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ABSTRACT:
The mammalian target of rapamycin (mTOR) has emerged as a potential target 

for drug development, particularly due to the fact that it plays such a crucial role in 
cancer biology. In addition, next-generation mTOR inhibitors have become available, 
marking an exciting new phase in mTOR-based therapy. However, the verdict on their 
therapeutic effectiveness remains unclear. Here we review phosphatidylinositol-3-
kinase (PI3K)/Akt/mTOR signaling as one of the primary mechanisms for sustaining 
tumor outgrowth and metastasis, recent advances in the development of mTOR 
inhibitors, and current studies addressing mTOR activation/inhibition in colorectal 
cancer (CRC). We will also discuss our recent comparative study of different mTOR 
inhibitors in a population of colon cancer stem cells (CSCs), and current major 
challenges for achieving individualized drug therapy using kinase inhibitors. 

INTRODUCTION

Classically, Akt has been viewed as the main 
upstream activator of mammalian target of rapamycin 
(mTOR). Indeed, activated Akt phosphorylates and 
inhibits tuberous sclerosis 2 (TSC2), allowing Ras 
homolog enriched in brain (Rheb) to accumulate in the 
GTP-bound state and trigger activation of the mTOR 
complex1 (mTORC1) pathway. mTORC1 is composed by 
mTOR, regulatory associated protein of mTOR (Raptor), 
mLST8/G-protein β-subunit like protein (GβL), RAS40 
and Deptor. The activation of mTOR in mTORC1 leads to 
phosphorylation of ribosomal S6 protein kinase 1 (S6K1) 
and eIF4E-binding protein 1 (4E-BP1), mediators of 
protein translation and cell growth [1]. mTOR response 
to a wide range of intracellular (energy and stress) and 
extracellular (nutrients, growth factors, hormones) signals 
is mediated through these effectors. In response to nutrient 
and growth factor availability, mTORC1 suppresses 
autophagy, a process by which metabolically stressed cells 
recycle cytoplasmic components including organelles, to 
recover energy necessary for their survival. mTORC1 has 
also been recently identified as orchestrating anabolic cell 
growth by stimulating nucleotide synthesis through the 
pyrimidine synthesis pathway [2].

Different from mTORC1, mTORC2 is composed 

of mTOR, rapamycin-insensitive companion of mTOR 
(Rictor), mLST8/GβL, stress-activated-protein-kinase-
interacting protein 1 (Sin1), proline-rich repeat protein-5 
(PRR-5)/protein observed with Rictor-1 (Protor-1), and 
Deptor. The upstream regulation of mTORC2 is not well 
defined, although ribosome association appears to be a 
major, if not the sole, mechanism of mTORC2 activation 
[3]. mTORC2 plays an important role in cell survival, 
metabolism, proliferation and cytoskeleton organization, 
as it phosphorylates Protein Kinase Cα (PKCα), Serum/
glucocorticoid-regulated kinase 1 (SGK1), as well as 
Akt, allowing for complete activation of Akt [4-7]. Akt 
is therefore both an upstream activator of mTORC1 and 
downstream effector of mTORC2 (Figure 1). 

Because it plays such a crucial role in cancer 
biology, mTOR has emerged as a potential target for drug 
development. Several mTOR inhibitors have already gone 
through clinical trials for treating various cancers without 
great success. Nevertheless, the role of mTOR inhibitors 
in cancer therapy continues to evolve, as new compounds 
are synthetized. 

In the present review we have focused on the role for 
mTOR in orchestrating key physiological and pathological 
processes, with a particular emphasis on colorectal cancer 
(CRC), which remains the second leading cause of cancer 
death in the United States [8]. 
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mTOR as a proto-oncogene

Although mTOR is frequently activated in human 
cancers, mutation of the mTOR gene has been found only 
occasionally [9-11]. This means that over-activation of 
the mTOR pathway is mostly due to signaling defects 
upstream of mTOR in the phosphatidylinositol-3-kinase 
(PI3K)/Akt/mTOR pathway. Mutations in PI3K alpha 
catalytic subunit kinase domain (PIK3CA) generally arise 
late in tumorigenesis, and can be identified in 32% of CRC 
tumors [12]. Loss of heterozygosity (LOH) and mutations 
in Phosphatase and tensin homolog (PTEN), a negative 
regulator of PI3K activity, have also been reported in 
CRC [13]. Both PIK3CA mutations and PTEN loss lead 
to mTOR over-activation. Although mutations in Akt 
genes are rarely found in CRC [14], a somatic missense 
mutation of Akt1 (E17K) in the pleckstrin homology (PH) 
domain resulting in constitutive association of Akt1 with 
the plasma membrane and Akt1 prolonged activation 
has been reported in CRC, which can lead to mTOR 
deregulation [15]. Similarly, although rare, germline TSC 
gene mutations, which have been associated with colonic 
hamartomatous polyps, account for 1% CRC, possibly 
through mTOR pathway triggering [16, 17] (Figure 1).

