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ABSTRACT
The present study tested the hypothesis that angiotensin II plays a role in 

the regulation of placental vascular tone, which contributes to hypertension in 
preeclampsia. Functional and molecular assays were performed in large and micro 
placental and non-placental vessels from humans and animals. In human placental 
vessels, angiotensin II induced vasoconstrictions in 78.7% vessels in 155 tests, as 
referenced to KCl-induced contractions. In contrast, phenylephrine only produced 
contractions in 3.0% of 133 tests. In non-placental vessels, phenylephrine induced 
contractions in 76.0% of 67 tests, whereas angiotensin II failed to produce 
contractions in 75 tests. Similar results were obtained in animal placental and non-
placental vessels. Compared with non-placental vessels, angiotensin II receptors 
and β-adrenoceptors were significantly increased in placental vessels. Compared 
to the vessels from normal pregnancy, angiotensin II-induced vasoconstrictions 
were significantly reduced in preeclamptic placentas, which was associated with a 
decrease in angiotensin II receptors. In addition, angiotensin II and angiotensin 
converting enzyme in the maternal-placenta circulation in preeclampsia were 
increased, whereas angiotensin I and angiotensin1-7 concentrations were unchanged. 
The study demonstrates a selective effect of angiotensin II in maintaining placental 
vessel tension, which may play an important role in development of hypertension in 
preeclampsia.

INTRODUCTION

Preeclampsia is an important clinical problem, yet 
the etiology remains unclear. The placenta plays a critical 
role in the development of preeclampsia because delivery 
of the placenta and fetus is the only known efficient 
approach to resolve hypertension. Circulating factors or 
signals from placental ischemia or impaired placental 
blood flow have been considered as links between 
the placenta and maternal vascular dysfunction [1-6]. 

However, the regulatory mechanisms of placental vascular 
dysfunction and their contributions to the development of 
hypertension in preeclampsia are unclear. 

Vascular dysfunction is important in the 
development of hypertension in various conditions, 
including preeclampsia. Our recent study has demonstrated 
that placental vascular trees behave very differently from 
non-placental vessels, with very limited endothelial 
functions, and dysfunction in vascular smooth muscle cells 
may play a critical role in development of hypertension 
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in preeclampsia [7]. Placental vascular dysfunction 
is likely an important cause for impaired placental 
blood flow in preeclampsia, although physiological and 
pathophysiological activities of placental vessels under 
normal and preeclamptic conditions remain unclear. 
Notably, only a few previous studies investigated placental 
vascular functions directly in preeclampsia [8-10]. The 
present study was conducted in a large number of human 
placental and non-placental vessels from normal and 
preeclamptic pregnancies, as well as animal placental and 
non-placental vessels. We seek to reveal special features of 
placental vascular regulations and the pathophysiological 
changes under the preeclamptic condition, and to 
understand possible contributions of placental vascular 
dysfunction in the development of hypertension in 
preeclampsia.

RESULTS

Vasoconstrictions in placental vs. non-placental 
vessels

Angiotensin II (AII) and catecholamines caused 
dose-dependent vasoconstrictions in human placental and 

non-placental vessels (umbilical cord vein and artery) 
(Figure 1A-1F; Supplementary Figure 1 and Table 1). In 
human placental vessels, the maximal response to AII was 
significantly greater than that induced by phenylephrine 
(PE), norepinephrine (NE), or epinephrine (E) (Figure 
1A-1C, P < 0.05; Supplementary Figure 1, P < 0.05). In 
human umbilical vein and artery, PE-induced maximal 
contraction was significantly higher than that induced by 
AII (Figure 1D-1F, P < 0.05). These results demonstrated 
that placental vascular responses to AII were significantly 
more sensitive than those of the non-placental vessels in 
humans.

