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ABSTRACT

Identification of protein-protein interactions (PPIs) is of critical importance for 
deciphering the underlying mechanisms of almost all biological processes of cell and 
providing great insight into the study of human disease. Although much effort has 
been devoted to identifying PPIs from various organisms, existing high-throughput 
biological techniques are time-consuming, expensive, and have high false positive and 
negative results. Thus it is highly urgent to develop in silico methods to predict PPIs 
efficiently and accurately in this post genomic era. In this article, we report a novel 
computational model combining our newly developed discriminative vector machine 
classifier (DVM) and an improved Weber local descriptor (IWLD) for the prediction 
of PPIs. Two components, differential excitation and orientation, are exploited to 
build evolutionary features for each protein sequence. The main characteristics of 
the proposed method lies in introducing an effective feature descriptor IWLD which 
can capture highly discriminative evolutionary information from position-specific 
scoring matrixes (PSSM) of protein data, and employing the powerful and robust DVM 
classifier. When applying the proposed method to Yeast and H. pylori data sets, we 
obtained excellent prediction accuracies as high as 96.52% and 91.80%, respectively, 
which are significantly better than the previous methods. Extensive experiments were 
then performed for predicting cross-species PPIs and the predictive results were 
also pretty promising. To further validate the performance of the proposed method, 
we compared it with the state-of-the-art support vector machine (SVM) classifier on 
Human data set. The experimental results obtained indicate that our method is highly 
effective for PPIs prediction and can be taken as a supplementary tool for future 
proteomics research.

INTRODUCTION

In this post-genomic era, protein-protein interactions 
(PPIs) can provide great insights into the intrinsic 

mechanisms of biological processes within a cell and so 
the PPI networks have been drawing increasing attention. 
Recently, a number of high-throughput biological 
techniques, such as yeast two hybrid screens [1], mass 
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spectrometric protein complex identification (MS-PCI) 
[2] and protein chips [3], have been proposed to identify 
interactions between proteins. Therefore, a large amount 
of PPI data from various kinds of organisms has been 
collected, and a number of databases, like DIP [4], BIND 
[5] and MINT [6], have also been constructed. However, 
such experimental methods for identifying PPIs are 
usually labor-intensive and time-consuming. The PPI pairs 
identified by these traditional techniques only account 
for a small part of the entire PPIs network [7, 8]. What's 
worse, those high-throughput techniques suffer from high 
rates of false positive and false negative results. All these 
limitations require robust and effective in silico methods 
as a complement to biological experimental techniques for 
protein-protein interactions prediction.

As a beneficial supplement to biological methods, a 
number of computational methods have been developed 
to predict protein interactions through different source 
of information, such as protein domains, phylogenetic 
profiles, gene co-expression and secondary structures 
[9–12]. However, such methods need specific domain 
knowledge which prevents their further applications. 
Evolutionary information embedded in proteins sequence 
has good capability for predicting PPIs [13]. Zahiri et 
al. [14] proposed a novel algorithm named PPIevo for 
detecting PPIs, which extracted the evolutionary feature 
from position-specific scoring matrixes (PSSM) of protein 
sequence. Hamp et al. [15] combined evolutionary profiles 
from protein sequence with profile-kernel support vector 
machines (SVM) to predict PPIs and obtained good 
results. An et al. [16] reported RVM-BiGP prediction 
model to predict PPIs from protein sequences and the 
results are very promising. Nevertheless, there is still 
room to improve the performance of the state-of-the-art 
prediction methods.

This paper is an extension of our previous work 
[17]. In this study, we report a novel computational 
model to predict PPIs using the evolutionary information 
of protein. The main improvements of the proposed 
method lie in introducing an effective feature extraction 
method, namely improved Weber local descriptor 
(IWLD) and using our newly developed discriminative 
vector machine (DVM) classifier. Specifically, given 
a protein sequence of length , it would first be 
converted to an L-by-20 position-specific scoring 
matrix (PSSM). Then, an IWLD descriptor is used to 
extract discriminative evolutionary information from 
PSSM and a 256-dimensional histogram feature vector 
for each protein is constructed accordingly. Next, we 
combined two histogram vectors from corresponding 
protein pair into a 512-dimensional feature vector. 
Furthermore, the dimensionality reduction tool PCA 
(principal component analysis) is employed to extract 
the highly discriminatory information and reduce 
noise information. At last, the DVM classifier is used 
to carry out classification prediction. In this work, we 

first evaluated the proposed method on two PPIs data 
sets, Yeast and H. pylori and obtained good predictive 
accuracies of 96.52% and 91.80% respectively. Then, 
extensive experiments were performed to compare the 
proposed method with the state-of-the-art SVM classifier 
based on Human data set. Besides, comparisons 
between our method and other previous methods were 
also carried out. All the experimental results obtained 
indicate that the proposed method is impressively 
effective for PPIs prediction.