Several studies have attempted to characterize 
activating mutations in the mTOR gene [18-24]. These 
studies, mostly conducted using yeast, have demonstrated 

the impact of mutations on the function of mTOR 
and in vitro oncogenicity in some cases. However, 
the tumorigenic potential of the mTOR gene has only 
recently been established. By introducing mutations into 
evolutionarily conserved amino acid residues in major 
functional domains of human mTOR, Murugan et al. 
demonstrated that the mTOR gene is a proto-oncogene 
that possesses strong tumorigenicity when genetically 
activated [25]. Specifically, eight mutants in the HEAT 
repeats (M938T) and the FAT (W1456R and G1479N) 
and kinase (P2273S, V2284M, V2291I, T2294I, and 
E2288K) domains of mTOR were generated. These 
mutants showed increased protein kinase activities and 
activated the mTOR/p70S6K and Akt signaling pathways 
in human embryonic kidney cells (HEK293T). The kinase 
domain mutants which exhibited the greatest gains in 
activity, P2273S and E2288K were subsequently selected 
to explore the oncogenic potential of the mTOR gene 
in the mouse embryonic fibroblast cell line NIH3T3. 
mTOR mutant-expressing cells showed morphologic 
transformation and anchorage-independent growth, 
possessed invasive ability and in vivo tumorigenicity. This 
discovery of oncogenic mTOR mutations may facilitate 
the design of drugs targeting mTOR, as well as help 
predict their efficacy. For example, in yeast, resistance to 
Rapalogs has been associated with mutations in FK506 
binding protein 12 (FKBP12) or the FKBP-rapamycin-
binding (FRB) domain of TOR [26].

Figure 1: Simplified scheme of mTOR pathway activation. Akt activation releases Rheb from the inhibitory effects of TSC1/2 
thus allowing mTOR activation. Signaling defects upstream of mTOR in the PI3K/Akt/mTOR pathway (mutations in PTEN, PI3K, Akt 
and TSCs) lead to mTOR deregulation. Akt can also be a downstream effector of mTOR, due to mTOR association with different protein 
partners to form two functionally distinct signaling complexes, mTORC1 and mTORC2. 
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mTOR’s role in proliferation, differentiation and 
senescence

While emerging evidence supports a central role of 
the mTOR pathway in cell growth and cancer progression, 
increased mTOR activity can also play a role mediating 
the depletion of the epithelial stem cell compartment. 
Indeed, the aberrant activation of the mTOR pathway 
can paradoxically cause cells to undergo differentiation 
or senescence, thereby exiting the proliferative cell 
pool [27]. This concept is well demonstrated by the fact 
that persistent activation of mTOR by wingless-related 
MMTV integration site 1 (Wnt1) leads to accelerated 
epithelial stem cell senescence and premature aging in 
mice [28, 29]. Accordingly, inhibition of mTOR prevents 
the loss of proliferative epithelial progenitor stem cells 
upon radiation and enhances their tissue repopulating 

capacity [30]. Similarly, mTOR inhibition by Rapamycin 
enriches CD133+ subpopulations in liver tumor cells 
[31]. This enrichment is most likely achieved through 
blocking differentiation of the CD133+ subpopulations, 
enhancing apoptosis in the CD133- subsets, and triggering 
the conversion of CD133- to CD133+ cells. Thus, the 
maintenance of CD133+ cells in vivo by Rapamycin leads 
to high continuous tumorigenic potential in the context 
of liver cancer. These data suggest that mTOR signaling 
is involved in regulating the balance of proliferation 
and differentiation of cancer stem cells (CSCs) and that 
transient inhibition of mTOR can promote tumor re-
emergence in certain tumor types via enrichment of CSCs. 

The molecular mechanism(s) underlying these 
paradoxical effects of mTOR are not fully understood. 
It has been suggested that strong oncogenic signals 
(RAS, PI3K) concomitantly induce cell cycle arrest 

Table 1: In vivo pre-clinical studies using ATP-competitive inhibitors of 
mTOR.

Name Xenograft models Combinatorial Therapy References
AZD2014 Patient-derived ER+ breast cancer / [55]

AZD8055

U87MG, BT474c, A549, Calu-3, LoVo, 
SW620, PC3, MES-SA / [56]

PTEN(+/-)LKB1(+/hypo) / [85]
Patient-derived primary HCC SAHA [57]
MTT / [86]
RD AZD6244 [94]

INK-128  MDA-MB361 Lapatinib [62]
KU-0063794 786-O / [130]

OSI-027

COLO 205, GEO / [65]
GEO, H292, Ovcar-5 Sunitinib (H292, Ovcar-5) [128]
Jeko / [146]
HNSCC Cetuximab [126]

OXA-01 GEO / [128]

PP242 

p190BCR-ABL, SUP-B15  Imatinib (p190BCR-AB), 
Dasatinib (SUP-B15) [135]

8226 MM / [134]
LS174T UO126 [105]
MDA-MB-231 / [71]
 LS174T, SW480 / [61]
HS Sultan cells stably transfected with 
exogenous VEGF / [133]

Patient-derived colon cancer / [132]
U251 IR [131]
 DLD-1 Erlotinib [129]

Torin-1 
U87MG / [72]
Patient-derived colon CSCs / [171]

WYE-125132 
(WYE-132)

