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ABSTRACT
High-throughput screening (HTS) strategies and protocols have undergone 

significant development in the last decade. It is now possible to screen hundreds 
of thousands of compounds, each exploring multiple biological phenotypes and 
parameters, against various cell lines or model systems in a single setting. However, 
given the vast amount of data such studies generate, the fact that they use multiple 
reagents, and are often technician-intensive, questions have been raised about the 
variability, reliability and reproducibility of HTS results. Assessments of the impact of 
the multiple factors in HTS studies could arguably lead to more compelling insights 
into the robustness of the results of a particular screen, as well as the overall quality 
of the study. We leveraged classical, yet highly flexible, analysis of variance (ANOVA)-
based linear models to explore how different factors contribute to the variation 
observed in a screening study of four different melanoma cell lines and 120 drugs over 
nine dosages studied in two independent academic laboratories. We find that factors 
such as plate effects, appropriate dosing ranges, and to a lesser extent, the laboratory 
performing the screen, are significant predictors of variation in drug responses across 
the cell lines. Further, we show that when sources of variation are quantified and 
controlled for, they contextualize claims of inconsistencies and reveal the overall 
quality of the HTS studies performed at each participating laboratory. In the context 
of the broader screening study, we show that our analysis can also elucidate the 
robust effects of drugs, even those within specific cell lines.

INTRODUCTION

High-throughput screening (HTS) strategies 
allow researchers to assess the effects of thousands of 
compounds on drug responses in one large experimental 
setting. Over the past decade, applications of HTS for 
drug discovery and drug effect characterization studies 
have steadily increased, ranging from studies focusing on 
the assessment of multiple phenotypic endpoints in high-
content screening [1], the evaluation of drugs on traits 
such as lifespan through the sophisticated use of model 

species such as Caenorhabditis elegans [2] as well as drug 
response pattern identification using massive amounts of 
genomic information made available for crowd-sourcing 
efforts and community driven challenges [3]. HTS studies 
have also been pursued to advance personalized medicine, 
especially in oncology settings, since tumor-derived cell 
lines can be used in the screening studies to identify 
compounds that are active against them or some subset 
of them. For example, large HTS databases – such as 
the NCI-60 [4], the Cancer Cell Line Encyclopedia [5] 
(CCLE) and the Genomics of Drug Sensitivity in Cancer 
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[6] (GDSC) – have been made available to researchers 
for the express purpose of uncovering drugs that exhibit 
unique effects against tumor-generated cell lines with 
specific genomic profiles. In addition, very recent work 
involving the Connectivity Map [7] has exploited genetic 
network and pathway reconstruction methods to identify 
sets of genes that mediate specific drug responses in 
subsets of cancers. In this light, the Cancer Cell Map 
Initiative [8] (CCMI) and related initiatives have not only 
drastically reduced drug discovery costs, but have also 
guided efforts to identify genomically-informed, patient-
specific cancer treatment strategies. Unfortunately, as 
timely and as sophisticated as these efforts have been, 
very recent studies comparing the quality of different 
HTS studies meant to advance insights into personalized 
cancer care have raised questions and concerns about their 
reliability and reproducibility as well as the interpretation 
of the data they generated [9, 10] .

Assessing the reliability of HTS studies is not trivial 
given the number of compounds typically considered, the 
number of reagents used, the way in which constructs 
such as plating schemes and distributed robotic handlers 
are set up, the manner in which dose response curves are 
constructed, and the fact that different labs likely follow 
slightly, if not overtly, different protocols; i.e., the sources 
of HTS cells, tissues or organisms, cell culture and assay 
conditions, reagents, consumables and instrumentation 
are not standardized within the community. This is 
particularly true for, e.g., tumor-derived cell line-based 
screening studies where the nature of the source cell lines, 
their procurement and sustenance as well as the responses 
measured on them may vary widely between different 
laboratories. In addition, although diverse in execution, 
many cancer-oriented HTS studies focus on cell counts 
upon stimulation with a drug that reflect that drug’s 
ability to kill cells derived from a specific cell lines across 
differing drug concentrations. These concentrations often 
range from inducing no response (i.e., no cells are killed) 
to a very strong response (e.g., all the cells are killed). The 
dose ranges necessary to achieve variation in the number 
of cells killed and establish a dose response curve are very 
hard to anticipate, often leading to different labs using 
different concentrations and numbers of concentrations. 

