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ABSTRACT:
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We 

have undertaken a genomics based, hypothesis driving, approach to query an emerging potential 
that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 
interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine 
(AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and 
DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas 
(TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and 
squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both 
innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. 
DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks 
with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 
transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples 
demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced 
immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade 
of immune checkpoints – in particular the PD-1/PD-L1 pathway - may augment response of 
NSCLC by shifting the balance between immune activation and immune inhibition, particularly 
in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker 
strategy for response in a recently initiated trial to examine the potential of epigenetic therapy 
to sensitize patients with NSCLC to PD-1 immune checkpoint blockade. 
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INTRODUCTION

Innovative strategies are needed to treat the world’s 
most common cause of cancer death, non-small cell 
lung cancer (NSCLC) [1, 2]. Less than a quarter of lung 
adenocarcinomas (LUAD) harbor genetic abnormalities 
for which targeted therapies have been derived. Early 
responses are often robust for these but are generally 
followed by acquired resistance [3, 4]. Lung squamous 
cell carcinoma (LUSC) has no approved targeted 
therapies and few effective chemotherapeutic options 
beyond the first line of therapy. In the current study, we 
offer a genomically based, hypothesis-driving analysis to 
suggest a rationale for a novel combinatorial therapeutic 
approach to efficacious treatments for advanced NSCLC.  
The backdrop for the present study comes from our initial 
clinical trials in our Stand up to Cancer project (SU2C)  in 
which patients with advanced, heavily-pretreated NSCLC 
received a form of “epigenetic therapy” combining low 
doses of  the DNA hypomethylating agent azacytidine 
(AZA - Vidaza) and the HDAC inhibitor entinostat 
[5].  Only two of now 65 patients treated to date have 
had RECIST criteria responses to this therapy alone, 
but these were very robust and durable (5). A group of 
patients followed for 8 to 26 months responded to multiple 
different therapeutic regimens given subsequently, 
suggesting a “priming” effect of epigenetic therapy (5). 
Twenty-five percent of these patients with both LUAD 
and LUSC experienced RECIST criteria responses to their 
subsequent regimens. These subsequent therapies included 
not only standard chemotherapies but also immunotherapy 
targeting the PD-1 immune-checkpoint which when given 
alone has yielded responses in 16 to 17% of patients with 
advanced NSCLC [6-8] (Supp. Fig. 1). While the number 
of patients who have received epigenetic therapy followed 
by immune checkpoint blockade is small, a clinical 
trial to evaluate potential sensitization to PD-1 immune 
checkpoint blockade with epigenetic therapy in patients 
with NSCLC has now begun. 

This trial will be biopsy driven and offer the 
opportunity to examine hypotheses generated in the 
present pre-clinical work in order to develop biomarker 
strategies. In this regard, one of the key therapy agents 
being employed in the trial is AZA, a nucleotide analog 
DNA demethylating agent which blocks the activity of 
all three biologically active DNA methyltransferases 
(DNMT’s) and also triggers degradation of these proteins 
in the nucleus [9, 10]. With respect to sensitization 
potential of this drug for immune responses, such targeting 
of DNMT’s is known to induce increased expression of 
promoter DNA hypermethylated cancer testes antigens 
and also is reported to up-regulate other individual facets 
of the tumor immune stimulating profile, including major 
histocompatibility antigens, and transcription factors IRF7 
and  IRF5 [11-16]. In this regard, we previously reported 
that elements of such immune pathway activation were 

produced by low doses of DNA demethylating agents in a 
genomics based, pre-clinical approach [17]. These studies 
demonstrated how low doses of AZA, which avoid early, 
cytotoxic and off-target effects, can provide a memory 
for a “reprogramming”-like effect on hematopoietic 
and selected examples of solid tumor cells [17]. We 
hypothesize in this work that these effects may underlie the 
fact that significantly lowering doses of DNMT inhibitors 
in the clinic may account for the markedly decreased 
toxicity, and significant clinical efficacy, which has led to 
FDA approval of AZA for myelodysplasia (MDS) [18].     

