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ABSTRACT

It is generally known that the human genome makes a large amount of noncoding 
RNAs compared with coding genes. Long non-coding RNAs (lncRNAs) which composed 
of more than 200 nucleotides have been described as the largest subclass of the non-
coding transcriptome in human noncoding RNAs. Existing research shows that lncRNAs 
exerted biological functions in various tumors via participating in both oncogenic and 
tumor suppressing pathways. The previous studies indicated that lncRNA taurine 
upregulated 1 (TUG1) play important roles in the initiation and progression of 
malignancies. In this study,based on previous research, we investigated the expression 
and biological role of the lncRNA-TUG1. We analyzed the relationship between lncRNA-
TUG1and endometrial carcinoma (EC) in a total 104 EC carcinoma specimens, compared 
with that in normal tissues. We found that lncRNA-TUG1 expression in cancer tissues 
was significantly higher than that in adjacent tissues. Through a series of experiments, 
the results demonstrated that lncRNA-TUG1 enhances the evolution and progression 
of EC through inhibiting miR-299 and miR-34a-5p.

INTRODUCTION

Endometrial carcinoma (EC), the most common 
form of gynecological malignancy, which can be divided 
into two types: type I, estrogen-dependent endometriosis 
carcinoma; and type II, estrogen-independent non-
endometriosis carcinoma [1–3]. The type I usually have 
favorable prognosis while type II endometrial cancers are 
more aggressive and also presented poor prognosis [4]. 
There have been many comparative studies demonstrate 
that epigenetic changes closely associated with the 
occurrence and development of EC, finding the new 
biomarkers for metastatic progression in EC is urgent.

Long non-coding RNAs (lncRNAs) which composed 
of more than 200 nucleotides, usually do not have the 
capacity to encoding protein [5, 6]. Formerly, some 
lncRNAs have been discovered in what had been considered 
junk but a rapidly growing number of recent studies show 
that lncRNAs as new modulators in the tumorigenesis and 
progression in cancer by participating in both oncogenic 
and tumor suppressing pathways [7, 8]. Recently, lncRNAs 

as a competing endogenous RNA (ceRNA) and sponge 
miRNAs, regulating the expression of target mRNA is 
becoming a new hotspot of epigenetics research [9].

Taurine upregulated 1 (TUG1), a novel lncRNA 
with 6.7-kb nucleotides, which was initially characterized 
by a genomic screening study in mouse retinal cells 
[10]. LncRNA TUG1 was frequently upregulated and 
characterized as an oncogene involved in the development 
and progression of a variety of tumors (e.g., osteosarcoma 
[11], esophageal squamous cell carcinoma (ESCC) [12], 
urothelial carcinoma of the bladder [13], glioblastoma 
[14], colorectal cancer [15]). Previous studies indicated 
that lncRNA TUG1 through regulate the expression 
of the miRNA and its target genes involved in the 
development and progression of cancer. However, the 
biological functions of lncRNA TUG1 in the control of 
EC tumorigenesis have not been well characterized, which 
prompted us to explore the role of lncRNA TUG1 in 
human EC. In this study, we delineate the transcriptional 
aberration of lncRNA TUG1 in EC tumor tissues and 
corresponding adjacent normal tissues
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RESULTS

Cellular location of lncRNA-TUG1

Firstly, we conducted northern blot experiments to 
detect the transcript of lncRNA-TUG1, the result showed 
that TUG1 is a 6.7-kb transcript in EC cells (Figure 1A). 
Next, we address the cellular localization of lncRNA-
TUG1, the levels of the nuclear control transcript (U6) 
and cytoplasmic control transcript (GAPDH mRNA) were 
detected by RT-qPCR in the nuclear and cytoplasmic 
fractions, respectively. The results showed that lncRNA-
TUG1 mostly distributed in cytoplasm of EC cells. For 
the HEC-1-A cell line, qRT-PCR analysis revealed that 
(mean ± SEM) 70.3% lncRNA-TUG1 was detected in 
the cytoplasmic fraction, and 32.1% was situated in the 
nuclear fraction. Similar results were obtained with the 
ishikawa cell line, 68.6% lncRNA-TUG1 was detected in 
the cytoplasmic fraction, and 34.8% was situated in the 
nuclear fraction (Figure 1B).