MDA361, U87MG, 
A549, H1975, A498, 786-O Bevacizumab [76]

WYE-354 PC3MM2, U87MG / [75]

A panel of second-generation mTOR inhibitors is listed. Information regarding xenograft models as well as combinatorial 
drugs used in preclinical cancer studies for each mTOR inhibitor is provided. For information about combinatorial drugs, 
please consult legend of Table 2.
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and activation of growth-promoting (i.e., anabolic) 
pathways such mTOR. Cell cycle arrest by itself is not 
yet senescence [32]. Nevertheless, in the presence of 
growth-stimulation, cell cycle blockage eventually 
leads to senescence. This mechanism by which arrested 
cells are converted to senescent cells has been named 
gerogenic conversion or geroconversion [33]. To avoid 
geroconversion, cancer cells must lose expression of cell 
cycle inhibitors, such as p53. Thus, cross-talk between 
p53 and the mTOR signaling pathways can determine 
whether stressed cells undergo apoptosis, reversible 
quiescence or irreversible senescence [34]. Inhibitors of 
mTOR can suppress geroconversion, protecting adult stem 
cells from undergoing premature cell senescence while 
simultaneously preventing their oncogenic transformation 
[35]. Amongst mTOR inhibitors, Rapamycin has been 
defined as a “longevity enhancer and cancer preventative 

agent” in the context of p53 deficiency [36]. Indeed, 
continuous treatment with Rapamycin or a novel 
Rapamycin formulation (Rapatar) delayed carcinogenesis 
in tumor-prone p53+/-and p53-/-mice respectively, most 
likely by slowing down the process of aging [37, 38]. 
Similarly, chronic treatment of mice with an enterically 
released formulation of Rapamycin (eRapa) delayed 
the onset and/or progression of neuroendocrine tumors 
in Rb1+/- mice [39]. Likewise, hypoxia can decelerate 
geroconversion and extend lifespan. Indeed, not only does 
hypoxia arrests cell cycle, but also inhibits the mTOR 
pathway, thus preventing irreversible cellular senescence 
[40]. It turns out that in stem cell niches, stem cells 
might be protected from senescence and maintained in a 
quiescent status instead, thanks to the low oxygen levels 
which characterize stem cell niches [41]. Overall, these 
studies point out molecular differences in normal and 

Figure 2: Simplified scheme of activators and effectors of both mTOR complexes, together with effects of mTOR 
inhibition using different mTOR inhibitors. mTOR can be shared by two different complexes, mTORC1 and mTORC2. 
Phosphorylation of mTOR at Ser2448 and Ser2481 are indicative of mTORC1 and mTORC2 activation, respectively. mTORC1 can 
be activated by nutrients (amino acids, glucose), growth factors (Insulin, Insulin-like Growth Factor-1), hormones (leptin), and stresses 
(starvation, hypoxia, and DNA damage). Through mTORC1, these signals accelerate the synthesis of key proteins, involved in growth, 
division, metabolism and angiogenesis. mTORC1-activated p70 S6K1 and Grb10 mediate IRS-1 degradation, thus inhibiting PI3K/Akt 
activation. Grb10 also leads to negative feedback inhibition of MAPK/ERK pathway. Finally, activated p70 S6K1 inhibits mTORC2 
signaling by phosphorylating Rictor on Thr1135. Allosteric mTOR inhibitors exert an incomplete inhibition of mTORC1 and are inactive 
against mTORC2 under short-term conditions. Moreover, they disrupt the mTORC1-dependent negative feedback loop to IRS-1/PI3K, 
MAPK/ERK and mTORC2. As a consequence, treatment with mTOR allosteric inhibitors often results in increased mTORC2 activity. 
mTORC2 functions upstream of Akt providing the critical second phosphorylation of Akt at Ser473, which is necessary for Akt full 
activation. mTORC2 also regulates cytoskeletal dynamics by activating PKCα, and regulates growth via SGK1 phosphorylation. The 
upstream regulation of mTORC2 is not well defined although ribosome association appears to be a major, if not the sole, mechanism 
of mTORC2 activation. Catalytic mTOR inhibitors are able to suppress activity of both mTORC1 and mTORC2 complexes, avoiding 
oncogenic signaling pathway activation
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Table 2: In vivo pre-clinical studies using PI3K and mTOR dual inhibitors.

Name Xenograft models Combinatorial Therapy References

BEZ235 (NVP-BEZ235)

PC3M, U87MG Temozolomide (U87MG) [89]
BN472 / [95]
HER2+ BT474 / [96]

Tet-op-PIK3CA H1047R–CCSP-rtTA, LSL Kras G12D  ARRY-142886 (LSL Kras 
G12D) [83]

Patient-derived primary pancreatic cancer / [81]
B16BL6 / [147]
ENU-treated Tsc2+- / [93]
MM.1S / [91]
U87 / [88]
CCSP-rtTA/Tet-op-K-Ras (FVB/N), H460 IR (H460) [87]
EGFR T790M-L858R AZD6244 [84]
RD/18 / [92]
TC-71, RD/18 Vincristine [90]
BC-1 PEL / [80]
786-0, A498 / [82]
FL-18 / [98]
Patient-derived glioblastoma (SJ28P3) SL327 [99]