Initially, we have focused our pre-clinical studies 
for low dose AZA on NSCLC. By first deriving genomic 
signatures of gene expression responses and DNA 
methylation for treated NSCLC lines, we observed in 
most cell lines a complex, multi-faceted up-regulation, 
involving hundreds of genes of the immune profile 
of these cells which includes the target of immune 
checkpoint therapy, the tumor ligand PD-L1. Moreover, 
using this extensive genomic signature, we have been 
able to specifically query hundreds of primary NSCLC 
samples in the Cancer Genome Atlas project (TCGA) 
for how basal expression of these immune genes and 
related DNA methylation events group lung cancers. We 
define a stark clustering of subsets of primary LUAD and 
LUSC for an “immune evasion” signature, which relates 
highly to events for low interferon pathway signaling and 
includes low levels of PD-L1 [20-22]. Low expression of 
these genes closely matches those up-regulated by AZA 
treatment of the NSCLC cell lines. We hypothesize that 
these may be cancers which would benefit from AZA 
priming together with immune checkpoint therapy and 
outline a signature that may identify predictive biomarkers 
from biopsies forthcoming in the current trial.  

RESULTS

Clinical Data

Six patients who received treatment on a clinical trial 
of epigenetic therapy for advanced treatment-refractory 
NSCLC were placed on trials for immunotherapy 
targeting the PD-1/PD-L1 immune tolerance checkpoint. 
Of these six patients three have experienced durable 
partial responses to immunotherapy now ongoing for 14 
to 26 months, and the other two had stable disease lasting 
8.25 and 8.5 months. (Supp. Fig. 1, Supp. Table 1) For 
comparison, 41-46% of NSCLC patients on these two 
trials of immunotherapy alone, one for anti-PD1 and the 
other for anti-PD-L1 therapy, passed 24 weeks without 
progression and16-17% had durable partial response rates 
[6-8].
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Figure 1: Azacytidine alters gene expression in NSCLC cell lines for multiple immune related pathways. (A) Top panel: 
Gene Set Enrichment Analysis (GSEA) for pathways up-regulated by azacytidine. Normalized enrichment scores are plotted as a heat map. 
Bottom panel: boxplot showing degree of demethylation in each cell line, as measured by the difference in beta values between the AZA 
and mock-treated cells immediately after drug withdrawal and 7 days later. (B) FACS analysis shows increased level of cell surface PD-L1 
after AZA treatment by day 10 in NSCLC lines H838 and H1299. (C) to (J) AZA-mediated expression changes at day 10 in key genes from 
pathways outlined in (A). Y axis = Ratio of expression values (log2) of AZA -treated vs. mock-treated cells; X-axis = gene names.
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AZA Induced Immune Response in Non-Small 
Cell Lung Cancer Cell Lines 

We used our previously validated pre-clinical model 
to examine how AZA alters expression of key pathways in 
NSCLC cell lines [17]. Cells were treated in vitro with 500 
nM AZA for 72 hours then harvested immediately after 
withdrawal of drug and again one week later for genome 
wide methylation and expression studies. To the point 
of the clinical suggestion that epigenetic therapy may 
provide sensitization to subsequent immune-checkpoint 
blockade, we agnostically noted that one or more of the 
top ten pathways emerging for each cell line were immune 
related. The genes involved are important to the interaction 
of both innate and adaptive anti-tumor immunity. As 
earlier mentioned, other groups have described the ability 
of AZA to up-regulate individual immune pathway steps 
relative to assembly of major histocompatibility antigens 
(HLA Class I), interferon pathway genes, and cancer-testis 
antigens [11-16]. However, our current analysis reveals a 
more complex, concordant, broad immune gene signature. 
Gene Set Enrichment Analysis showed AZA induced up-
regulation of multiple immune-related pathways in a 
manner roughly correlating to the degree of demethylation 
in response to AZA treatment (Fig. 1A, Supp. Table 2).  
Each of these components has a demonstrated role in 
immune tolerance pathways associated with immune 
checkpoints and immune evasion. Some of these genes 
have low expression associated with cancer-specific 
promoter region DNA hyper-methylation, and increased 
expression after treatment with DNA demethylating 
drugs [11, 12]. In this regard, it is noteworthy that when 
compared to normal bronchial epithelial cells, NSCLC is 
known to exhibit diminished innate immune responses to 
viral-like stimuli involving intertwined pathways of cell-
intrinsic responses to infection and inflammation [11].