RESULTS AND DISCUSSION

Evaluation of predictive ability

To decrease data dependence and avoid over-fitting 
of prediction model, five-fold cross validation strategy was 
used in our study. Namely, the whole data set was evenly 
divided into five subsets, four of which were randomly 
chosen for training, and the rest for testing. To validate 
the validity of the proposed method, the random selection 
was repeated for five times, and five training sets and five 
validation sets were generated respectively. To be fair, 
parameters of DVM in different experiments were set to 
the same values. The predictive results of the proposed 
method on Yeast and H. pylori PPIs data sets are shown in 
Table 1 and Table 2.

It can be observed from Table 1 that when applied to 
Yeast data set, the average accuracy, sensitivity, precision 
and MCC of the proposed method are 96.52%, 94.86%, 
98.11%, and 93.08%, respectively. Similarly, Table 2 
shows the results on H. pylori data set, it can be observed 
that the average accuracy obtained using our method is 
91.80%, with an average sensitivity of 92.15%, an average 
precision of 91.47%, and an average MCC of 83.60%. In 
addition, it can be noticed that the standard deviations of 
them are also relatively low. For Yeast data set, the average 
standard deviations of accuracy, sensitivity, precision and 
MCC are 0.46%, 0.59%, 0.48% and 0.92%, respectively. 
The average standard deviations of accuracy, sensitivity, 
precision and MCC on H. pylori data set are 0.85%, 
1.54%, 0.91% and 1.69%, respectively. The ROC curves 
using five-fold cross-validation on Yeast and H. pylori data 
sets are illustrated in Figure 1 and Figure 2, respectively.

From Table 1 and Table 2, it can be drawn that the 
proposed predictive model combing DVM and IWLD 
descriptor is accurate and effective for the prediction 
of PPIs from the two data sets. In our predictive model, 
PSSM not only provides the order information of 
protein sequence but also retains sufficient evolutionary 
information. Next, by using differential excitation and 
orientation component, the IWLD descriptor has strong 
ability to maintain local highly discriminative information 
for PPIs prediction. Besides, the application of PCA 
reduces the dimensions of IWLD vector, decreases the 
impact of noise and accelerates the predictive process. 
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Table 2: Performance of the proposed method using five-fold cross validation on H. Pylori data set

Test set Acc (%) Sen (%) Pre (%) MCC (%)

1 92.62 93.25 92.95 85.18

2 91.08 89.96 91.27 82.13

3 92.11 93.15 91.28 84.24

4 90.74 91.07 90.44 81.48

5 92.47 93.33 91.41 84.95

Average 91.80±0.85 92.15±1.54 91.47±0.91 83.60±1.69

Figure 1: ROC curves of proposed method on Yeast data set.

Table 1: Performance of the proposed method using five-fold cross validation on Yeast data set

Test set Acc (%) Sen (%) Pre (%) MCC (%)

1 95.89 94.06 97.82 91.85

2 96.16 94.41 97.63 92.35

3 96.87 95.23 98.65 93.80

4 96.92 95.14 98.60 93.89

5 96.74 95.44 97.85 93.50

Average 96.52±0.46 94.86±0.59 98.11±0.48 93.08±0.92
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Consequently, our proposed method is suitable for 
predicting PPIs from the two data sets.

Comparison with SVM classification model

Support vector machine (SVM) is one of the most 
widely used classification models for PPIs prediction. 
In this study, we used LIBSVM toolbox to carry out the 
prediction of PPIs (available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm/). To further verify the performance of 

the proposed method, we applied SVM to predict PPIs 
of Human data set and compared its performance with 
DVM. To be fair, the two predictive models adopted 
same feature extraction method. Here, Gaussian 
function was chosen by SVM as the kernel function. A 
general grid search method was employed to optimize 
SVM’s two parameters (kernel width parameter ,  
regularization parameter ) and they were tuned to  
=0.01 and =0.6 respectively.