A172, patient-derived glioblastoma (SJ28P3) / [100]

Ptch+/−Hic+/− NVP-LDE225 [101]
 GS2 Chloroquine [102]
DU145 Taxotere [103]
LSL-K-ras(G12D/+)Pten(loxP/loxP) / [104]
LS174T UO126 [105]
A549 RAD001 [106]
N87, MKN28, MKN45 / [107]
JHH-7 / [108]
A549 Chloroquine [109]
786-0 Sorafenib [110]
CAL62, TT RAF265 [111]
GEM / [112]
AsPC-1 EMAP and/or Gemcitabine [113]
Met-1, MCNeuA in the MKR mouse / [114]
LS174T, SW480 / [61]
HEC-59, AN3CA / [60]
Tyr-HRas(G12V) Ink4a/Arf−/−, T11 OST, C3-TAg GEMM, 
MMTV-Neu GEMM AZD6244 [121]

A549 Ganetespib [115]
8505C Paclitaxel [58]
 H295R / [59]
 U-87 MG, 786-O RAD001 [118]
Patient-derived PDAC Panobinostat [123]
U937 cells expressing doxycycline-inducible shRNAs against 
both Bcl-2 and Bcl-xL ABT-737 [120]

PC-9/HGF / [122]
PC3 IR [119]
4T1, 67NR Dovitinib [116]
LoVo, HCT116 5-FU or irinotecan [117]
CNE2, HONE1 Cisplatin [124]
RD AZD6244 [94]
C4-2AT6 Docetaxel [125]
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cancer cells that can be exploited to prevent tumor growth 
without disrupting the function of normal tissues and cells.

Development of mTOR inhibitors: progress and 
challenges

Rapamycin, a macrolide antibiotic produced by 
Streptomyces hygroscopicus, was the first mTOR inhibitor 
discovered. More precisely, by exploiting Rapamycin’s 
antifungal properties researchers were able to identify 
mTOR [42]. Guba et al. described Rapamycin antitumor 
effects for the first time in 2002, in their Nature Medicine 
paper [43]. Traditionally used as an immunosuppressant 
for organ transplants, Rapamycin was found to suppress 
tumor growth by inhibiting angiogenesis. Since then, 
additional inhibitors of mTOR function were synthesized 
with similar characteristics to Rapamycin, constituting 
the family of Rapalogs. Rapalogs, which also include 
Everolimus, Temsirolimus, and Ridaforolimus, bind 
FKBP12 and interfere with the FRB domain of mTOR. 
These compounds have gone through clinical trials as 
single agents for treating various cancers without great 
success. However, Temsirolimus and Everolimus were 
both effective against advanced renal cell carcinoma 

(RCC) [44]. While resistance to Rapalogs has been 
associated with mutations in FKBP12 or the FKB 
domain of TOR in yeast [26], in human, it has been 
mostly associated with KRAS and BRAF mutations 
[45]. Additional mechanisms of resistance include up-
regulation of the Proviral integration site for Moloney 
murine leukemia virus (PIM) family of oncogenic serine/
threonine kinases [46], oxidative stress [47], and over-
expression of anti-apoptotic proteins [48]. Nevertheless, 
suppression of several negative feedback loops following 
mTORC1 targeting is mostly responsible for failure of 
mTOR inhibitors. Biopsies taken from patients affected 
by malignancies other than RCC, like colon and breast 
tumors, showed activated Akt following treatment with 
Rapalogs [49, 50]. Pro-survival rather than anticancer 
effects of Rapalogs likely results from disruption of the 
mTORC1-dependent negative feedback loop to mTORC2 
and IRS-1/PI3K. Particularly, mTORC1-activated S6K1 
phosphorylates Rictor and/or Insulin receptor substrate 
(IRS)-1, thus inhibiting mTORC2 and PI3K/Akt signaling, 
respectively [51, 52]. More recent findings indicate that 
mTORC1 also phosphorylates Growth Factor Receptor 
Bound Protein 10 (Grb10), leading to accumulation of 
Grb10 and negative feedback inhibition of PI3K and the 
Microtubule-associated protein kinase/Extracellular-signal 

PI-103 

U87:ΔEGFR / [141]
U87MG, HCT116, PC3, MDA-MB-435, MDA-MB-468, 
SKOV3, IGROV-1 / [66]

U251 MG IR [139]
p190 L-CFCs (hCD4+) Imatinib [143]
EC-vGPCR / [138]
U87MG Temozolomide [142]
Patient-derived neuroblastoma Doxorubicin [137]
518A2 Rapamycin [144]
Gli36-EvIII-FmC, mNSC-S-TRAIL / [136]
PC-9 remixed with HGF high producing MRC-5 cells Gefitinib [140]
SH-EP TRAIL [145]
SK-N-BE(2) / [67]
HGC27 5-FU [69]
Huh7 Sorafenib [68]

XL765

Patient-derived glioblastoma Temozolomide [77]
 BxPC-3 Chloroquine [78]
STS26T Chloroquine [79]
GH3 Temozolomide [127]