Antigen Presentation

A key step in tumor recognition and killing by 
cytotoxic T-cells involves recognition of peptides derived 
from tumor-specific antigens or up-regulated shared 
antigens bound to HLA Class I antigens expressed by the 
tumor cells [23]. As recognized by others, AZA increases 
expression of multiple cancer testes antigens including 
multiple MAGE family genes, whose expression has been 
shown to be suppressed by promoter hypermethylation 
[14, 15] (Fig. 1G). AZA up-regulates not only transcripts 
of HLA Class I antigens but also a series of genes 
including, beta-2-microglobulin (B2M), CD58, TAP1, and 
the immuno-proteasome subunits PMSB9 and PSMB8 
which encode proteins required for endoplasmic reticulum 
processing of, transport to, and anchoring to the cell 
surface , and recognition of surface HLA class I subunits 
[24-26] (Fig. 1D). We find generally good correlation 

between HLA Class I, B2M, CD58, and B7-H3 transcripts 
and protein on the cell surface by flow cytometry (Supp. 
Fig. 2). Importantly, mutations potentially contributing to 
immune evasion have been described in HLA-A in a small 
percentage of LUSC and of B2M and CD58 in other tumor 
types [26, 27].

Type I and II Interferon Signaling

A second key issue for immune cell interaction with 
tumor cells is that, in vivo, AZA administration to tumor-
bearing mice has been shown to induce antigen processing 
and presentation genes, particularly when administered 
with CpG TLR9 agonists, and this is largely attributed to 
interferon-γ production by lymphocytes [13]. While the 
lymphocyte-specific γ-interferon is not induced in NSCLC 
lines with AZA treatment, there is up-regulation of the 
interferon-γ receptor (IFNGR1) as well as of multiple 
STAT genes, including STAT1, the major IFNGR1 signal 
transducer (Fig. 1E).  

Programmed Cell Death and Viral Defense

The re-expressed genes in the above mentioned 
pathways are downstream targets of interferon response 
pathways in a fashion closely linked to pro-inflammatory 
and viral defense responses [28-31]. In turn, triggering of 
these responses can have both tumor repressing activities, 
such as apoptosis, or tumor promoting events and this 
paradox has been termed “the dual face” of inflammation 
[29, 30, 32]. In this regard, we see key subsets of immune 
related genes that are up-regulated by AZA with potential 
for inhibiting tumor growth including IFI27, which 
encodes a protein triggering apoptosis in late stages of 
chronic viral infection[33] (Fig. 1F). Simultaneously, 
there is down-regulation of the anti-apoptotic gene, 
MAVS, a change which accompanies activation of the 
RIG I signaling pathway in response to viral challenge 
[30, 31, 34] (Fig. 1H). Downstream events in viral 
response include, especially in line H838, simultaneous 
increases for expression of BIRC family autophagy genes 
and simultaneous decreases in the anti-apoptotic genes 
BCL2 and BIRC5 (SURVIVIN) [35] (Fig. 1H). Indeed, 
suppression of SURVIVIN is known to be triggered by 
the viral induction of IRAK3, which encodes an IL-1 
receptor associated kinase [36]. IRAK3 is, again in H838 
cells, up-regulated by AZA concordantly with the death 
related genes mentioned just above (Fig. 1H). These 
dynamics are similar to those for colon cancer cells where 
IRAK3 is silenced in association with promoter-region 
DNA hypermethylation and when reactivated by induced 
demethylation, is associated with SURVIVIN down-
regulation [36].
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PD-L1 Expression