Despite the large sample size, variations due to 
genetic and individual factors in human experiments 
are always of concern. Thus, we also studied vessels 
from animals. Sheep placental vessels showed greater 
responses to AII than those induced by PE (AII > PE) 
(Supplementary Figure 2a, P < 0.05). The opposite 
responses (PE > AII) were observed in fetal sheep carotid, 
renal, and middle cerebral arteries (Supplementary 
Figure 2b-2d, P < 0.05). Furthermore, we tested rabbit 
carotid arteries, rat mesenteric arteries and thoracic aorta. 
Vasoconstriction responses to PE were also significantly 
greater than those induced by AII in all these non-
placental vessels (Supplementary Figure 3, P < 0.05). 
Thus, vasoconstriction responses in the human and sheep 

Figure 1: Angiotensin II and PE induced concentration-dependent vasoconstrictions in HPV, HUV, and HUA. A. and 
D., representative images of AII- and PE-mediated dose-dependent vasoconstrictions in HPV-A3 A. and HUV D.. B., C., E. and F., AII 
and PE induced vasoconstrictions in HPV-A1/A2 (N = 25, n = 79 for AII; N = 22, n = 71 for PE), HPV-A3 (N = 54, n = 76 for AII; N = 
40, n = 62 for PE), HUV (N = 28, n = 75 for AII; N = 21, n = 67 for PE), and HUA (N = 20, n = 53 for AII; N = 23, n = 58 for PE). AII, 
angiotensin II; PE, phenylephrine; HPV, human placental vessels; HUV, human umbilical vein; HUA, human umbilical artery; HPV-A1/
A2, first-, second-order branch of umbilical vessels in placenta (mainly the main stem villous arteries); HPV-A3, the branch of the main 
stem villous arteries (micro-vessels with diameter around 150 um). Error bars denote s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001. N, 
number of participants; n, number of rings.
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placental vessels were AII > catecholamines; whereas 
those in human, sheep, rabbit, and rat non-placental 
vessels were catecholamines > AII.

Angiotensin II- and PE-mediated 
vasoconstrictions in preeclamptic placental vessels 

In preeclamptic placental vessels, the maximal 
response to AII was significantly higher than that induced 
by PE (Figure 2A-2C, P < 0.05). In HPV-A1/A2 (first-, 
second-order branch of vessels in placenta) and HPV-A3 
(micro-vessels with diameter around 150 um), AII-induced 
maximal contractions were 151.9±10.5%, 176.5±11.7% 
in the normal pregnancy (NP), and 47.5±11.6%, 
123.4±10.4% in preeclampsia (P), respectively (Figure 
2D-2F, P < 0.05), showing that placental vessels in 
preeclampsia were less sensitive to AII. 

Expressions of AII and adrenergic receptors in 
placental vs. non-placental vessels

As shown in Figure 3A and 3B, compared with 
human umbilical vessels, mRNA and protein abundance of 
AT1R, AT2R and the AT1R/AT2R ratio, were significantly 
increased in placental vessels. The mRNA abundance of 
ADRA2B, ADRA2C, ADRB1, and ADRB2 was higher 
in placental vessels, whereas there were no significant 

differences in ADRA1A, ADRA1D, and ADRA2A 
between placental vessels and the umbilical vein (Figure 
3C). Compared with fetal sheep carotid arteries, although 
mRNA levels of AT1R and AT2R were not significantly 
changed, the AT1R/AT2R ratio was significantly increased 
in sheep placental vessels (Supplementary Figure 4a). 
There was no significant difference in mRNA abundance 
in ADRA1A, ADRA1B, ADRA2A, ADRA2B, ADRB2, 
and ADRB3 between sheep placental and non-placental 
vessels (carotid arteries) (Supplementary Figure 4b). 

Compared with the NP, mRNA and protein levels of 
AT1R in preeclamptic placental vessels were significantly 
downregulated, leading to a pronounced decrease in 
the AT1R/AT2R ratio (Figure 3D and 3E). In placental 
vessels, the mRNA abundance of ADRA1A, ADRA1D, 
ADRA2A, ADRA2B, ADRA2C, ADRB1, and ADRB2 
showed no significant difference between NP and P groups 
(Figure 3F). 

Renin angiotensin system (RAS) components and 
catecholamines in maternal-placenta circulation

Angiotensin II concentrations in preeclamptic 
maternal blood, umbilical cord blood, and placental 
tissues were significantly increased, compared with 
those in the normal pregnancy (Figure 4C and 4D, P < 
0.05; Supplementary Table 2). Angiotensin I (AI) and 
angiotensin1-7 (Ang1-7) concentrations were unchanged 

