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ABSTRACT
Changes in blood epigenetic age have been associated with several pathological 

conditions and have recently been described to anticipate cancer development. In this 
work, we analyze a publicly available leukocytes methylation dataset to evaluate the 
relation between DNA methylation age and the prospective development of specific 
types of cancer. We calculated DNA methylation age acceleration using five state-of-
the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: 
ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and 
we compared 424 samples that remained cancer-free over the approximately ten 
years of follow-up with 235 and 166 subjects who developed breast and colorectal 
cancer, respectively. We show that the epigenetic age estimated from blood DNA 
methylation data is statistically significantly associated to future breast and male 
colorectal cancer development. These results are corroborated by survival analysis 
that shows significant association between age acceleration and cancer incidence 
suggesting that the chance of developing age-related diseases may be predicted by 
circulating epigenetic markers, with a dependence upon tumor type, sex and age 
estimator. These are encouraging results towards the non-invasive and perspective 
usage of epigenetic biomarkers.
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INTRODUCTION

Cancer is an age related disease [1–5]. Consequently, 
exploration of the association between markers of ageing 
and cancer represents an obvious step to bring advances in 
both research areas.

Biomarkers that linearly change with chronological 
age are now available to the scientific community and span 
from anatomical (e.g. ocular biomarkers [6]) to molecular 
ones including micro-RNAs levels [7, 8], protein 
modifications [9] and telomeres’ length [10]. 

DNA methylation-based biomarkers have gained 
relevance in the last few years for many reasons. First, 
both genome-wide and high-throughput targeted 
approaches to measure DNA methylation are easily 
accessible and highly reproducible. Second, these markers 
show extremely high correlation with chronological 
age and with age-acceleration effects associated with 
pathological conditions, morbidity and mortality. Taken 
together, these results make it possible to hypothesize 
that a positive deviation from normal aging trajectories 
(i.e. higher biological than chronological age) could be 
predictive, if not causative, of the development of several 
diseases, including cancer [11].

To date a few studies have approached this idea, 
with still inconclusive results. Nan et al. found no 
association between the overall white blood cell (WBC) 
DNA methylation levels and colorectal cancer (CRC) 
risk among 358 females where blood samples had been 
collected prior to CRC diagnosis [12]. On the contrary, 
Pufulete et al. [13] and Lim et al. [14] reported significant 
association between hypomethylation in WBC DNA and 
an increased risk for colorectal adenomas. Finally, Walters 
et al. [15] described correlation between three DNA 
repetitive elements that present increased methylation 
levels in WBC from 539 cases diagnosed before 60 years 
of age and 242 healthy, cancer free, subjects.

Because of their ease of calculation and their 
prognostic potential, several methodologies have been 
developed to compute the epigenetic age.

Horvath’s epigenetic clock [16, 17], a multi-tissue 
predictor based on the methylation status of 353 CpG sites 
assessed by the Infinium HumanMethylation27 BeadChip 
(HM27) is among the most popular epigenetic age 
estimators. According to Horvath’s clock, age-acceleration 
was found in blood, brain and saliva from people affected 
by Down syndrome, a disease characterized by atypical 
aging patterns [18]. Similarly, the same clock successfully 
detected age acceleration in dorsolateral prefrontal cortex 
from patients with Alzheimer’s disease [19] and in whole 
blood from Parkinson’s disease patients [20]. Frailty [21], 
lifetime stress [22], HIV-1 infection [23], and menopause 
[24] were also found to accelerate epigenetic age of WBC. 
Finally it was demonstrated that epigenetic age estimated 
from whole blood DNA methylation is correlated to 
physical and cognitive fitness [25] and mortality [26–30] in 

large human cohorts. Importantly, Horvath’s clock is able to 
detect not only age-acceleration, but also age-deceleration 
effects in models of healthy aging and longevity [31].