The key to immune checkpoint therapy is antibody 
targeting of either the receptor PD-L1 on immune cells 
and or the ligand PD-L1 on tumor cells [6, 7, 23]. In 
the clinical trials for immune check point blockade to 
date involving NSCLC patients, a subset showed no 
responses when their tumors did not express cell surface 
PD-L1 [6, 7, 23]. In this regard, when treated with AZA, 
several NSCLC cell lines up-regulate PD-L1, not only 

at the transcript level but also at the cell surface protein 
level (Fig. 1B, 1C). Notably, this AZA increase of PD-
L1 in cell lines is far more consistent than for PD-L2, a 
second dendritic cell/macrophage ligand for the CTL 
PD-1 receptor, or other checkpoint ligands such as B7-
H3 and B7-H4 (Fig. 1C). Similarly, CD80 and CD86, 
the ligands for CTLA4, another therapeutically targeted 
immune checkpoint receptor, are not altered (Fig. 1C). 
PD-L1 expression in tumor cells can either be driven by 
cell-intrinsic mechanisms or by a process termed adaptive 
resistance, through interferon-γ signaling and subsequent 

Figure 2: Genetic knock out of DNA Methyltransferases mimics the effects of azacytidine mediated immune pathway 
up-regulation. Gene expression alterations when comparing wild-type HCT116 colon cancer cells to their isogenic DNMT1 and 3B 
knockout counterpart (DKO). The gene expression differences are given as the log2 ratio of expression in DKO over wild-type HCT116 
(Y-axis) and the gene panels, A-H correspond to panels C-J in Fig. 1 for the NSCLC cell lines treated with AZA.  
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Figure 3: Identification of azacytidine up-regulated transcription factors and interferon signaling related genes, and 
their clustering of primary Non-Small Cell Lung Cancer in TCGA.  (A) Identification of genes in Non-Small Cell Lung Cancer 
cell lines with low basal expression with high basal promoter region DNA methylation which are demethylated and re-expressed with AZA 
treatment. The red box encompasses genes meeting these criteria which are described specifically in methods.  Among these, IRF7, a key 
immune-related transcription factor, was up-regulated in multiple cell lines. (B) Pathways up-regulated in NSCLC cell lines in response 
to AZA are enriched for IRF7 targets as determined by PScan analysis (-log10 of p-values) and gene set enrichment analysis.  (C) Heat 
map of RNA-Seq expression levels in primary lung cancers from TCGA database for genes 4-fold or more induced by AZA in the LUSC 
cell line H2170, the cell line with the greatest degree of IRF7 up-regulation. Top bar: red indicates LUAD and orange indicates LUSC 
samples. Genes used in the heat map are listed in supplemental table 4. (D) Bar panels show expression of PD-L1 and IRF7 in five quantile 
intervals (red for lower and green for higher expression).  Heat map immediately below IRF7 expression bar shows corresponding Infinium 
platform DNA-methylation levels (Z-scores, red for more and green for less methylated) across the promoter region.  Positions relative to 
transcription start site are shown to the right.  CpG-island probes are labeled in green.  Sample order in bar plots and methylation heat map 
is maintained from the main heat map.
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activation of STAT transcription factors, which we also see 
induced by AZA (Fig. 1E).  

AZA Alters the Immuno-phenotype of NSCLC 
Through Its Effect on DNA Methyltransferases

A key issue for all of the above responses is 
whether these represent attributes of AZA as a targeted 
therapy. In this regard, this drug, particularly at less 
toxic doses, specifically targets the three biologically 
active DNMT’s, acting to directly inhibit their catalytic 
sites and triggering degradation of these proteins in 
the nucleus [9, 37]. We thus queried how our complex, 
immune-related, pharmacologic responses compare 
to simultaneous genetic depletion of two of the three 
DNMT’s. We compared HCT116 colon cancer cells and 
HCT116 double knock out (DKO) cells that have been 
genetically disrupted to give severe haplo-insufficiency of 
DNMT1, and complete absence of DNMT3B, enzymes 
for DNA methylation maintenance and de novo DNA 
methylation, respectively[38]. These cells have lost the 
majority of their genome-wide DNA methylation and have 
de-methylation of many cancer specific, promoter region, 
DNA hypermethylated CpG islands with corresponding 
re-expression of genes silenced in the wild type HCT 116 
cells [38]. From the standpoint of the present studies, the 
immune-related expression alterations in DKO versus 
wild type HCT116 are remarkably similar to the AZA 
induced changes in NSCLC cells (Fig. 2). We conclude 
that previously described off target effects of high dose 
AZA including incorporation into RNA and DNA as an 
abnormal nucleotide[10] do not appear to be required for 
the drug’s effect that we have defined.