A panel of second-generation mTOR inhibitors is listed. Information regarding xenograft models as well as combinatorial drugs used in preclinical cancer 
studies for each mTOR inhibitor is provided. SAHA and Panobinostat are histone deacetylase (HDAC) inhibitors; AZD6244, UO126, ARRY-142886, 
and SL327 are MEK inhibitors; Lapatinib, Cetuximab, Erlotinib, and Gefitinib are EGFR inhibitors; Sunitinib and Sorafenib are multitargeted kinases 
inhibitors; Imatinib and Dasatinib are tyrosine kinases inhibitors; Bevacizumab is an anti-vascular endothelial growth factor (VEGF) monoclonal antibody; 
Taxotere is a microtubule inhibitor; RAF265 is a BRAF inhibitor; Ganetespib is a heat shock protein 90 (Hsp90) inhibitor; ABT-737 is a Bcl-2 inhibitor; 
Dovitinib is an inhibitor of fibroblast growth factor (FGF), VEGF, and platelet-derived growth factor (PDGF) receptors; Vincristine and Paclitaxel are mitosis 
inhibitors; Irinotecan is a topoisomerase-I inhibitor; Temozolomide is an alkylating agent; NVP-LDE225 is a Smoothened (Smo) antagonist; Chloroquine is 
a lysosomotropic agent; Endothelial-monocyte activating polypeptide (EMAP) is a proinflammatory cytokine and a mediator of programmed endothelial cell 
death; 5-Fluorouracil, Cisplatin, and Doxorubicin are chemotherapy drugs; Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytotoxic 
protein and a mediator of programmed cell death.
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regulated kinase (MAPK/ERK) pathway [53]. Thus, over-
activation of upstream pathways following suppression 
of the above-mentioned feedback loops potentially 
counterbalances the antiproliferative effects of mTOR 
inhibitors. To overcome the detrimental consequences of 
feedback loop activation, a second generation of inhibitors, 
which compete with ATP in the catalytic site of mTOR, 
and inhibit both complexes, was developed [54]. Figure 2 
depicts activators and effectors of both mTOR complexes, 
together with the effects of mTOR inhibition using 
different mTOR inhibitors. Table 1 and Table 2 provide 
a list of different ATP-competitive mTOR-selective or 
PI3K/mTOR dual inhibitors that have been validated in 
preclinical cancer studies. These studies showed inhibition 
of tumor growth in a number of xenograft models [55-
147]. As shown in Table 1, ATP-competitive mTOR 
inhibitors have often been used in combination with 
ionizing radiation (IR) as well as many chemicals. Clinical 
trials have been completed for AZD8055, INK-128, OSI-
027, NVP-BEZ23, and XL765. Additional clinical trials 
utilizing mTOR-inhibiting agents are ongoing.

mTOR kinase inhibitors (mTorKIs) do not cause Akt 
feedback activation observed with Rapalogs. However, 
Rodrik-Outmezguine et al. showed a biphasic effect of 
these drugs on Akt [148]. Inhibition of mTORC2 led to 
Akt Ser473 de-phosphorylation and a rapid but transient 
inhibition of Akt Thr308 phosphorylation and Akt 
signaling. Nevertheless, inhibition of mTOR kinase also 
relieves feedback inhibition of Receptor tyrosine kinases 
(RTKs) leading to subsequent PI3K activation and re-
phosphorylation of Akt Thr308 sufficient to reactivate Akt 
activity and signaling. Importantly, similar mechanisms 
might also exist in tumor-associated stromal cells such 
as endothelial cells. Phosphorylation of Akt Thr308, 
Akt substrates [PRAS40, FoxO1 (forkhead box protein 
O1), and GSK-3 (glycogen synthase kinase–3)], and 
SGK substrate [NDRG1 (N-myc downstream regulated 
1)] rebounds as early as 4 hours after adding mTorKIs 
in human umbilical vein endothelial cells (HUVECs), 
implying that PI3K is activated in response to mTOR 
inhibition in these cells [149]. Particularly, mTorKIs 
induce the expression of multiple RTK-encoding genes 
and signaling by promoting the de-phosphorylation of 
FoxO1, which eventually result in increased activation of 
PI3K. Thus mTorKIs may render endothelial cells more 
prone to PI3K inhibition, suggesting that combinations of 
PI3K and mTOR inhibitors might have synergistic effects 
and fully inhibit endothelial cell growth [149].