Another epigenetic age-associated biomarker has 
been developed by Hannum et al. [29] and relies on 
the DNA methylation values of 71 CpG sites (only six 
being in common with Horvath’s) from the Infinium 
HumanMethylation450 BeadChip (HM450). Differently 
from Horvath’s clock, Hannum’s model was calibrated 
on whole blood only. Three studies demonstrated the 
association of this epigenetic clock with biological fitness 
and mortality [25, 26, 28], as well as its association with 
post-traumatic stress disorders [32].

The quantification of age acceleration (and 
deceleration) starting from easy-to-access blood samples 
has triggered efforts towards the simplification of 
Horvath’s and Hannum’s epigenetic clocks.

In this direction, a model based on 3 CpG sites 
(Weidner’s estimator) was found to significantly correlate 
with chronological age [33] but failed to predict mortality 
in the Lothian Birth Cohort 1921 study [34]. 

Finally, our group identified two HM450 CpG 
probes, cg16867657 in the CpG island of ELOVL2 and 
cg06639320 in the CpG island of FHL2 showing very 
high correlation with chronological age (Spearman 
correlation = 0.91) in whole blood DNA methylation 
data [35, 36]. These two loci were confirmed in several 
replicative tissues other than blood [36–40] and have been 
calibrated so far on teeth samples [41]. 

Age acceleration phenomena have been investigated 
also in cancer patients, owing to the peculiar observation 
that biomarkers of aging do not systematically show 
age acceleration in the tumour tissues, while they do 
in the blood of cancer-free people who develop cancer 
prospectively [42, 43]. To confirm an expand these 
promising findings we explored the reproducibility of 
this observation in an independent cohort collected by 
the Human Genetics Foundation (HuGeF, Turin, Italy) 
including prospective breast cancer and CRC data [44].

RESULTS AND DISCUSSION

Epigenetic age was estimated from DNA 
methylation blood data using 5 different methodologies: 
Horvath’s, Hannum’s, Weidner’s, ELOVL2 and FHL2 
DNA methylation ages (DNAmAges) with and without 
adjustment for blood cell counts. We will use the term 
“Age Accel” to refer to non-adjusted age acceleration and 
IEAA otherwise. See Material and Methods for details.

Age Accel between females that developed breast 
cancer at follow-up and controls (cancer-free patients) 
was statistically significantly different only when using 
the ELOVL2 clock (Mann-Whitney-Wilcoxon test  
p-value = 0. 0432), with Age Accel values in tumor samples 
on average 0.9 years higher than in the control group 
(Supplementary Table 1 and Figure 1). Despite conservation 
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of this trend (i.e. subjects that developed breast cancer still 
tend to have higher ELOVL2-based IEAA values than 
controls) statistical significance was lost when correction 
for blood cell counts was applied.

With respect to the male subjects that developed 
CRC, Horvath’s and FHL2 clocks returned a significant 
increase in Age Accel values (Mann-Whitney-Wilcoxon 
test p-value = 0.0421 and 0.0363 for Horvath’s and 
FHL2’s estimations respectively). Subjects that developed 
colon cancer were 1.6 and 2.5 years older using Horvath 
and FHL2 methods than their respective controls 
(Supplementary Table 1 and Figure 2). Although results 
by Hannum’s clock showed an evident trend towards 
higher Age Accel, this predictor did not give significant 
results, nor did Weidner’s nor ELOVL2 clocks. None of 
the 5 methods returned significant differences when IEAA 
values were compared, although a trend was visible with 
Horvath’s, Hannum’s and FHL2 clocks.

For the CRC female counterpart, no significant 
differences were observed for Age Accel nor IEAA in any 
of the 5 predictors, despite a visible difference between 
the medians for Weidner, FHL2 and ELOV2 estimators 
(Supplementary Table 1 and Figure 3). 