Figure 2: ROC curves of proposed method on H. Pylori data set.

Table 3: Five-fold cross validation results performed on Human data set

Model Test set Acc (%) Sen (%) Pre (%) MCC (%)

DVM

1 97.18 95.61 98.40 94.37

2 97.30 95.05 99.62 94.71

3 96.38 94.73 97.43 92.75

4 97.73 96.29 98.95 95.48

5 97.92 96.83 98.65 95.82

Average 97.30±0.60 95.70±0.87 98.61±0.80 94.63±1.20

SVM

1 89.89 90.83 88.21 79.79

2 91.54 91.79 91.57 83.08

3 89.40 90.78 86.99 78.82

4 90.93 92.96 88.64 81.95

5 91.24 91.68 89.66 82.44

Average 90.60±0.95 91.61±0.89 89.01±1.72 81.22±1.82



Oncotarget23642www.impactjournals.com/oncotarget

The predictive results of the two methods are 
illustrated in Table 3. When using DVM classifier to 
identify the PPIs on Human data set, we got promising 
results with average accuracy, sensitivity, precision 
and MCC of 97.30%, 95.70%, 98.61% and 94.63%, 
respectively. Meanwhile, SVM-based method had 
relatively poor performance with lower average accuracy, 

sensitivity, precision and MCC of 90.60%, 91.61%, 
89.01% and 81.22%, which indicate that DVM has better 
performance than SVM for predicting PPIs. In addition, 
it can be observed that DVM is more stable than SVM 
because the former has lower standard deviations of 
evaluation criteria than the latter. Specifically, DVM-
based method yielded standard deviations of accuracy, 

Figure 3: ROC curves of proposed DVM-based method on Human data set.

Figure 4: ROC curves of SVM-based method on Human data set.
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sensitivity, precision and MCC as low as 0.60%, 0.87%, 
0.80% and 1.20%, which is less than the corresponding 
values of 0.95%, 0.89%, 1.72% and 1.82% of SVM-based 
method. Furthermore, Figure 3 and Figure 4 show the 
ROC curves performed by DVM and SVM, respectively. 
It can be observed that DVM yielded higher average 
AUC (area under an ROC curve) value than that of SVM 
classifier.

By analyzing the experimental results, we can 
conclude that DVM is more effective and robust than SVM 

in predicting PPIs. There are two possible explanations for 
the results. (1) Based on k nearest neighbors (kNNs), the 
robust M-estimator and manifold regularization, DVM 
decreases the influence of outliers and overcomes the 
shortcoming of the kernel function required to satisfy the 
Mercer condition. (2) Although there are three parameters 
(β, γ, and θ) to be tuned in DVM, those parameters slightly 
affect the performance of DVM if they are adjusted in 
suitable ranges. Therefore, DVM is more suitable for 
predicting PPIs than SVM.

Table 6: Predictive results of different methods on H. Pylori data set

Model Acc (%) Sen (%) Pre (%) MCC (%)

Nanni et al. [24] 83.00 86.00 85.10 N/A

Nanni et al. [25] 84.00 86.00 84.00 N/A

Nanni et al. [26] 86.60 86.70 85.00 N/A

You et al. [22] 87.50 88.95 86.15 78.13

Martin et al. [27] 83.40 79.90 85.70 N/A

Wong et al. [23] 89.47 89.18 89.63 81.00

Our method 91.80 92.15 91.47 83.60

Table 4: Predictive results of proposed method on five other species

Species Test pairs Accuracy

E. coli 6954 76.23%

C.elegans 4013 92.72%

H.sapien 1406 89.40%

H. pylori 1420 86.37%

M.musculus 312 87.69%

Table 5: Predictive results of different methods on Yeast data set

Model Test set Acc (%) Sen (%) Pre (%) MCC (%)

Guo [20]
ACC 89.33±2.67 89.93±3.68 88.87±6.16 N/A

AC 87.36±1.38 87.30±4.68 87.82±4.33 N/A

Yang [21]