After having established the drug concentrations 
or doses to be used and applying them to cells derived 
from a single cancer cell line, sigmoidal curves are often 
fit to the cell counts associated with each drug dose to 
generate drug-specific dose response curves (DRCs). 
This is repeated for each cell line. The half minimal 
inhibitory concentration (IC50) is then extracted from 
these curves [4, 5]. These IC50 values, which are often 
coupled with related response measures such as the area 
under each dose response curve (AUC), are then used to 
determine the sensitivity or resistance of each cell line to 
the different drugs. Recently, the IC50 and AUC results 
from two large cancer cell line HTS studies, the Cancer 

Cell Line Encyclopedia [11] (CCLE) and the Genomics 
of Drug Sensitivity in Cancer [12] (GDSC) studies, were 
used to assess the variability of HTS assays pursued in 
this manner [7, 8]. The results of an assessment of the 
comparability and reproducibility of CCLE and GDSC 
data sets by two different research teams yielded opposing 
interpretations, which underscores the complexity of HTS 
studies and their interpreration [7, 8, 13].  A third research 
team recently reevaluated the CCLE and GDSC data and 
came to yet a different a conclusion [14]. 

In order to assess the reliability of HTS data, we 
conducted a study of intra- and inter-site experimental 
variability across melanoma cell lines treated with 120 
different drugs that are either in use in clinical trials or 
have been FDA-approved for use in treating cancers. 
Our study was motivated by not only the controversies 
surrounding the reliability of the CCLE and GDSC data 
sets, but also by our engagement in a large clinical trial 
exploring the utility of personalized treatment for late-
stage BRAF wild-type melanoma [15]. We first measured 
variability across replicated dose and drug applications to 
29 melanoma cell lines pursued within a single institution, 
the Sanford Burnham Prebys (SBP) Medical Discovery 
Institute in La Jolla, California. The SBP studies were 
pursued using two independent HTS formats and screens: 
a nine-concentration and a three-concentration dose-
response screens. Using the same 120 drugs and four 
of the 29 cell lines, we performed an independent nine-
concentration dose response screen at the Translational 
Genomics Research Institute (TGen) in Phoenix, Arizona. 
To enable analysis of inter-site experimental variability, 
two copies of the master drug plates were generated at 
SBP. One was then ultimately used onsite at SBP and the 
other was provided to TGen for their respective screens. 
Furthermore, the two sites used the same final dosing 
concentrations and the same cell lines. All other aspects 
of the screen were independent, resulting in variation in 
the environments in the which the screens were pursued, 
personnel, compound freeze/thaw cycles, cell passages, 
culture conditions, plating density, actual plates and other 
consumables, and instrumentation.

To analyze the data produced from the two nine-
concentration HTS studies, and to assess the variability 
of the results, we used flexible linear models and analysis 
of variance (ANOVA) techniques. These traditional 
techniques allowed us to examine how variation in drug 
responses (i.e., variation in the fraction of cells killed 
for a particular cell line, drug and dose) is impacted by 
different factors, such as the laboratory, the drug used, 
the plate on which specific assays were conducted. We 
also considered interaction terms in the models (e.g., 
dose x drug interactions). We chose not to generate 
dose-response curves and extract IC50 values for use in 
our analyses, since our interests were in quantifying as 
many sources of variation as possible and not condensing 
or obscuring any of them in dose-response relationships 
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reflected in single derived value. Thus, we modeled the 
dosage effects of each drug as a separate independent 
or explanatory variable for drug response variation. It is 
well-known that models that are “saturated” in that they 
exhaustively model the effects of independent variables 
and their interactions are inherently linear. This fact is 
exploited in many contexts, most notably econometrics, 
to help draw causal inferences between independent and 
dependent variables [16]. Although we did not consider 
all possible interaction terms in our models, we did 
consider most of them. Ultimately, our linear modeling 
and ANOVA analyses allowed us to make comprehensive 
claims about that effects of particular drugs and dosages 
on specific cell lines while accounting for factors built 
into the design of the HTS, such a plate effects, that could 
induce variation in drug responses. Thus, we believe our 
analyses can help identify signals of truly statistically-
significant drug effects over-and-above the “noise” created 
by various factors, including individual laboratories and/
or the individual plates upon which cells were placed for 
drug effect characterization. We firmly believe that more 
sophisticated analytical methods, careful analyses, and 
interpretations of drug effect claims in HTS experiments 
are necessary and will likely lead to the identification and 
characterization of correctable sources of variation that 
may obscure HTS results and shed light on claims about 
their lack of reproducibility.