To explore these results further, we performed 
survival analysis using Kaplan-Meier method. For each 
of the five DNAmAge estimators we considered both Age 
Accel and IEAA values. Figure 4 shows the results for Age 
Accel and the corresponding IEAA obtained with Horvath, 
FHL2 and ELOV2, which are the estimators that were 
able to reveal significant differences in age acceleration 
between tumor and control samples. Results relative 
to all the other clocks and subgroups are reported in 

Supplementary Figures 1, 2 and 3. Log-rank test p-values 
are summarized in Table 1.

Overall, our analysis expands the results of Levine 
et al. focusing on lung cancer development using only 
Horvath’s epigenetic clock [43], and of Zheng et al. who 
applied both Horvath’s and Hannum’s predictors to a cohort 
of subjects that prospectively developed different types of 
cancer (mainly skin and prostate cancer) [42] and found that 
blood epigenetic age is related to cancer development and 
could be a potential biomarker for cancer early detection.

Here we observed that the two most used epigenetic 
clocks, Horvath’s and Hannum’s, are unable to detect age 
acceleration effects in blood of females that were later 
diagnosed with breast cancer, while significant differences 
were observed with ELOVL2 predictor. On the contrary, 
age acceleration computed with Horvath’s epigenetic 
clock, together with FHL2 clock, were associated with 
CRC development in males [42, 43]. 

The biological reasons behind the effectiveness of 
each clock is still to be unveiled, although the diverse 
epigenetic origin of each tumor type is bound to impact 
on the definition of CpG specific age acceleration. 

In conclusion, we showed that different epigenetic 
estimators identify age acceleration effects in whole blood 
of subjects that prospectively developed cancer with a 
tumor type- and sex-specificity. These results reinforce 
the idea that a surrogate tissue can be used to evaluate 
the susceptibility to develop age-related diseases in other 
tissues and are encouraging for the fine tuning of more 
precise prognostic epigenetic biomarkers of age. In this 
sense, the observation that single CpG predictors, like 
ELOVL2 and FHL2, can detect epigenetic age deviations 

Figure 1: Age acceleration predictors in breast cancer samples. Boxplots of Age Accel (A) and IEAA (B) values for 233 
female control subjects (green) and 233 female subjects that developed breast cancer at follow up (yellow), estimated by the 5 epigenetic 
predictors. Asterisks indicate significant differences according to Mann-Whitney-Wilcoxon test (p-value < 0.05), which was 0.0432 for 
ELOVL2 age acceleration estimators.
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associated with future diagnosis of specific cancer types is 
of practical relevance.

On the cautious side, it is known that several 
variables like behavioral habits or previous health 
information (recently reviewed in [45]) may act as 
confounders of epigenetic age estimative. Therefore, the 
limited number of such variables made available (including 
batches) could be a limitation of this work. Given the 
potential of such results, a higher number of prospective 
studies of this type with freely accessible data is crucially 
needed to independently validate these findings.

MATERIAL AND METHODS

Blood dataset

We interrogated the Gene Expression Omnibus 
(GEO) repository using the search terms GPL13534 

(GEO identifier for the HM450 platform), cancer 
and follow up. On February 2017, this search output 
5 datasets, among those we selected the only one 
(GSE51032) whose sample size (hundreds of patients) is 
able to guarantee robustness of all findings and sufficient 
statistical power. The GSE51032 dataset contains DNA 
methylation measures on blood cells (buffy coats) from 
subjects that were prospectively followed by the Human 
Genetics Foundation (HuGeF) in Turin, Italy as part of 
the European Prospective Investigation into Cancer 
and Nutrition (EPIC). This study was conducted in ten 
European countries on populations that differ markedly in 
terms of dietary habits and cancer risk. The Italian EPIC 
cohort consists of 47,749 people recruited in the centers 
of Ragusa (6,404 subjects), Florence (13,597 subjects), 
Turin (10,604 subjects), Naples (5,062 subjects, women 
only) and Milan (12,079 subjects) [46, 47]. In Turin, 
the study recruitment began in 1993–1998 (people were 

Figure 2: Age acceleration predictors in colorectal cancer male samples. Boxplots of Age Accel (A) and IEAA (B) values 
for 84 male control subjects (green) and 87 subjects that developed CRC at follow up (yellow), estimated by the 5 epigenetic predictors. 
Asterisks indicate significant differences according to Mann-Whitney-Wilcoxon test (p-value < 0.05), which were respectively 0.0421 and 
0.0363 for Horvath and FHL2 age acceleration estimators.