Up-regulation of Immune Related Transcription 
Factors by Azacytidine

In order to find specific genes re-expressed in 
response to AZA which may be driving immune-related 
changes we extensively filtered our genome wide 
expression and methylation data from cell line experiments 
to identify transcription factors meeting criteria of 
epigenetically re-expressed genes. Approximately 300 
genes with high baseline promoter region CpG island 
methylation, promoter demethylation of 25% or more 
after treatment, and expression increased by log2 0.5 (1.4-
fold) or greater after treatment (Fig. 3A, Supp. Table 3). 
Nearly 17% are in an interferome database[39] (http://
www.interferome.org), and 19%  are transcription factors 
[39, 40]. The transcription factor IRF7 has been reported 
by others to be hypermethylated in cancer, as it is in our 
NSCLC line with the lowest basal expression [11, 40-42].  
It is up-regulated in response to AZA in several cell lines, 
most prominently in the LUSC cell line H2170, showing 
a 9-fold increase (Fig. 1J). IRF7 is an upstream activator 

of functions in cellular pathways recognizing the virus 
response element VRE-A to increase transcription of 
genes involved in type 1 IFN signaling [11]. There is a 
significant association of IRF7 transcription targets with 
genes driving several of our GSEA enrichment scores for 
the immune pathway alterations observed in response to 
AZA (Fig. 3B). 

Immune-Phenotypes within Histologies in The 
Cancer Genome Atlas

From our analysis suggesting IRF7 to be a 
potentially important cancer-specific hypermethylation 
induced down-regulation event, we sought to create a 
list of functionally derived genes closely associated with 
its re-expression. Examining H2170, the LUSC cell line 
with the greatest up-regulation of IRF7 we hypothesized 
that other genes highly up-regulated in this cell line might 
be targets of this transcription factor (Fig. 1J). Filtering 
expression array data, 114 genes where found to be 4-fold 
or more up-regulated in response to AZA in the H2170 
(Supp. Table 4). The association of this functionally 
derived gene list with IRF7 is confirmed by PScan analysis 
(p = 7.6 e -18) (Fig. 3B). These data suggest that IRF7 
silencing by DNA methylation in tumors could result in 
suppression of immune-regulatory genes important for the 
surveillance of tumors by cytotoxic immune mechanisms. 
Other studies have reported an immune-evasion signature 
dependent on IRF7 in breast and melanoma [40, 43]. To 
test if such relation between IRF7 and immune-regulatory 
genes exist in primary LUAD and LUSC tumors, we 
analyzed the expression of these genes as a function of 
IRF7 expression, and its promoter methylation status.  
We found that low expression of these genes describes a 
subgroup, particularly among LUSC, in TCGA samples 
which clusters tightly with high promoter region DNA 
methylation and low expression of IRF7 (Figs. 3C, 3D, 
and 4). Finally, expression levels of PD-L1, the key tumor 
ligand targeted in the anti-checkpoint immunotherapy 
trials, tracks quite well with the above immune evasion 
signature in subgroups of not only LUSC, but also LUAD, 
as especially well visualized in heat maps for individual 
immune related pathways, which each track closely with 
an immune evasion signature in the LUSC and LUAD, 
TCGA samples (Fig. 4).