Expression of lncRNA-TUG1 in EC tissues

We detected lncRNA-TUG1 expression in 104 
paired EC tissue and corresponding adjacent normal tissue. 
The results showed that the lncRNA-TUG1 expression 
was higher in 71 tumor tissues (68.27%) than the adjacent 
tissues (P < 0.05; Figure 1C), and we find that there is 
no significance differential expression in subgroups of 

patients too (P>0.05, Supplementary Figure 1). In addition, 
the lncRNA-TUG1 expression level was significantly 
increased in endometrial carcinoma cells compared with 
normal human 293T cell (P<0.05; Figure 1D).

Knockdown lncRNA-TUG1 in EC cell lines

In order to study the role of lncRNA-TUG1 in 
EC cells, we construct the shRNA-TUG1 and silencing 
control plasmid (shNC). Quantitative real-time PCR 
analysis was applied to detect lncRNA-TUG1 expression 
and validate the efficiency of TUG1 knockdown. There 
was no significant difference in lncRNA TUG1 expression 
between the control and shNC groups. Reversely, lncRNA 
TUG1 expressed 62.8% lower in the shTUG1 group than 
that in shNC group of HEC-1-A cells, while it was 66.31% 
lower in the shTUG1 group than that in shNC group of 
ishikawa cells (P<0.05) (Figure 2A).

Association of lncRNA-TUG1 and VEGFA in EC

To test the correlation between lncRNA-TUG1 and 
VEGFA, we choose another 30 endometrial carcinoma 
tissues. The results showed that patients with higher 
lncRNA-TUG1 expression levels in EC tissue displayed 
substantial up-regulation of VEGFA (R2 = 0.33, P < 0.05; 
Figure 2B).

The expression of VEGFA decreased significantly in 
TUG1 knockdown cells compared with the normal control. 

Figure 1: Cellular and molecular characterization of lncRNA-TUG1. A. Northern blot analysis of lncRNA-TUG1 expression 
in EC cells. B. The levels of nuclear control transcript (U6), cytoplasmic control transcript (GAPDH mRNA) and lncRNA-TUG1were 
assessed by qRT-PCR in nuclear and cytoplasmic fractions. Data are mean ± SEM. C. The lncRNA-TUG1 expression was higher in EC 
tumor tissues than the adjacent tissues, the expression level of lincRNA-uc002kmd.1 was analyzed by qRT-PCR normalized to GAPDH. 
Data are represented as mean ± SEM. D. LncRNA-TUG1 endogenous expression levels in EC cell lines were determined by quantitative 
real-time PCR normalized to 293T using GAPDH as an internal control.
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(Figure 2C). Western Blot results consistently showed that 
knockdown of lncRNA-TUG1 decreased VEGFA protein 
levels in the HEC-1-A cell line. Similar results were found 
in the ishikawa cell line (Figure 2D).

lncRNA-TUG1 regulates VEGFA expression by 
competing for miR-299 and miR-34a-5p

In the previous study, lncRNA-TUG1 acted as a 
competing endogenous RNA (ceRNA) through modulating 
the expression and biological functions of miRNA [14, 
16]. Coincidentally, the miR-299 and miR-34a-5p was the 
experimental verified target for both lncRNA-TUG1 and 
VEGFA [14, 17]. We test the correlation between miRNAs 
and VEGFA, we choose another 20 endometrial carcinoma 
tissues. The results showed that patients with higher miRNA 
expression levels in EC tissue displayed substantial down-
regulation of VEGFA (R2 = 0.43, P < 0.05 for miR-299; R2 
= 0.48, P < 0.05 for miR-34a-5p; Figure 2E). To test the role 
of miR-299 and miR-34a-5p in the EC cells, the 3’ UTR of 
VEGFA and TUG1 cDNA was cloned into the downstream 
of luciferase gene and transfected into EC cells with miR-
299 and miR-34a-5p mimics respectably. The results 
showed that both miR-299 and miR-34a-5p significantly 
decreased the luciferase signals of the mentioned reporters 

above (Figure 3A, B). Moreover, qPCR assay was used to 
test the expression levels of lncRNA-TUG1 and VEGFA 
in the EC cells after treating with the miRNA mimics. Not 
surprisingly, both the lncRNA-TUG1 and VEGFA levels 
were significantly decreased (Figure 3C).