Table 1 : Survival analysis
Horvath Hannum Weidner ELOVL2 FHL2

Age Acc IEAA Age Acc IEAA Age Acc IEAA Age Acc IEAA Age Acc IEAA
BRC 
females 0.581 0.786 0.429 0.216 0.206 0.212 0.141 0.313 0.841 0.885

CRC 
males 0.0481 0.453 0.346 0.68 0.313 0.527 0.767 0.231 0.188 0.277

CRC 
females 0.732 0.67 0.541 0.202 0.479 0.165 0.0424 0.0395 0.423 0.479

Log-Rank test p-values for the three studied datasets and considering all five epigenetic age estimators, with and without 
correction for blood cell counts.
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aged 35-64 with no previous cancer) and was closed in 
2010. The dataset includes DNA methylation data from 
845 participants, selected as follows: 188 men and 657 
women; at final follow-up 424 remained cancer-free 
(control samples), 235 had developed primary breast 
cancer, 166 had developed CRC and 20 had developed 
other primary cancers (5 bladder, 4 prostate gland, 4 skin, 
2 bronchus and lung, 1 hemato reticuloendothelial, 1 
corpus uteri, 1 kidney, 1 thyroid and endocrine glands, 1 
unknown primary site lesion). In this work, we grouped 
colon, rectosigmoid and rectum data under the unifying 
label of CRC. To guarantee reproducibility and statistical 
power of our analyses, epigenetic age was calculated only 
for breast and CRC (>150 samples each).

All samples characteristics are reported in Table 2. 
Females and males were analyzed separately (stratification 
approach), for the two types of tumors, according to the 
recent report on sex-related differences in epigenetic age 
predictions [48]. Sex, in fact, is a confounding variable 
that affects both tumor incidence and age acceleration, and 
stratification has the advantage to take this into account, as 
well as to estimate the association between age acceleration 
and tumor incidence separately for females and males. 
Finally, to avoid unequal sample size issues, we randomly 
selected a subgroup of control samples with the same size 
and the same mean age of the group under study (Table 2). 

As reported more in details at https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE51032, genomic 
DNA was extracted and purified from peripheral blood 
leukocytes and bisulfite converted before being amplified, 
fragmented and hybridized to Illumina Infinium 
HumanMethylation450 BeadChips finally imaged using 
standard protocols and settings.

Estimation of DNAmAge

We used five methodologies to estimate the epigenetic 
age (DNA methylation age, DNAmAge) in blood samples.

Horvath and Hannum DNAmAge were calculated 
using the online tool available at https://dnamage.genetics.
ucla.edu/ [16]. The tool also provides counts estimates 
of naive CD8 T cells, exhausted CD8 T cells, plasma B 
cells (effector B cells), CD4 T cells, natural killer cells, 
monocytes, and granulocytes [43]. These estimates can 
be used to correct the DNAmAge taking into account 
possible variations due to the heterogeneity in blood cell 
counts between individuals (i.e. estimated cells abundance 
acting as covariates [31]). As mentioned above, we denote 
the non-adjusted epigenetic age acceleration as Age 
Accel, and we use the term IEAA (Intrinsic Epigenetic 
Age Acceleration of blood) when referring to regression 
residuals corrected by blood cell counts, in accordance 
with Horvath’s nomenclature [20].