Figure 2: Angiotensin II and PE induced concentration-dependent vasoconstrictions in placenta vessels from normal 
and preeclamptic pregnancies. A., representative images of AII- and PE-mediated dose-dependent vasoconstrictions in HPV from 
preeclamptic pregnancies. B., and C., AII and PE induced vasoconstrictions in HPV-A1/A2 (N = 24, n = 46 for AII; N = 28, n = 54 for PE) 
and HPV-A3 (N = 23, n = 32 for AII; N = 25, n = 38 for PE) from preeclampsia. D., representative images of AII-mediated dose-dependent 
vasoconstrictions in HPV from normal and preeclamptic pregnancies. E., and F., AII induced concentration-dependent vasoconstrictions in 
HPV-A1/A2 (N = 25, n = 79 for NP; N = 24, n = 46 for P) and HPV-A3 (N = 54, n = 76 for NP; N = 23, n = 32 for P). NP, normal pregnancy; 
P, preeclampsia. Error bars denote s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001. N, number of participants; n, number of rings.



Oncotarget30737www.impactjournals.com/oncotarget

(Figure 4A, 4B, 4E, and 4F, P > 0.05). Angiotensin 
converting enzyme (ACE) activity in both preeclamptic 
maternal blood and placenta were significantly increased, 
whereas no significant differences were observed in 
umbilical cord blood (Figure 4G and 4H). Concentrations 
of epinephrine and norepinephrine were only significantly 
increased in the placenta from preeclampsia, whereas 
no significant differences were detected in maternal and 
umbilical cord blood (Figure 4I-4L). 

DISCUSSION

The present study reveals several important findings: 
compared to non-placental vessels, vasoconstrictions 
induced by AII were much stronger than those by 
catecholamines in both human and animal placental 
vessels; compared to NP, placental vascular responses 
to AII were decreased in preeclampsia, which was 
associated with a decrease in AII receptors; AII and ACE 
were significantly increased in the maternal-placental 
circulation in preeclampsia. These findings provide new 

insights: 1) AII plays a vital role in the maintenance of 
vascular tension in the placenta, similar to the role of 
catecholamines in non-placental vessels; 2) AII-mediated 
physiological function in placental vessels is injured in 
preeclampsia; 3) the reduced AII-mediated placental 
vasoconstrictions may cause compensatory responses, 
resulting in an increase in AII and ACE in the maternal-
placental circulation that may induce hypertension in 
preeclampsia. 

As classic vasoconstrictors, AII and catecholamines 
play cardinal roles in the regulation of blood pressure [11-
15]. In almost all peripheral blood vessels, norepinephrine 
is a major regulator to maintain basal vascular tension, 
and the norepinephrine-induced vasoconstriction is much 
more important than that by AII under physiological 
conditions [16, 17]. This was also true in our experiments 
on various non-placental vessels, including sheep carotid, 
renal, and middle cerebral arteries, rabbit carotid arteries, 
rat mesenteric arteries and thoracic aorta, as well as human 
umbilical veins and arteries. The reason we used various 
vessels was to prove that most of non-placental vessels 

Figure 3: Expressions of AII and PE receptors in placental and non-placental vessels. A., and B., mRNA and protein 
levels of both AT1R and AT2R in HPV (N = 21) and HUV (N = 18). C., mRNA levels of PE multifarious receptors including ADRA1A, 
ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, and ADRB2 in HPV (N = 20) and HUV (N = 15). D., and E., mRNA and protein 
levels of both AT1R and AT2R in NP (N = 23) and P (N = 18) placental vessels. F., mRNA levels of PE multifarious receptors in NP and 
P placental vessels (N = 18/group). NP, normal pregnancy; P, preeclampsia. Error bars denote s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001. 
N, number of participants.
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from different species or organs, show the similar response 
pattern to AII and catecholamines. However, in human and 
sheep placental vessels, AII-induced vasoconstrictions 
were much greater than those elicited by catecholamines. 
Notably, in 133 tests of human placental vessels that 
responded to KCl, PE only produced contractions in 3.0% 
of vessels, whereas AII induced contractions in 78.7% 
of vessels. Conversely, in human umbilical veins, PE 
caused constrictions in 76% of 67 vessels tested, whereas 
AII failed to produce any contractions in 75 vessels 
tested. These novel findings reveal that placental vessels 
are fundamentally different from non-placental vessels 
and suggest that AII plays an important role to maintain 
placental blood flow in a normal “maternal-placental-
circulation”. This indicates a new hypothesis for the 
causes of hypertension in preeclampsia: i.e., changes of 
AII function in placental vessels may alter the maternal-
placental-circulation and placental blood flow, leading to 
placental ischemia and abnormal maternal blood pressure. 
This notion is further supported by analysis of actions 
of AII in preeclamptic placental vessels. Although AII-
produced vascular tension was higher than that by PE 

regardless of small or large placental vessels, vascular 
responses to AII in preeclamptic placental vessels were 
weaker than those in the NP, indicating that physiological 
function of AII in placental vessels is damaged in 
preeclampsia. 