An additional limitation to the use of catalytic 
mTOR inhibitors is that they inhibit mTOR within the 
mTOR complexes and do not block intrinsic activity of 
mTOR-binding partners, which, although deprived of 
mTOR kinase activity, could continue conveying growth 
and survival signals in response to death stimuli. As 
opposed to Rapalogs and mTorKIs, P529 is a first-in-
class allosteric inhibitor of mTORC1/mTORC2 that can 

dissociate both mTORC1 and mTORC2 complexes, thus 
overcoming possible activity of mTOR-binding partners. 
However, it is not clear whether P529 directly interacts 
with the mTOR complexes causing their dissociation. 
It may inhibit a chaperone, which assembles the mTOR 
complexes. Nevertheless, P529 was reported to inhibit 
tumor growth, angiogenesis, and vascular permeability 
[150], and to be effective in the treatment of prostate 
cancer [151, 152]. Moreover, P529 was explored as a 
therapeutic option for the treatment of keloid disease 
[153]. Aside from its association with cancer, deregulation 
of the mTOR pathway is in fact linked to several other 
diseases, including ocular, fibrotic, viral, skin and central 
nervous system diseases.

mTOR signaling in colon: past and present 
evidence

mTORC1 is a major sensor of the organismal 
nutritional state. Indeed, caloric restriction lowers 
mTORC1 signaling in Paneth cells, a key constituent of 
the mammalian intestinal stem-cell (ISC) niche. Paneth 
cells, in turn, stimulate small-intestinal stem cells to 
proliferate [154]. Thus, mTOR inhibition can improve 
intestinal regeneration in patients affected by intestinal 
atrophy. While mTORC1 inhibition can increase the 
number and regenerative capacity of ISCs, excessive 
mTORC1 stimulation can lead to the onset of cancer. 
Indeed, the importance of mTORC1 pathway in intestinal 
polyp formation has been well described in several papers 
using the Apc∆716 mice, a mouse model of familial 
adenomatous polyposis (FAP). Through these studies, 
mTORC1 was found to stimulate chromosomal instability 
(CIN) through anaphase bridge formation, enhancing, 
as a consequence, both tumor initiation and progression 
[155]. Similarly, ex vivo immunohistochemical studies 
on human colorectal adenomas and cancers confirmed 
that mTORC1 signaling occurs as an early event in 
the process of tumorigenesis, and participates in the 
progression of normal cells to a neoplastic phenotype 
[156], sustaining the bases of mTORC1-targeted drug 
development for therapy and prevention of colon polyps 
and cancers. Accordingly, Everolimus-mediated mTORC1 
inhibition suppressed polyp formation and reduced 
mortality in Apc∆716 mice [157]. However, blocking 
of a specific pathway may disrupt the balance between 
signaling pathways and enhance oncogenic signals. In 
that regard, in parallel with its cytostatic effect, mTORC1 
inhibition by Rapamycin strongly increased MAPK kinase 
(MEK)/ERK activity, resulting in the appearance of a 
spindle morphology and higher invasiveness of KRAS-
transformed intestinal epithelial cells (IECs) [158]. In 
this system, Rapamycin treatment also increased Bcl-
2 levels, further indicating the need to develop new 
therapeutic drugs capable of overcoming the relief of 
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feedback inhibition of pro-survival, pro-invasive and 
pro-metastatic pathways. Besides mTORC1, mTORC2 
has been shown to be overexpressed in CRC and to play 
an important role in cancer biology.  Down-regulation 
of mTORC2 reduced proliferation of colon cancer cell 
lines and inhibited the formation of tumor xenografts in 
vivo [159, 160]. Moreover both mTORC1 and mTORC2 
complexes were shown to regulate epithelial-mesenchymal 
transition (EMT), motility, and metastasis of CRCs via 
RhoA and Rac1 GTPases, providing the rationale for 
including ATP-competitive mTOR-selective or PI3K/
mTOR dual inhibitors for therapy of CRC patients [161]. 
Dual inhibition of PI3K and mTORC1/2 signaling by 
NVP-BEZ235 was shown to induce tumor regression 
in a genetically engineered mouse (GEM) model for 
sporadic CRC [112]. Consistent with this finding, a more 
recent study also demonstrated the efficacy of NVP-
BEZ235 and of an additional catalytic mTOR inhibitor, 
pp242, in human colon cancer cell line xenografts [61]. 
Nevertheless, a remarkable intrinsic drug resistance of 
a large proportion of CRC cell lines to new-generation 
mTOR inhibitors, including both NVP-BEZ235 and pp242 
compounds, was also described, warranting further studies 
[162]. By screening a panel of over 600 human cancer 
cell lines to identify markers of resistance and sensitivity 
to pp242, Ducker et al. found that KRAS mutations are 
responsible for conferring resistance to pp242 [132]. This 
resistance was specifically linked to changes in the level 
of phosphorylation of 4E-BP1, and was not evident in 
either a tumor with wild type KRAS or a tumor with a 
PIK3CA mutation in addition to KRAS. This and other 
studies [163] highlight the importance of monitoring the 
phosphorylation status of 4E-BP1 to assess responses 
to mTorKIs. Additional experimental evidence has 
revealed that pp242 treatment of a panel of CRC cell lines 
transiently inhibits Akt Ser473 phosphorylation while 
increasing the phosphorylation of epidermal growth factor 
receptor (EGFR) at Tyr1068 [129]. A parallel increase of 
Akt Ser473 and EGFR Tyr1068 in cells following pp242 
treatment raises the possibility that, apart from KRAS 
mutations, EGFR phosphorylation, might also contribute 
to the incomplete inhibition of mTORC2 by pp242. 
Accordingly, the combination treatment of pp242 and 
erlotinib, an EGFR inhibitor, completely blocked both 
mTORC1 and mTORC2 activity, inhibited cell growth 
and suppressed the progression of CRC xenografts [129].