Next, we cloned the 3’UTR region of into a 
luciferase reporter and co-transfected in the lncRNA-
TUG1 knockdown cells. The results showed that the 
fluorescent value of VEGFA in lncRNA-TUG1 knockdown 
cells is significantly lower than the control side (p<0.05). 
All above results suggested that lncRNA-TUG1 regulates 
VEGFA expression by competing for miR-299 and miR-
34a-5p (Figure 3D). The predict potential binding sites of 
lncRNA-TUG1 and 3’UTR of VEGFA with miR-299 and 
miR-34a-5p were showed in Figure 3E.

lncRNA-TUG1 modulates cell growth

The effects of lncRNA-TUG1 on the EC cells 
proliferation were checked by CCK-8 assays. there was 
no significant difference in the viability of EC cells in the 
control group. Reversely, the viability of EC cells was 
significantly lower in lncRNA-TUG1 down-regulated cells 
(HEC-1-A was 21% decrease and ishikawa was 21.3% 
decrease) (Figure 4A).

Figure 2: Knockdown lncRNA-TIG1 in EC cells. A. HEC-1-A and ishikawa cells were transfected with lncRNA-TUG1 siRNA 
and control siRNA for 48 h. qRT-PCRs were conducted to detect lncRNA-TUG1 levels. The data were shown as fold increase compared 
with control group. Data are mean ± SEM, normalized to GAPDH. B. The linear correlations between the lncRNA-TUG1expression levels 
and VEGFA mRNA were tested. The relative expression value was normalized by GAPDH expression level. C. The expression of VEGFA 
was detected after downregulated lncRNA-TUG1. D. The protein levels of VEGFA was assessed in HEC-1-A cells and ishikawa cells by 
Western blot. E. The linear correlations between the miR-299 and miR-34a-5p expression levels and VEGFA mRNA were tested.
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LncRNA-TUG1 knockdown inhibits tumor 
growth

To examine the biological significance of lncRNA-
TUG1 on tumor growth, xenograft was subcutaneously 
injected with EC cells. As is shown in Figure 4B, the 
growth of tumors from lncRNA-TUG1-downregulated 
xenografts were significantly inhibited compared with that 
of the control xenografts (466.7 ± 38.6 mm3 versus 330 ± 
21.6 mm3 for HEC-1-A cells (P < 0.05); and 453.3 ± 44.9 
mm3 versus326.7± 24.9 mm3 for ishikawa cells (P < 0.05)).

DISCUSSION

In our study, we detected the lncRNA-TUG1 
expression in EC, the results showed that it was 

dramatically up-regulated in EC tissues and then we 
further explored functional role and possible mechanism 
of lncRNA-TUG1 in EC. Through a series of experiments, 
we concluding that lncRNA-TUG1 act as one competitive 
endogenous

RNAs (ceRNA) negative regulate the miR-299 and 
miR-34a-5p and influence the expression of VEGFA in 
EC.

In recent years, with the development of whole-
genome and transcriptome sequencing technologies, 
lncRNAs have been increasingly concerned and 
emphasized by researchers [8, 18]. To the best of our 
knowledge, lncRNAs are emerging as key regulators in 
cell biology, and mountains research have proposed that 
the link between their abnormal expression and diverse 
human diseases, especially in cancer [19–22]. For instance, 

Figure 3: lncRNA-TUG1 and VEGFA are targeted by miR-299 and miR-34a-5p. A, B. Both lncRNA-TUG1 and VEGFA are 
targeted by miR-299 and miR-34a-5p. Relative luciferase activity was performed by dual-luciferase reporter assay. Data represent mean ± 
SEM. (n =3, each). C. The expression levels of lncRNA-TUG1 and VEGFA in the EC cells after treating with the miRNA mimics. D. The 
lncRNA-TUG1 shRNA reporter vector and control vector were co-transfected to EC cells, the VEGFA luciferase signal was significantly 
decreased(P<0.05). E. Computational miRNA target prediction analysis.
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the most commonly known lncRNA, HOTAIR, is up-
regulated in gallbladder cancer (GBC) that leads to tumor 
metastases through altered methylation of histone H3 lysine 
27 (H3K27) and gene expression [23, 24]. LncRNA-MEG3 
is down-regulated in EC by repressing Notch signaling 
pathway [25]. Linc-POU3F3 is increased in ESCC 
tissues and contributes to development of cancer through 
interactions with EZH2 to promote methylation of POU3F3 
[26]. In the present study, we focus on the lncRNA-TUG1, 
which is abnormal expressed in a wide variety of tumors, 
and we also conducted a series of experiments to explore 
the role of lncRNA-TUG1 acted in EC development. We 
conduct lncRNA-TUG1 knockdown assay, the results show 
that silence lncRNA-TUG1 inhibits tumor growth in vivo, 
and reduces EC cell proliferation in vitro.