Cod1 75.08±1.13 75.81±1.20 74.75±1.23 N/A

Cod2 80.04±1.06 76.77±0.69 82.17±1.35 N/A

Cod3 80.41±0.47 78.14±0.90 81.66±0.99 N/A

Cod4 86.15±1.17 81.03±1.74 90.24±1.34 N/A

You [22] EELM 87.00±0.29 86.15±0.43 87.59±0.32 77.36±0.44

Wong [23] RF+PR-LPQ 93.92±0.36 91.10±0.31 96.45±0.45 88.56±0.63

Our method DVM 96.52±0.46 94.86±0.59 98.11±0.48 93.08±0.92
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Performance on independent data set

Although our proposed method had achieved good 
performance for PPIs prediction on Yeast, H. pylori and 
Human data sets, we still carried out extensive analyses 
to verify its ability for predicting PPIs from other 
species (E. coli, C. elegans, H. sapien, H. pylori and M. 
musculus). In the following experiments, we used 11188 
samples of Yeast data set for training and samples from 
other five species for testing. The corresponding feature 
extraction method is same to the previous experiments. 
The predictive results are listed in Table 4. The basis 
of this hypothesis is that homologs tend to be similar 

functional behavior and so they preserve the same 
PPI [18]. When applying the proposed method to the 
prediction of PPIs from these five species, the average 
accuracies of them vary from 76.23 to 92.72. On the 
one hand, these promising results obtained indicate that 
Yeast protein may have a similar interacting mechanism 
with other five species and its sequence data is sufficient 
for the prediction of PPIs from other species; on the 
other hand, it demonstrates the proposed method has 
good generalization ability. In addition, the prediction 
results fully demonstrate that it is possible that PPIs in 
one species can be employed to identify PPIs in other 
species.

Figure 5: Four filters used in the original WLD.

Figure 6: Sobel operators used in the improved WLD (IWLD).

Figure 7: Flow chart of our proposed method for the prediction of PPIs.
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Comparison with other methods

So far, a variety of machine-learning based 
computational methods have been proposed for PPIs 
prediction. To further validate the effectiveness of our 
method, we also compared our DVM-based predictive 
model using IWLD descriptor with several other previous 
methods (see Table 5 and Table 6) on Yeast and H. pylori 
data sets. In Table 5, the prediction accuracy of other 
previous methods on Yeast data set varies from 75.08% to 
93.92%, while our proposed method achieves higher value 
of 96.52%. Similarly, for sensitivity and precision, our 
predictive model yields better performance than the others. 
Moreover, the corresponding standard deviations indicate 
the proposed method is stable and robust. Considering 
ensemble classifier usually has better performance than 
single classifier, although RF + PR-LPQ method has 
lower standard deviations, our method can also be viewed 
as one of the most competitive computational methods for 
predicting PPIs.

The similar results of different methods on H. pylori 
data set can also be found in Table 6. The accuracies 
of other methods vary from 83.00% to 89.47% while 
our proposed method attains relatively higher value 
of 91.80%. The same is true for precision, sensitivity 
and MCC. The predictive results in Table 5 and Table 
6 indicate that the DVM-based classifier incorporating 
IWLD descriptor can improve the performance of PPIs 
compared with the state-of-the-art methods. The promising 
prediction results of our method may contribute to the 
novel feature extraction method which can provide highly 
discriminative information, and the selection of DVM 
classifier which has been demonstrated to be robust and 
powerful [19].

CONCLUSIONS

In this work, we put forward a novel evolutionary 
information based computational model for predicting 
PPIs, which combines our newly developed 
discriminative vector machine classifier (DVM) and 
an improved Weber local descriptor (IWLD) to capture 
highly discriminative information. To minimize data 
dependence and avoid the over-fitting, five-fold cross-
validation was adopted accordingly. When applied 
to Yeast and H.Pylori data sets, the model achieves 
promising prediction accuracies of 96.52% and 
91.80%, respectively. Additionally, to evaluate the 
generalization capability of the proposed method, 
extensive experiments are performed to predict the PPIs 
on five other species data sets. Besides, it is compared 
with SVM-based model and other previous works. The 
achieved results show that the proposed method is very 
competitive for predicting PPIs and can be taken as a 
useful supplementary tool to the traditional experimental 
methods for future proteomics research.