An additional and previously undescribed 
mechanism leading to Rapamycin resistance, based on 
3-Phosphoinositide–dependent protein kinase-1 (PDK1)/
Polo-like kinase 1 (PLK1)/Myc signaling, has also been 
reported in the context of CRC. Specifically, epigenetic 
loss of Protein phosphatase 2, regulatory subunit B, 
beta (PPP2R2B), occurring in >90% colorectal tumor 
samples, was indicated as a molecular event affecting the 
sensitivity of CRC to mTOR inhibitors [164]. On loss 
of PPP2R2B, Rapamycin triggers a compensatory Myc 

phosphorylation in PDK1-dependent, but PI3K and AKT-
independent manner, resulting in resistance. Re-expression 
of PPP2R2B, genetic ablation of PDK1 or pharmacologic 
inhibition of PDK1 (using the small molecule BX912) 
abrogates Rapamycin-induced Myc phosphorylation, 
leading to Rapamycin sensitization. Additional studies 
revealed that PDK1 directly induces phosphorylation 
of PLK1, which in turn induces Myc phosphorylation 
and protein accumulation [165]. Importantly, the PLK1 
inhibitor BI2536 worked in synergy with NVP-BEZ235 
to induce robust apoptosis and tumor growth inhibition 
in CRC [165]. This study emphasizes the importance of 
epigenetic mechanisms in regulating oncogenic signaling 
and therapeutic response. Moreover, it indicates PPP2R2B 
may serve as a predictive marker for patient selection, 
whereas Myc phosphorylation can serve as a surrogate 
marker to evaluate the drug response.

mTOR inhibitors for the ablation of colon cancer 
stem-like cells: future hopes

Over the last decade, proposed theories in cancer 
biology have drastically changed. Contrary to the long-
standing clonal evolution model described by Nowell in 
the late 70’s [166], the CSC hypothesis proposed that not 
every cell of the body could be the target of malignant 
transformation. The limited lifespan of a committed cell is 
likely shorter than the time necessary to accumulate tumor-
inducing genetic changes. Therefore, cancer-initiating 
capability could be a unique feature of long-lived, self 
renewing stem cells [167]. Indeed, much experimental 
evidence indicates that stem cell transformation might be 
an early event in carcinogenesis. Transformation of normal 
stem cells through loss of APC is an extremely efficient 
route towards initiating intestinal adenomas [168]. The 
CSC hypothesis is neither a universal model for all 
cancers nor for all patients with the same disease. While 
some cancers have been hypothesized to initiate as a stem 
cell disease, they may then progress by clonal evolution 
of their CSCs, as CRC has been suggested to do through 
CIN [169].

To our knowledge, only one study investigated the 
effects of mTOR inhibitors in cancer stem-like cells so far. 
mTOR signaling was shown to be activated in colorectal 
cell line-derived spheres in serum-free medium [170]. 
Treatment with Rapamycin and pp242 diminished sphere-
forming capacity as well as aldehyde dehydrogenase 
isoform 1 (ALDH1) activity. However, only pp242 
suppressed the enrichment of ALDH+ cells induced by 
chemotherapy, thus highlighting an essential role of 
mTORC2 signaling in the maintenance of the CRC stem-
like phenotype. Although this study further confirmed the 
importance of mTOR signaling in CRC, the authors did 
not perform sufficient functional experiments to assess 
the effect of mTOR inhibition on biological properties 
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and tumorigenic potentials of CRC stem-like cells. 
Moreover, a controversy exists in the literature regarding 
the use of ALDH+ cells isolated from cancer cell lines as 
in vitro models for CSC study, further indicating the need 
to study the effect of mTOR inhibition using alternative 
methods to identify and characterize CSCs. Multiple cell-
surface proteins have been proposed as potential candidate 
markers for colon CSCs, and our in vitro system, based on 
a feeder layer derived from rat mammary adenocarcinoma, 
efficiently enriches for these cells [169]. Recently, we 
analyzed colon CSCs for expression of major mTORC1/2 
pathway components [171]. Colon CSCs exhibited 
unexpectedly low Akt signaling. Nevertheless, they 
showed mTORC2 activation. We indicated SGK1 as the 
possible main mTORC2 effector in colon CSCs. Akt hypo-
phosphorylation and dependence of SGK family members 
for viability are known to occur most frequently in the 
context of wild-type PTEN, and helical PIK3CA mutations 
[172]. Future studies are needed to confirm whether this 
genetic signature can predict resistance or sensitivity of 
colon CSCs to different mTorKIs. Unfortunately, the 
prognostic and predictive value of common mutations 
in patients with CRC is controversial, due to a bias in 
research settings [173]. In our opinion, mTorKI resistance 
might also occur through less well-studied but equally 
important epigenetic mechanisms [174].