DISCUSSION

In the present work, we have used an in-vitro 
model to derive a pre-clinical understanding of the 
immunomodulatory effects of clinically relevant doses of 
AZA in NSCLC that may underpin its potential to “prime” 
for subsequent response to PD-1 pathway blockade. We 
characterize an AZA induced expression signature of 
immune genes and pathways in NSCLC known to play 
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Figure 4: Relationship of azacytidine-induced, immune-related pathways to primary lung tumors grouped by 
expression of IRF7-associated genes. TCGA samples are ordered by unsupervised clustering based on genes highly up-regulated in 
H2170, which are enriched for IRF7-targets, represented in the topmost heat map. Order of samples is maintained in all lower heat maps.  
PD-L1 and IRF7 expression are depicted in the top bar panels as in figure 3D. Supplemental Table 5 table shows the overlaps of genes from 
each pathway represented in the heat maps. That the observed clustering pattern is not due to chance or batch effect is demonstrated using 
random sets of 25 genes shown in the bottom two panels.
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a role in the down-regulation of immune surveillance 
of cancer. However, concomitant with induction of the 
immune genes comprising both innate and adaptive 
immunity is the up-regulation of a primary immune 
inhibitory ligand, PD-L1. Our data therefore suggest a 
mechanism by which epigenetic therapy might improve the 
outcome of treatment of patients with NSCLC with PD-1/
PD-L1immune checkpoint blockade. By matching these 
basal gene expression and DNA methylation patterns, 
including that of a core interferon pathway transcription 
factor, IRF7 in the TCGA project, we extrapolate our in 
vitro AZA-induced gene signature to hundreds of primary 
NSCLC cancers. These results suggest that a major effect 
of AZA treatment is the alteration of tumor immune 
inducing, pathways that could lead to susceptibility of 
tumor cells themselves to immune attack by T cells. In 
particular, because the inhibitory ligand PD-L1 is up-
regulated by AZA in our cell lines, and subsets of primary 
tumors have concordant low-expression of AZA induced 
immune genes and PD-L1, we suggest that combination 
of epigenetic therapy and PD-1 pathway blockade might 
produce a synergistic anti-tumor response. 

Our findings provide a basis for biomarker 
approaches that we will test in a just initiated trial for 
patients with advanced LUAD and LUSC, aimed at 
validating the promise for sensitization by epigenetic 
therapy to immune checkpoint therapy. If we continue 
to see robust patient efficacy, our data may prove key to 
determining which individuals are likely to benefit from 
the epigenetic therapy approaches we are testing in clinical 
trials by evaluating gene panels for expression and DNA 
methylation in pre-and post- drug administration biopsies. 

MATERIALS AND METHODS

Clinical Data

Institutional review board approved informed 
consent signed by each patient allowed the collection of 
clinical data following treatment on trial with epigenetic 
therapy. Relevant data were obtained by chart review. 
Representative images demonstrating responses to 
therapy were obtained from computed tomography series 
employed in the assessment of patient responses to anti-
PD1 or anti-PD-L1 directed immune-checkpoint therapy. 
Assessment of response to treatment was performed by 
a single reference radiologist who employed (RECIST 
1.0) to generate measurements for target lesions to be 
followed over the course of therapy. Change in target 
lesions from baseline (%) is calculated by summing the 
diameter of all target lesions at each radiographic tumor 
evaluation and calculating percentage change at a given 
time point ([(Target Lesion SumTimepoint X/ Target 
Lesion SumBaseline)-1]*100).

TCGA Samples

Level 3 RNA-Seq data (Illumina HiSeq RNA-Seq 
platform, Illumina, Inc., San Diego, CA, USA) were 
downloaded for 353 NSCLC samples (129 LUAD / 224 
LUSC) and 54 adjacent non-tumor lung tissue samples 
from the TCGA Data Portal (https://tcga-data.nci.nih.gov/
tcga/). Similarly, level 1 DNA methylation data (Illumina 
Infinium HumanMethylation450 BeadChip, Illumina, Inc., 
San Diego, CA, USA) were downloaded for 353 NSCLC 
samples (222 LUAD / 149 LUSC) and 74 adjacent non-
tumor lung tissue samples. Among these, data for 174 
NSCLC samples (80 LUAD / 94 LUSC) and 21 adjacent 
non-tumor lung tissue samples were available on both of 
the above platforms.