Weidner’s epigenetic clock: Weidner et al. [33] 
generated a multivariate model based on the methylation 
values at 3 HM450 probes (α: cg02228185; β: 
cg25809905; γ: cg17861230). Weidner’s DNAmAge was 
calculated using the equation DNAmAge = 38.0–26.4 * α 
23.7 * β + 164.7 * γ [33]. 

ELOVL2 and FHL2 [35]: linear regressions between 
beta values of each of the two probes and chronological 
age were computed on the Hannum’s dataset, resulting 
in the following models: ELOVL2 DNAmAge =  158.81 
* (cg16867657 beta value) – 42.35; and FHL2 DNAm 
Age = 198.6 * (cg06639320 beta value) -30.12.

For Weidner, ELOVL2 and FHL2 clocks, we 
considered blood cell count adjusted and non-adjusted 

Figure 3: Age acceleration predictors in colorectal cancer female samples. Boxplots of Age Accel (A) and IEAA (B) values 
for 79 female control subjects (green) and 79 subjects that developed breast cancer at follow up (yellow), estimated by the 5 epigenetic 
predictors.
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Figure 4: Survival functions for subjects belonging to the CRC males and breast cancer groups (including controls) 
incidence estimated with Kaplan-Meier method. Results are shown separately for accelerated (1) and decelerated (–1) age subjects, 
with age acceleration computed considering the estimators that showed significant differences between cases and controls: Horvath and 
FHL2 estimator for the CRC males dataset (A–D charts) and ELOVL2 for the breast dataset (E–F charts). In each chart title, we reported 
the Log-Rank test p-values comparing survival curves.

Table 2: Sample characteristics

N
Age at recruitment
(mean years ± sd)/

Median

Time to diagnosis 
(mean years ± sd)/

Median

Wilcox test on Age at 
recruitment

(p-value)
All female control samples 340 52.57 ± 7.4/(53.30) -
All male control samples 84 55.89 ± 5.6/(56.72) -
Selected breast female controls 233 52.57 ± 7.4/(53.27) - 0.8678
Breast female cases 233 52.37 ± 7.4/(53.70) 3.84 ± 2.87/(2.69) 
CRC male controls 84 55.89 ± 5.6/(56.72) - 0.8821
CRC male cases 87 55.97 ± 5.7/(56.53) -
Selected CRC female controls 79 53.71 ± 6.9/(53.71) - 0.7306
CRC female cases 79 54.09 ± 7.6/(54.25) 5.11 ± 2.59/(4.99)

Descriptive characteristics of the study samples. Mann-Whitney-Wilcoxon test was performed between each pair of cse and 
control samples to show that there were not differences between their chronological ages.
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age acceleration (IEAA and Age Accel respectively), 
using the same cell counts estimates returned by Horvath’s  
online tool.

Statistical analysis

For each of the above-mentioned age predictors, 
we used regression analysis to calculate the relation 
between chronological age and DNAmAge in the control 
group. We fitted the model without including the tumor 
samples to obtain positive age acceleration for subjects 
whose epigenetic age is higher than the control group, 
chronological age being equal.

For each sample, the regression residuals provide an 
estimate of the epigenetic age acceleration (Age Accel and 
IEAA) in relation to the control group [16, 31]. 

Differences in age acceleration between controls 
and subjects who developed tumors were tested using 
the Wilcoxon-Mann-Whitney method to comply with the 
imperfect adherence to normality of the data. 

The association between age acceleration and cancer 
incidence was evaluated through survival analysis, and 
performed considering all five epigenetic clocks. Survival 
functions for the accelerated (1) and decelerated (–1) age 
groups were fitted with Kaplan-Meier method.

Since the dataset does not provide the exact 
enrollment time for the control subjects, but specifies that 
they were recruited between 1993 and 1998 and that they 
were all followed up until 2010, we considered for the 
controls (censored data) a survival time of 14.5 years, that 
corresponds to an average recruitment time.

All statistical analyses and graphics were produced 
using the computing environment R.
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