mTOR inhibitors affected colon CSCs differently, 
resulting in proliferation, induction of autophagy or 
apoptosis. The apoptosis-inducing mTOR inhibitor 
Torin-1 hindered growth, motility, invasion, and survival 
of CD326+/CD24+/CD49f+/CD29+ and CD326+/CD44+/
CD166+ CRC subpopulations in vitro, and suppressed 
tumor growth in vivo with a concomitant reduction in 
vessel formation. Torin-1 also affected the expression 
of markers for cell proliferation, angio-/lympho-genesis, 
and stemness in vivo. Our study also indicated that 
although Torin-1 resistant clones can emerge, they are 
poorly tumorigenic, thus encouraging its potential use 
for CRC therapy. Because normal stem cells and CSCs 
share many traits, it seems reasonable to think that any 
therapy targeting CSCs may also destroy healthy tissues 
[175]. Through an innovative system based on the use of 
the mouse lymph node as an in vivo bioreactor [176], we 
showed that Torin-1 does not affect the survival of normal 
colon stem cells in vivo, suggesting its selectivity towards 
cancer cells. All these data support further development of 
Torin-1 for the clinical treatment of CRC.

Concluding remarks: towards personalized 
medicine 

mTOR is frequently activated in human cancers 
and is a commonly sought anticancer therapeutic target. 
Although direct substrates and downstream effectors of 
mTOR are well studied, the broad physiological role of 

mTOR implies that there are still downstream pathways 
to be identified. A more comprehensive understanding of 
the dynamics of mTOR signaling networks is therefore 
required for the design of safe and effective drug 
molecules targeting the mTOR pathway.

ATP competitive mTOR inhibitors have both 
advantages and disadvantages. Undoubtedly, they have a 
well-defined target, their biological effects are easy to be 
observed, and they transit quickly to clinical trials. On the 
other hand, they often have a high level of cross-reactivity 
with other kinases, are not pharmacologically tolerated, 
and easily lead to the development of drug resistance. 
Identifying biological factors that may predict efficacy or 
resistance to mTOR inhibitors is still challenging, since 
mTOR inhibitors may exert antitumor effects through 
multiple mechanisms of action. Moreover, crosstalk 
of the mTOR pathway with other pathways gives rise 
to compensatory loops for tumor cells to escape anti-
tumor stimuli. This reveals the adaptive capabilities of 
oncogenic signaling networks and the limitations of 
monotherapy for inhibiting feedback-regulated pathways. 
Drug combinations targeting multiple pathways have 
been exploited to overcome this resistance but it is not 
clear which strategy will yield the greater therapeutic 
benefit. Additionally, the use of multiple drugs increases 
side effects and adverse reactions. In our study, a single 
mTOR inhibitor, Torin-1 was able to counteract CRC 
progression, supporting the rationale for its clinical 
testing [171]. Nevertheless, the precise mechanism by 
which Torin-1 acts remains to be elucidated. It must be 
noted that not all CRC patients could benefit from this 
therapy due to large individual variability in drug efficacy 
and safety. The observed discrepancy in outcome using 
different mTOR inhibitors in a population of colon CSCs 
is not only related to the difference of mTOR inhibitors in 
terms of pharmacokinetic and pharmacologic properties, 
but also to intrinsic variations in colon CSCs. A major 
goal of clinical pharmacology and pharmacogenomics is 
to establish phenotype-genotype associations that reveal 
drug response and toxicity. Unfortunately, although the 
impact of variations of the human genome sequence 
on the response to drug therapy has been increasingly 
considered in recent years, for complex diseases like CRC, 
it could be very difficult to determine unequivocally an 
exact phenotype or genotype that would predict therapy 
outcome. Genetic variations can result from single-
nucleotide polymorphism (SNP), insertion, deletion, 
or duplication of DNA sequences. SNP of drug targets, 
drug-metabolizing enzymes, drug transporters, DNA 
repair enzymes, are likely to affect drug response [177]. 
In addition, non-genetic factors could contribute to 
variability in drug effects. Even if causal relations between 
variations and individual drug responses would be fully 
unraveled, the rapid development of resistance to targeted 
anticancer agents could represent a major challenge in 
targeted cancer therapy. Such resistance often results 
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from secondary mutations of drug targets in cancer 
cells. Acquired resistance to imatinib in chronic myeloid 
leukemia (CML) and gastrointestinal stromal tumor 
(GISTs) through a secondary gene mutation in BCR-ABL 
and KIT genes, respectively, are examples of the adaptive 
capability of cancer cells to kinase inhibitors [178, 179]. 
Similarly, a dominant drug-resistant allele of mTOR 
(S2035T) eliminates the cellular actions of Rapamycin 
in the yeast Saccharomyces cerevisae [180]. It is not 
excluded that although primary mTOR mutations are 
barely observed in human cancers, the mTOR kinase could 
be hit by a secondary or even a de novo gene mutation in 
response to therapy as a self-defense mechanism.

In conclusion, although targeted therapy agents are 
increasingly available for clinical applications, many of 
these promising drugs have produced disappointing results 
when tested in clinical trials. Because most tumors are 
heterogeneous, a single drug regimen for patients with 
the same tumor type/histology is not always appropriate. 
Gene and protein signatures have been identified in several 
diseases, but this information struggles to be translated 
into clinically meaningful improvements. Nevertheless, 
these observations can help defeat the challenge of 
achieving individualized drug therapy, hopefully in the 
near future.
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