RESULTS

Variation of cell viability data across dose and 
drug replicates

Table 1 provides a brief summary of the data sets 
we considered in our analyses. As an initial assessment 
of the consistency of drug-by-dose effects across the 29 
cell lines in common between the SBP nine-concentration 
and three-concentration HTS studies (Figure 1), which 
comprise all HTS data obtained at matching doses within 
the SBP HTS data, we considered the use of simple 
correlation analyses. We found that the cell viability data 
are not normally distributed (Shapiro-Wilk’s test p-value  
< 2.2e-16 for drug responses for each drug) and that the 
non-parametric Spearman correlation coefficient, rather than 
the standard Pearson correlation coefficient, would be more 
appropriate for use in assessing the consistency between the 
two data sets. We computed pairwise Spearman correlations 
for the replicates at 0.1, 1.0, and 10.0 μM concentrations 
across each drug and cell line (Figure 2A, Supplementary 
Figure 1). Additionally, we calculated the correlation 
coefficients using all available concentrations. As expected, 
the pairwise correlations at the three concentration points 
suggested that a subset of the cell lines showed greater 
evidence for reproducibility. These cell lines were identified 
as those most likely to be sensitive to the drugs. This makes 
sense since the cell lines exhibiting no response (i.e., does 

response curve) contributed only noise to the correlations. In 
addition, within each dose, the distribution of the correlation 
coefficients for each drug was skewed left (Figure 2B), with 
a long tail towards negative correlations. This was the same 
when considering all dosages together, although there was 
an observed improvement in the correlation coefficient, 
which may reflect a larger sample size (Figure 2C). This 
highlights the advantage of considering the overall pattern 
of consistency for drug sensitivity profiles, as opposed to 
considering each dose individually. Thus, studies exploring 
the influence of different factors on HTS results should 
pursue analyses reflecting variation in the entire experiment, 
instead of just focusing on each individual drug, cell line or 
dose in isolation.

Variation between two laboratories

For drugs with at least one cell line exhibiting a 20% 
cell viability at higher doses, which is consistent with a 
drug response (n = 46), we also calculated the Spearman 
correlation coefficient between the SBP and TGen response 
data for each of the nine concentrations and also across all 
nine concentrations (Figure 2D, Figure 2E, Supplementary 
Figure 2). The correlation coefficients across all available 
dosages were greater than 0.0 in 44 out of the 46 drugs 
(Bonferroni-adjusted p-value < .05 in 22 of the 44 drugs). 
Individual pairwise scatterplots for each dose across the 46 
drugs indicate that for a large number of them, there is a 
high degree of between-laboratory consistency. As in the 
three-concentration drug response analysis performed, the 
drug responses were more consistent at higher doses and 
across all dosages when considered together (Figure 2E, 
Supplementary Figure 2). The stronger correlation at higher 
dosages, especially in the context of lower doses that do not 
induce an effect or response, reveal technical variation and 
“noise” that should be considered in analyses seeking to 
identify bona fide drug-induced effects producing signals 
that rise above this experiment-wise noise. Likewise, 
the improved correlation coefficients observed when 
comparing the nine-concentration dose-response curves 
(DRCs) against the three-concentration DRCs suggest 
that a full range of DRCs may be better at revealing true 
biological variation in the HTS data.

Comprehensive analysis considering the entire 
HTS experimental setting via ANOVA modeling 

 For a more comprehensive assessment of the factors 
contributing to the variation in drug response associated 
with our HTS studies, we applied flexible linear regression 
modeling within an ANOVA context. We ultimately 
wanted to partition the variation in cell viability data 
arising from the entire HTS study into factors representing 
different experimental and biological conditions (i.e., 
across all plates on which the samples were arranged, 
drugs, drug concentrations, cell lines, and laboratories; 
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Supplementary Table 1). We limited this analysis to the four 
cell lines in common at the two independent laboratories. 
In order to conduct the modeling appropriately, we initially 
had to choose a comparator to be contrasted with all 
the other subgroupings for each of the different factors 
we studied. This was achieved by creating simple zero 
(absence) or one (presence) dummy variables for each factor 
subgroup. We randomly selected SBP as the comparator 
laboratory, Cladribine as the comparator drug, plate 36 
(from the SBP experiment) as the comparator plate, cell 
line A375 as the comparator cell line, and the lowest dose  
(0.02 μM) as the comparator dose. Our analysis found that 
the laboratory used explained 0.028% of the variation in 
drug response, whereas plate (3.23%) and other biological 