MATERIALS AND METHODS

Golden standard data sets

In this study, we verified the proposed method on 
a high-confidence PPIs data set Yeast, gathered from 
the publicly available database of interaction proteins 
(DIP), version DIP_20070219 [4]. All protein pairs 
were aligned by a multiple sequence alignment tool, 
CD-HIT [28]. To reduce fragments and similarity, those 
protein pairs with ≤50 residues or ≥40% sequence 
identity were all removed. Then the remaining 5594 
interacting protein pairs form the positive data set and 
5594 additional protein pairs from different subcellular 
localizations were chosen to construct the negative data 
set. Therefore, the data set of Yeast finally contains 
11188 protein pairs of which half are positive samples 
and half negative samples.

To further test the generality of the proposed 
method, we also evaluate it on two other PPIs data sets: 
Human and H. pylori. The first data set Human comes 
from the human protein references database (HPRD). 
By using the aforementioned steps, we selected 3899 
protein pairs as the positive data set and 4262 additional 
protein pairs from different subcellular localizations as 
negative data set. As a result, the Human data set finally 
consists of 8161 protein pairs. Similarly, the second data 
set H. pylori consists of 2916 protein pairs, of which half 
are interacting pairs and half non-interacting pairs, as 
described by Martin et al.

Improved Weber local descriptor

Inspired by Weber’s Law, Chen et al. [29] proposed 
the original Weber local descriptor (WLD) for image 
recognition, which contains two components, namely 
differential excitation and orientation. Differential 
excitation component of WLD is the ratio between 
two terms: One is the relative intensity differences of 
an interest point against its neighbors; the other is 
the intensity of itself. We first calculate the intensity 
differences between and its neighbors with the filter 
(see Figure 5):

 (1)

where represents the neighbor of 
and is the number of its neighbors. We then calculate 

the ratio of the intensity differences and :

 (2)

where  is the output of the filter (see Figure 5). As 
described before, is just the original intensity of . 
Next, the arctangent function is employed to construct the 
differential excitation :
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 (3)

In addition, orientation component of WLD describes 
the gradient orientation of interest point. In the original 
WLD, only 4 neighbors of are utilized which may 
lose some important discriminating information and are 
sensitive to noise. In our study, we adopted an improved 
WLD (IWLD) descriptor by introducing Sobel operators 
(see Figure 6). By taking into account all 8 neighbors of
, it can not only preserve sufficient orientation information 
but also effectively suppress the noise. Thus, the orientation 
component of IWLD is computed as:

 (4)

where and denote the outputs of the filters and 
(see Figure 6).

To perform histogram statistics, the 

differential excitation is quantized into M 

intervals  

where is the lower bound and 

is the upper bound. So, the value of 

m is calculated as follow:

 (5)

Similarly, is also quantized into 
T dominant orientations as follow:

, and  (6)

By calculating m, t value of each point 
in an image, a 1D histogram vector  

can be obtained 
accordingly. To fully mine the local discriminative 
information, we first divide the image into sub 
blocks. Here, represents the number of sub blocks in 
vertical direction and H represents the number of sub 
blocks in horizontal direction, and the histogram vector of 
each block is obtained accordingly. Then all the histogram 

vectors of the image are concatenated into the final one-
dimensional IWLD feature vector.

In this work, there are four free parameters  
( to be tuned. Through grid search on Yeast 
and H. pylori data sets, we chose M=8, T=8, V=H=2 in 
our experiments and each protein sequence sample is 
transformed into a 256 dimensional IWLD vector. Next, 
every two IWLD vectors from corresponding protein pairs 
are concatenated into a 512 dimensional vector. Then, the 
dimensionality reduction algorithm PCA is employed to 
reduce the impact of noises and accelerate the predictive 
process, and the final 200 dimensional reduced vector is 
constructed for the subsequent classification.