Recently, a novel regulatory mechanism between 
lncRNAs and miRNAs has received attention by more 
and more researchers. LncRNAs may act as miRNA 
sponges participate in the competitive endogenous RNAs 
(ceRNA) regulatory network to negatively regulating the 
miRNA expression and then influence the expression of 
miRNA target gene [27, 28]. For instance, GAPLINC 
improve CD44 expression by competing for miR-211-3p, 
subsequently mediating cell migration and proliferation 
in gastric carcinoma [29]. LncRNA urothelial carcinoma-
associated 1(lncRNA-UCA1) through inhibition of miR-
216b and activation of FGFR1/ERK signaling pathway 
in hepatocellular carcinoma [30]. Identically, there was 
a reciprocal repression between lncRNA-TUG1 and 

miR-299, lncRNA-TUG1-miR-299 constitutes a ceRNA 
regulatory network in the progress of glioblastoma. 
Also, lncRNA-TUG1 act as miR-34a-5p sponge in 
hepatoblastoma [17]. Coincidentally, our data also 
affirmed that lncRNA-TUG1 forms a molecular decoy for 
miR299 and miR-34a-5p in EC cells.

MicroRNAs are members of the class of non-
coding RNAs, which often emerged as regulators of 
gene expression. Aberrant expression of miR-299 
was determined in various kind of cancers, such as 
breast cancer and metastatic prostate cancer [31]. Past 
researchers have found that overexpression of miR-299 
could suppress the proliferation of metastatic prostatic 
cancer cells [32]. Similarly, miRNA-34a has been 
reported as tumor suppressor in multiple cancer types, 
like neuroblastoma [33], colon cancer [34], and prostate 
cancer [35]. In our study, we verified the roles of miR-
299 and miRNA-34a in endometrial cancer progression, 
the results of dual-luciferase reporter assay show 
that both two miRNAs could direct regulate VEGFA 
expression in EC cells. At the same time, we also find a 
positive correlation between the expression of VEGFA 
and lncRNA-TUG1.

There is a great deal of research shows that 
vascular endothelial growth factor (VEGF) family, which 
comprising VEGF-A to –D and their receptors VEGFR1 
(flt-1), VEGFR2 (KDR/flk-1) and VEGFR3 (flt-4) is the 
critical regulator in angiogenesis signaling in a variety 
of tumors [36, 37]. VEGFA as the member of VEGF 

Figure 4: lncRNA-TUG1 mediated cell proliferation in EC cells. A. HEC-1-A and ishikawa cells viability were measured by 
CCK-8 proliferation assay. Six replicates for each group and the experiment repeated three times. Data are mean±SEM. * P<0.05 compared 
with controls. B. Stable EC cells were injected subcutaneously into nude mice. Mean tumor volumes from six nude mice of each group are 
shown at different time points. * P<0.05 compared with controls.
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family has been identified as the predominant tumor 
angiogenesis factor in the majority of human cancers. In 
our lncRNA-TUG1 knockdown cells, the expression level 
of VEGFA was significantly reduced in the presence of 
miR-299 and miR-34a-5p, suggesting that lncRNA-TUG1 
may functions as a ceRNA to regulate VEGFA levels by 
sponging miRNA.

In conclusion, our present study firstly revealed that 
lncRNA-TUG1 was upregulated in EC tissues and cell 
lines. LncRNA-TUG1 may improve VEGFA expression 
by competing for miR-299 and miR-34a-5p, subsequently 
mediating cell proliferation in EC. The lncRNA-TUG1/
miRNA/VEGFA network may become a candidate target 
for EC therapy.