To determine causes for the differences between 
placental and non-placental vessels, AII and adrenergic 
receptors were measured in placental and non-placental 
vessels (umbilical cord) from the same women. Compared 
with non-placental vessels, AT1R and AT2R, as well as 
the AT1R/AT2R ratio, were significantly increased in the 
placental vessels. AT1R is a major subtype mediating AII-
induced vasoconstrictions, whereas AT2R may counteract 
AT1R [18]. The increased AT1R and/or the AT1R/
AT2R ratio in placental vessels may be a cause for the 
stronger vasoconstrictions induced by AII in the placenta. 
Adrenergic receptors (ARs) include α1-ARs, α2-ARs, and 
β-ARs [19]. Subtypes ADRA1A, ADRA1D, ADRA2B, 
and ADRA2C induce contractile responses [20]. β-ARs 
are divided into ADRB1, ADRB2, and ADRB3 [19], and 
mediate vascular dilatation [20, 21]. In the present study, 
ADRB1 and ADRB2 were markedly higher in placental 

Figure 4: Levels of RAS components (including AI A. and B., AII C. and D., Ang1-7 E. and F., and ACE G. and H., as well 
as epinephrine E. I. and J.), and norepinephrine (NE) K. and L. in maternal blood M., umbilical cord blood F., and placenta from 
normal and preeclamptic pregnancies (N = 12/group). RAS, renin angiotensin system; AI, angiotensin I; AII, angiotensin II; Ang1-7, 
angiotensin1-7; ACE, angiotensin converting enzyme. NP, normal pregnancy; P, preeclampsia. Error bars denote s.e.m. *P < 0.05; **P < 
0.01. N, number of participants.
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vessels than those in non-placental vessels, which could 
a cause for the decreased vasoconstrictions by PE in the 
placenta. Unchanged expression in ADRA2B, ADRA2C, 
ADRB1, ADRB2, ADRA1A, ADRA1D, and ADRA2A 
was noted between normal and preeclamptic placental 
vessels. AT1R was significantly downregulated, leading 
to a pronounced decrease in the AT1R/AT2R ratio in 
preeclamptic placental vessels. Although previous work 
showed changes of angiotensin receptors in the placenta, 
the studies were conducted in placental tissues but not 
in placental vessels along [22, 23]. The present study 
was the first to compare expression of AT1R and AT2R 
between placental and non-placental vessels in humans, 
and demonstrated that AT1R was downregulated in 
preeclamptic placental vessels.

Previous studies investigated AII receptors and 
other RAS components in human placental tissues 
[24-26]. Unchanged or altered AII levels and RAS 
activities in preeclampsia were reported [27-29]. These 
studies suggested that the over-activity of RAS was an 
important mechanism for preeclampsia. Although AII 
and its receptors may be changed in preeclampsia [24, 
27, 29], it is unknown why and how they could be altered 
in the disease. The present study examined placental 
vascular functions in the same women whose blood and 
placental samples were used for radioimmunoassay and 
molecular analysis. Interestingly, levels of AII and ACE 
were increased in the maternal-placental-circulation 
in preeclampsia. Increased ACE can enhance AII 
concentrations [30]. Our findings provide a new insight 
in the development of hypertension in preeclampsia and 
suggest that the placenta relies heavily on RAS activities 
to maintain its vessel tone and local circulation. Thus, 
if AII-mediated vasoconstrictions become weaker, the 
placental circulation may suffer from reduced vascular 
tension and blood flow, impairing the maternal-placental-
circulation. As a result, signals are sent to the maternal and 
the placental circulations to produce more AII and other 
vascular stimulators to maintain placental vessel tension, 
consequently resulting in maternal vascular dysfunction 
and hypertension. 