factors such as drugs (45.5%), concentration (5.24%), and 
cell lines (4.94%) explained approximately 60% of the 
variation (Table 2). To identify the individual factors that 
were most statistically significant sources of variation, 
we carried out simple t-tests on each factor’s regression 
coefficient. We used a conservative Bonferroni-correction to 
accommodate the multiple tests. The results suggested that 
laboratory was only marginally significant factor relative to 
the others (Figure 3A, Supplementary Figure 3). Analysis 
of the cell lines indicated that two of the four cell lines, 
MeWo and SK-MEL-2, had an effect on drug responses that 
were statistically significantly different from the comparator 
cell line A375. This could be due to the BRAF mutation 
status in the cell lines: A375 (the comparator cell line) and 

Table 1: Datasets used in HTS study
Data Set Doses (um) MCLs OCLs # Drugs CCLs Common Drugs

SBPMDI 1 dose 10 49 0 747 37 89
SBPMDI 3 doses .1, 1, 10 30 0 120 29 120
SBPMDI 9 doses .02, .04, .1, .2, .4, 1, 2, 4, 10 40 0 120 40 120
TGen 9 doses .02, .04, .1, .2, .4, 1, 2, 4, 10 4 0 120 4 120
CCLE 8 doses .0025, .008, .025, .08, .25, .8, 2.53, 8 59 888 24 4 9
GDSC 8 doses varied 45 1209 139 4 6
Key: CLs = Cell Lines; MCLs = Melanoma Cell Lines; OCLs = Other Cell Lines; CCLs = Melanoma cell lines in common 
with the SBP nine-point data set; Common drugs = drugs in common with the SBP nine-point data set; SBPMDI = Sanford 
Burnham Prebys Medical Discovery Institute; TGen = Translational Genomics Research Institute; CCLE = Cancer Cell 
Line Encyclopedia; GDSC = Genomics of Drug Sensitivity in Cancer.

Figure 1: Differences in HTS plating schemes. Nine 384-well plates are used for each cell line. Left: TGen/SBP plating scheme.  
Each plate consists of triplicates of three doses across 120 drugs and 8 DMSOs. Right: Alternate plating scheme with each plate including 
all 9 doses. 
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UACC-0257 are cell lines with the BRAF V600E mutation, 
whereas MeWo and SK-Mel-2 are BRAF wild type cell 
lines. Obviously, more work on this hypothesis is needed 
before attributing differences to the presence of the BRAF 

V600E mutation. Additionally, the higher concentrations 
(i.e., 2.0, 4.0, and 10.0 μM) were the most statistically 
significant, consistent with the existence of overall dose-
response relationships in the experiment. 

Figure 2A: Pairwise scatterplots across nine drugs comparing SBP 3-point screen against same three concentrations 
from SBP 9-point screen.  All 128 pairwise scatterplots are provided in the supplemental figures.  Colors indicate concentration: 0.1 
(green), 1.0 (blue), and 10.0 μM (purple).

Table 2: Percentage of variance explained by experimental factors
 Df Sum Sq Mean Sq F value Pr(> F) % Variance explained