RNA-Seq Data Analysis

We used TCGA level 3 RNA-Seq data already 
normalized and quantified at gene levels, and presented 
as RPKM values (Reads Per Kilobase per Million 
mapped reads). To construct heat maps: 1) Values of 0 
(indicating no reads observed for a gene) in the RPKM 
data were set to NA; 2) the remaining RPKM values were 
log 2 transformed; 3) genes from X and Y chromosomes 
were removed; and 4) heat maps were made using 
the “heatmap.2” function in “gplots” package from 
CRAN[44]being centered and scaled in the row direction, 
and using the default functions for computing distance 
and hierarchical clustering (or being specifically ordered 
in column according to the order of other heat maps). 
Expression spectrums for individual genes were displayed 
in five quartile intervals following the order of associated 
heat maps of the RNA-Seq data. 

Infinium DNA Methylation Data Analysis

TCGA level 1 DNA methylation data contain raw 
binary intensity data files. Raw data files were imported 
into R (http://www.r-project.org) to calculate beta values 
(beta value Infinium = M / [U + M], M: mean intensities 
of the Methylated bead type, U: mean intensities of the 
Unmethylated bead types), M values (M value Infinium 
= log 2 [M / U]) and detection p-values (calculated by 
comparing probes to negative control probes to determine 
if signals are significantly different from the background) 
using the “methylumi” package from Bioconductor [45]. 
Beta values and M values for probes with detection 
p-value > 0.05 were considered not significantly different 
from background and were masked as NA. TCGA 
methylation data were first assessed for batch effects by 
principle component analysis (PCA) on the M values. To 
accomplish this, data points from X chromosome and Y 
chromosome as well as data points that are associated 
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with SNPs (Single Nucleotide Polymorphisms) were 
removed, and the first two principle components are used 
for plotting. 

Spearman’s correlation coefficients between 
methylation (beta value of probe, Illumina Infinium 
HumanMethylation450 BeadChip) and gene expression 
(RPKM value of gene, Illumina HiSeq RNA-Seq 
platform) were calculated using TCGA samples with 
available data on both platforms. For a particular gene, 
only methylation probes that have a negative Spearman’s 
correlation coefficient and a adjusted p-value (FDR) for 
the coefficient < 0.01 were considered informative and 
their relative distances to the corresponding transcriptional 
start site (TSS) of the genes were calculated from genomic 
coordinates obtained from the UCSC genome browser 
(http://genome.ucsc.edu). Heat maps of the M values of 
informative probes were made using the “heatmap.2” 
function in “gplots” package from CRAN[44] being 
centered and scaled in the row direction, and ordered 
according to the associated heat maps of the RNA-Seq 
data in column and to the relative distances to TSS in row.

For in vitro DNA methylation values, DNA was 
extracted from cell lines that were either untreated or 
treated with AZA at day 3, at the end of treatment, and 
day 10 (7 days post end of treatment) and analyzed by 
the Illumina Infinium HumanMethylation450 BeadChips 
(Illumina, Inc., San Diego, CA, USA). Raw data were 
imported into R using the “methylumi” package from 
Bioconductor [45]. Data points for probes with detection 
p-value > 0.05 were masked as NA. Δ beta values (Δ 
beta value = beta value AZA – beta value Mock) were 
calculated and used to make boxplots. Heat maps were 
made similarly like those for the TCGA data using 
informative probes defined by the TCGA data.

Expression Microarray Data

For in-vitro RNA extracted from cell lines treated 
with AZA, analyses were done at exactly the same time 
points as for DNA methylation above. Analyses from wild 
type colon cancer, HCT116 cells, and genetic knockout 
counterparts for DNA methyltransferases (DKO cells) 
were also performed. Expression microarrays were 
carried out using Agilent Human 4× 44K expression arrays 
(Agilent Technologies, Santa Clara, CA, USA, Cat#: 
G4112F). Within-array and between - array normalization 
was performed using Loess and Aquantile normalization, 
respectively[46]. Median of the M values (M value 
Expression = log 2 [AZA / Mock] OR log 2 [DKO / 
HCT116]) was determined for multiple probes associated 
with the same gene.