The limitation of the present study includes that only 
normal animals were used due to the lack of reliable PE 
animal models. Despite of this, the new findings should 
help to explain why most hypertension in preeclampsia 
starts and ends in a pattern closely linked to the placenta, 
and provide new insights in our understanding why 
maternal AII or RAS components in the circulation 
are altered in many preeclamptic cases. These new 
findings should increase further the understanding of the 
pathophysiology of hypertension in preeclampsia, and 
provide new directions of investigations and treatments 
for pregnant hypertension. 

MATERIALS AND METHODS

Human/animal samples

Placentas of normal pregnancy (N = 64) or 
preeclampsia (N = 55) were obtained from the local 
hospitals, Suzhou, China. Informed consent with 
understanding with all experiments was obtained from 
participants, in accordance with the Declaration of 
Helsinki (2013) of the World Medical Association. 
The study was approved by Ethics Committee of 
First Hospital of Soochow University (ref. no. 2011-
118). Healthy pregnancies were defined as those with 
blood pressures < 140/90 mmHg with no significant 
complications. Preeclamptic patients were defined by the 
onset of hypertension during pregnancy (blood pressure 
was 140/90 mm Hg or higher, with no hypertension 
before) and consistent proteinuria (300 mg/day or more) 
(Supplementary Table 3) [2]. Maternal and umbilical cord 
venous blood samples were collected, following 2,500 g 
centrifugation at 4°C for 10 min, and stored at -80oCuntil 
analyses. Umbilical cords and placentas were immediately 
collected after delivery. Umbilical veins and arteries as 
non-placental vessels and placental vessels were carefully 
isolated. 

Pregnant sheep (gestation: 130-135 days; term, 
147±3 days, N = 10) were housed in a light-controlled 
room with standard food and water. Under anesthesia [31], 
cesarean section was performed and placental vessels and 
fetal vessels (including fetal carotid, renal, and middle 
cerebral arteries) were collected. New Zeeland rabbits (15 
months old, N = 6) and Sprague-Dawley rats (5 months 
old, N = 10) from Animal Center of Soochow University 
were sacrificed by intraperitoneally sodium pentobarbital 
(100 mg/kg; Heng Rui Medicine, Jiangsu, China). Rabbit 
carotid arteries, rat mesenteric arteries and thoracic 
aorta were collected. All experimental procedures were 
approved by the Institutional Animal Care Committee 
and in accordance with the Guide for the Care and Use of 
Laboratory Animals.

Contraction studies

Rings of human, sheep, rat, rabbit vessels were 
prepared as described [31]. Vessel rings were given an 
initial tension and adjusted to that tension for 1 hour 
using KCl (0.12mol/L). Vasoconstrictions were induced 
by cumulative additions of AII, PE, NE, or E, and were 
normalized to the KCl-elicited contractions. Functional 
testing was performed as previously described [31]. 
Vascular functional testing was repeated and verified by 
third parties who were not authors. All drugs were from 
Sigma (St. Louis, USA).
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Quantitative real-time pCR (qRT-PCR) and 
western blot

Total RNA was isolated from umbilical and 
placental vessels using Trizol reagent (Invitrogen) 
according to the manufacturer’s protocol. All primers 
used were listed in Supplementary Table 4. AT1R and 
AT2R protein abundance was assessed by Western blotting 
normalized to β-actin. Antibodies were from Santa Cruz 
(Santa Cruz, CA, USA). qRT-PCR and Western blot were 
performed as previously described [32].

Radioimmunoassay (RIA)

Levels of RAS components [AI, AII, Ang1-7, and 
ACE], E, and NE in human maternal blood, umbilical 
cord blood, and placenta tissue were determined with 
RIA using the assay kits (HY-10059, HY-10059, HY-164, 
HY-D0036, HY-10197 and HY-100198) according to the 
manufacturer’s instructions (Beijing Huaying Biotech Res 
Inst, China.). The sensitivity was 0.001 ng/ml (AI), 0.5 pg/
ml (AII), 0.01 pg/ml (Ang1-7), 0.5 U/L (ACE), 0.5 pg/ml 
(E), and 1 pg/ml (NE), respectively. The intra-assay and 
inter-assay CV were 3.5-8.5% and 7.2-9.9%, respectively. 

Data analysis and statistics

Statistic analyses were performed with either t-test 
or two-way analysis of variance. Concentration-response 
curves of vasoconstrictions were analyzed with Graph 
Pad Prism 5 (Graph Pad Software, Inc., San Diego, CA, 
USA). Significance was accepted at P < 0.05. Data were 
expressed as the mean ± SEM. 
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