38]. Among the 21201 
mouse genes, 15807 have human homologs. The mouse 
tumor and human PDX gene expression datasets were 
merged and 13515 genes were found to be shared between 
the expression datasets. After removing batch effects, 
the mouse tumor samples and the PDX samples were 
clustered using the unsupervised hierarchical clustering 
method. All mouse tumor array data have been deposited 
in GEO under accession number GSE69006. A searchable 
Excel spreadsheet containing processed gene expression 
information data across the panel is also available for 
download from ftp://helix.nih.gov/collab/leemax/public/
Lalage_Wakefield/paper/transcript/.

Intrinsic subtype analysis

To determine which mouse allograft models map 
to which intrinsic human subtypes, seven different 
computational methods were evaluated in combination 
with four different gene lists to identify the optimal 
combination for subtype calling across species. The 
computational methods evaluated were as follows: 
Genefu, Clustering, K-nearest neighbor (KNN), Support 
Vector Machine (SVM), Principal component analysis 
(PCA), General linear models (GLM) and Random forest 
(RF). The gene lists were the commonly used PAM50 
subtyping signature [54], an expanded human “intrinsic” 
gene list of 1918 genes [54], a mouse-derived intrinsic 
geneset of 1841 genes [33], and an extended PAM50 gene 
list (PAM50+) that included the PAM50 geneset plus the 
450 genes that overlapped between the mouse and human 
intrinsic gene lists. To evaluate performance, each of 
the 28 combinations were trained on the TCGA breast 
cancer gene expression data and clinical characteristics. 
Subsequently the trained gene list/computational method 
combinations were used to call the subtypes of the 
GSE2034 breast cancer data set, and the results were 
compared to the pre-existing GSE2034 clinical subtype 
assignments. The best performing genelist/method 
combination was then used to assign the mouse tumors to 
the most closely matched human intrinsic subtype. 
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