Gene Set Enrichment Analysis (GSEA)

For each of the eight lung cancer cell lines (H838, 
H1299, H358, H1270, A549, H460, HCC4006, HCC827) 
a ranked gene list was created (genes were sorted by 
decreasing M value). These eight ranked gene lists were 
entered in the GSEA tool[47, 48]and the enrichment of 
both Kegg [49] and Reactome[50] pathways in these 
lists was calculated (default parameters). A gene set was 
selected when it was enriched in any of the eight cell 
lines (p value < 0.05 and false discovery rate < 0.25). The 
normalized enrichment scores (NES) for the gene sets in 
each cell line were used to create the heat maps. When a 
certain gene set was not significant in a cell line, it was 
assigned a NES of 0.

Transcription Factor Analysis

Expression and methylation data were analyzed 
to find genes whose re-expression was linked to 
demethylation after AZA treatment. Genes were selected 
based on a set of cut-offs, both for the methylation and 
expression values: A gene was considered to be re-
expressed when at day 3 or day 10 the median M value 
of all the probes linked to that gene was higher than 0.5. 
Infinium probes were analyzed separately at their distances 
from the transcription start site for each gene examined. 
For a probe to be called demethylated, it had to have a 
beta value higher than 0.5 in the mock treatment and a 
difference in beta value between mock and AZA treatment 
had to be at least 0.25. Only probes that were associated 
with a CpG island and that were located within 1000 bp 
upstream and 1000 bp downstream of the transcription 
start site were used in the analyses. The probes that passed 
these filters were validated using the TCGA methylation 
and expression data (see the definition of informative 
probes in the “Infinium DNA Methylation Data” section of 
Methods). Only genes that had an expression-methylation 
correlation value < -0.25 and a false discovery rate < 
0.05 were retained. To better understand the biological 
implications of the re-expressed genes, the gene lists 
were searched for transcription factors. Two human 
transcription factor lists obtained from Ravasi et al [51]and 
Vaquerizas et al [52, 53] were combined and the resulting 
list was matched to the lists of demethylated and re-
expressed genes. The targets of IRF7 from the list of genes 
that are 4-fold or more up-regulated in H2170 by AZA 
were similarly identified using the TranscriptomeBrowser 
database [54].

Flow Cytometry Methods (FACS)

Frozen cells were thawed in 37 degrees Celsius 
and washed once with flow-washing buffer. Aliquots of 
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single-cell suspension were then stained with fluorescent-
labeled antibodies for 15 minutes at room temperature. 
Each sample was washed twice and re-suspended in 
flow-washing buffer and analyzed by FACSCalibur. 
The following antibodies were used: CD274 (12-5983-
42 Ebiosciences), HLA abc (12-9983-42 Ebiosciences), 
CD276(331606 Biolegend), CD119(558934 BD), B2 
microblogumin(551337BD), CD58(555921BD).  Changes 
between AZA treated and mock cells are calculated using 
mean fluorescence intensities (MFI) and the formula 
log2([(MFIantibody, treated)-(MFIisotype, treated)]/ [(MFIantibody, mock)-
(MFIisotype, mock)]).

PSCAN

PSCAN (http://159.149.160.51/pscan/) [54] is an 
online software tool that predicts the association of user 
defined gene-lists with transcription factors by scanning 
promoter sequences of co-regulated or co-expressed genes 
looking for over- or under-represented motifs. RefSeq IDs 
of the gene lists were obtained from BioMart (http://www.
biomart.org/) and analyzed in PSCAN. Scanned promoter 
region was -450 to +50 base pairs around the transcription 
start site and employing TRANSFAC as the database for 
co-regulated or co-expressed genes.
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