Table 1: Clinicopathological characteristics of endometrial cancer patients in Chinese population

Characteristics Suzhou population

Na (%)

Age (years)

 ≤65 53 (51.0)

 >65 51 (49.0)

Age at menarche (years)

 ≤11 7 (6.7)

 11–16 67 (64.4)

 ≥16 30 (28.8)

Menopausal status

 Premenopausal 32 (30.8)

 Postmenopausal 72 (69.2)

Family history of cancer

 Positive 8 (7.7)

 Negative 96 (92.3)

BMIb

 ≤25 41 (39.4)

 >25 63 (60.6)

FIGOc stage

 I 79 (76.0)

 II 7 (6.7)

 III 18 (17.3)

Histologic type

 Endometrioid 91 (87.5)

 Non-endometrioid 13 (12.5)

Grade

 G1 44 (42.3)

 G2 53 (51.0)

 G3 7 (6.7)

aN, number of patients.
bBMI, body mass index.
cFIGO, The International Federation of Gynecology and Obstetrics.
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MATERIALS AND METHEDS

Study subjects

Homogenous Han Chinese comprised the subjects 
participating in this study. To validate RNA expression 
data, we studied 104 paired EC tissues and matched 
non-cancerous tissues that were obtained during surgical 
resection from the affiliate hospitals of Soochow 
University (Suzhou, China). The diagnosis of EC was 
pathologically confirmed in all cases and the non-
tumorous samples were taken at a distance of at least 5 
cm from the tumor tissue. The Medical Ethics Committee 
of Soochow University approved this study. The clinical 
characteristics of all the patients were described in detail 
previously and listed in Table 1 [38].

Cell culture

Human endometrial cancer cell lines, HEC-1-A 
and ishikawa were purchased from the Cell Bank of 
Type Culture Collection of the Chinese Academy of 
Sciences, Shanghai Institute of Cell Biology, and were 
passaged for less than 6 months after resuscitation. The 
cell culture procedures reference literature that has been 
published before [39]. Cells were cultured at 37°C in 
5% CO2 in RPMI-1640 medium supplemented with 10% 
fetal bovine serum, penicillin and streptomycin in a 10-
ml culture dish.

RNA extraction and real-time quantitative 
polymerase chain reaction

The total RNA from the cells and tissues were 
isolated by using TRIzol® reagent (Invitrogen), 
according to the manufacturer’s instructions. The 
relative gene expression of lncRNA TUG1 was 
determined using the ABI Prism 7500 sequence 
detection system (Applied Biosystems, Foster City, 
CA, USA). GAPDH was used as an internal standard 
control, and all the reactions were performed in 
triplicate [40, 41]. The primers used for qPCR 
amplification were as follows: lncRNA-TUG1 forward, 
5′-CTGAAGAAAGGCAACATC-3′ and reverse, 
5′-GTAGGCTACTACAGGATTTG-3′; GAPDH 
forward, 5′-AGCCACATCGCTCAGACAC-3′ and 
reverse, 5′-GCCCAATACGACCAAATCC-3′ [15].

Construction of reporter plasmids

The method for the construction of reporter plasmids 
has been published before [29]. The pGL3 promoter 
vector (GENECHEM) was used to construct the plasmids 
pGL3-lncRNA-TUG1 and pGL3- VEGFA-3’UTR. All the 
constructs were verified by DNA sequencing.

Transient transfections and luciferase assays

HEC-1-A and ishikawa cells were transfected 
with the reporter plasmids using Lipofectamine 2000 
(Invitrogen, CA, USA), according to the manufacturer’s 
instructions. Dual-Luciferase Reporter assay system 
(Promega, Madison, WI, USA) were used to measure 
the luciferase activity [42]. Three independent 
experiments were conducted and each group included 
6 replicates.

Western blot

Western blot analysis was conducted to assess 
VEGFA and β-action expression, the experiments were 
performed as described by as previously described [39]. The 
Western blotting analysis was repeated at least three times.

Cell viability assay

The Cell Counting Kit-8 (CCK-8) system (Dojindo 
Laboratory, Kumamoto, Japan) was used to measure cell 
viability, according to the manufacturer’s instructions 
[42]. There were 6 replicates for each group, and the 
experiments were repeated at least 3 times.

Statistical analyses

The correlation between the expression of lncRNA-
TUG-1 and the VEGFA gene in EC tissue was assessed 
using one-way analysis of variance and linear regression 
models. A probability value P<0.05was considered 
statistically significant. Differences between the groups 
were assessed using paired, 2-tailed Student’s t-test. Data 
were expressed as means ± SEM, from at least three 
independent experiments.
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