Discriminative vector machine

Classification is a fundamental issue in pattern 
recognition field and there exist numerous classification 
algorithms for different recognition tasks. In this work, our 
newly developed discriminative vector machine (DVM) 
classifier [19] was adopted in classification. DVM is a 
probably approximately correct (PAC) learning classifier 
which can reduce the error caused by generalization 
and is very robust. For a given test sample , the first 
step of DVM is to find its nearest neighbors (kNNs) 
to suppress the effect of outliers. The kNNs of can be 
expressed as , where denotes the 
nearest neighbor. Equally, can also be represented as

 where comes from the 
class. So the objective of DVM is to solve the following 
minimization problem:

 (7)

where can be denoted as or 
 where is the coefficient from the 

class, is a norm of and the corresponding L2 
norm is employed in our calculation, is the 

element of and is a robust M-estimator 
to improve the robustness of DVM. M-estimator is a 
generalized maximum likelihood operator proposed by 
Huber to estimate parameters under the cost function 
[30]. In this work, a robust Welsch M-estimator  
(  is adopted to attenuate error 
so that outliers would have a less impact on classification. 
The last section of Eq. (7) is a manifold regularization 
where is the similarity between the and the 
nearest neighbors of . In this work, is defined as the 
cosine distance between the and the NN of . Then 
the corresponding Laplacian matrix L can be expressed as

 (8)

where is the similarity matrix whose element is
is a diagonal matrix 
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whose element is the sum of .  
According to Eq. (8), the last section of Eq. (7) can 
be rewritten as  Furthermore, a diagonal 
matrix is constructed and its element 

is denoted as:

 (9)

where is the kernel size which can be calculated in the 
following form:

 (10)

where d is the dimension of y and θ is a constant to curb 
outliers. In this work, it is assigned to 1.0 as in the literature 
[31]. By merging Eq. (8), (9) and (10), the minimization of 
Eq. (7) can be converted to the following problem:

 (11)

According to the theory of half-quadratic 
minimization, the global solution can be described as:

 (12)

After the related coefficients are calculated, the test 
sample can be identified as the class if the residual 

is the minimum value.

 (13)

By means of robust M-estimator and manifold 
regularization to suppress the effect of outliers and strengthen 
its discriminatory ability, DVM classifier has better 
robustness and higher generalization ability than kNNs. In 
this work, there are two classes in total to be identified: non-
interacting protein pair (class 1) and interacting pair (class 1). 
If the residual is the minimum distance, the test sample 

would be classified as non-interacting protein pair, or it 
would be identified as interacting protein pair. For three free 
parameters (   ) of DVM model, it is time-consuming 
to directly search for their optimal values. It is gratifying 
that DVM algorithm is so stable that all these parameters 
only affect the performance slightly if they are set in feasible 
ranges. Based on above knowledge and through grid search, 
the parameters  and  are set as 1E-3 and 1E-4 respectively. 
Just as described before,  is a constant and is always set to 
1 throughout the entire process. For large data set, DVM 
classifier needs to spend relatively more time in finding 
the representative vector, so multi-dimensional indexing 
techniques can be adopted to speed up the search process to 
a certain extent.

Procedure of proposed model

The procedure of our proposed model mainly 
contains two steps: feature extraction and classification. 

The feature extraction is also divided into three steps: 
(1) the PSI-BLAST tool is used to represent each 
protein sequence and PSSM is obtained accordingly; 
(2) The PSSM from each protein is transformed into the 
corresponding histogram vector via IWLD descriptor; 
(3) Dimensional reduction of the histogram vector is 
performed by PCA algorithm. In the same way, sample 
classification also consists of two steps. (1) Based on the 
data sets of Yeast, H. pylori and Human, DVM model is 
trained and used to carry out classification; (2) The trained 
DVM model is then employed to predict the PPIs and 
its performance is evaluated accordingly. Furthermore, 
SVM model is also constructed for predicting PPIs on 
Human data set and the corresponding evaluation is also 
performed. The overall flow chart of our method is shown 
in Figure 7.

Evaluation criteria

To evaluate the performance of related predictive 
methods, four criteria, including the accuracy (Acc), 
sensitivity (Sen), precision (Pre), and Matthews’s 
correlation coefficient (MCC), were introduced, which can 
be calculated as follows:

 (1)

 (2)

 (3)

 (4)

where TP (true positive) represents the number of 
interacting protein pairs predicted correctly while FP 
(false positive) denotes the number of non-interacting 
protein pairs predicted falsely. Similarly, TN (true 
negative) stands for the number of non-interacting 
protein pairs predicted correctly, and FN (false 
negative) denotes the number of interacting protein pairs 
predicted falsely. Receiver-operating characteristics 
(ROC) curve is a standard technique for summarizing 
classifier performance over a range of trade-offs between 
TP and FP error rates. In our study, ROC curves were 
also calculated to evaluate the validity of prediction 
models.
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