Cell Lines 3 1409075 469692 1064.446 < 2.2e-16 4.94
Lab (SBP) 1 7975 7975 18.0742 2.13E-05 0.03
Log Dose 8 1493445 186681 423.0677 < 2.2e-16 5.24
Drug 119 12966053 108958 246.9287 < 2.2e-16 45.46
Plates 65 921052 14170 34.236 < 2.2e-16 3.23
Residuals 25723 11721774 441    
Percentage of variance explained by Cell Lines, Site, Dose, Drug, and Plates.
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Figure 2 (B, C): Correlation coefficients from pairwise spearman correlation across same three concentrations. Colors 
indicate concentration: 0.1 (green), 1.0 (blue), 10.0 μM (purple), and across all three concentrations. Figure 2B: Histogram of correlation 
coefficients.  Figure 2C: Violin plot of correlation coefficients.
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Interestingly, we also found that a large number of 
SBP plates were moderately statistically different from other 
plates both used at SBP and TGen; however, a single TGen 
plate (plate 25) was highly significant. Furthermore, only one 
SBP plate yielded a more significant t-statistic (plate 27) than 
the TGen plate 25 (Supplementary Table 2). As expected, 
the outlying plates produced DRCs with greater variability 
(e.g., Mitoxantrone DRCs for UACC-0257 at 0.1, 1.0, and 
10.0 μM for SBP plate 27 and at 0.02, 0.2, and 2.0 μM for 
TGen plate 25, Figure 3B). Although plate-effects explained 
3.23% of the variation in cell viability, the small number of 
highly significant plates suggests that plate analysis and ways 
of accommodating plate effects in HTS data analyses, or 
subsequent removal of outlying plates, should be performed 
to assess the overall quality of the HTS data and potentially 
lead to explanations for why some drugs don’t replicate 
across site-specific studies (e.g., because some plates were 
outlying and should be removed as opposed to a more global 
analysis and rationale). The reasons for plate effects should 
be explored, but could reflect contamination, technician, 
or robot error when setting up the plate or experiment in 
question. Importantly, if the drugs, concentrations and 
cell lines used on the plate led to biologically meaningful 
effects, then one would not be able to separate the biological 
significance from a potential technical artifact, which 
suggests the use of controls and designed plating schemes 
are necessary. Finally, we found that most drugs in the study 
exhibited strong, statistically significant p-values, far beyond 
what would be expected by chance alone.

Exploring interaction effects

 To identify whether specific drugs, cell lines, doses, 
and sites were significant predictors of drug response (i.e., 

cell viability) while considering other factors, we added 
interaction terms to the linear models. When we accounted 
for laboratory x drug interactions, we found that many of 
the drugs exhibited significant interaction term p-values; 
in fact many more than would be expected by chance 
alone. These results indicate that although drugs may 
influence variation in cell viability across the experiment 
as a whole, some of the cell viability variation may be 
laboratory-specific (Supplementary Table 3). 19 drugs 
yielded significant drug p-values, yet non-significant drug-
laboratory interaction effects (Figure 3C, Supplementary 
Figure 4), indicating that these drugs exhibited overtly 
reproducible effects (Supplementary Table 4). As expected, 
when we incorporated the drug x dose interaction terms 
into our analysis models, we found that a majority of the 
variation significantly accounted for by dose was limited 
to higher concentrations, which of course makes sense 
(Supplementary Figure 5). Importantly, drug x laboratory 
interaction effects only explained an additional 3.94% of 
the cell viability variation, whereas drug x dose interaction 
effects explained an additional 11.02% of the variation in 
cell viability.

The consideration of three-way interaction effects 
led to additional insights into the factors contributing to 
cell viability in a pronounced enough way to rise above 
the “noise” in cell viability across the HTS experiments 
as a whole. Laboratory × drug x dose effects explained 
2.5% of cell viability variance and drug x dose x cell line 
explained 3.6% of the variance (Supplementary Table 5). 
These findings provided further evidence that laboratory 
effects were not as influential on the experiment as a whole 
relative to other factors. While nine drugs appeared to have 
laboratory-specific effects (i.e., a non-significant effect 
when considering the drug alone, but a significant drug 

Figure 2 (D, E): Pairwise analysis of mean Cell Viability across nine drugs exhibiting at least one CV less than 20%. 
Gradient indicates concentration from 0.02 μM (light) to 10 μM (dark).  All 46 pairwise scatterplots for drugs with at least one CV less than 
20% is provided in the supplemental figures.  Figure 2D: Pairwise scatterplots comparing SBP 9-point HTS against TGen 9-point HTS.  
Figure 2E: Violin plot of correlation coefficients.
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Figure 3A: Application of flexible linear models, using ANOVA methods, to explore the variation in CV that is explained 
by site, cell lines, dose, drug, and plates.  Sites explained a small proportion of the variation, whereas drugs, dose, and cell lines 
explained a majority of the variation observed in CV. Nine of the 120 drugs are plotted; however, plots with all drugs are available in 
supplemental figures.

Figure 3B: Plots of dose response curves for each of the cell line and site combinations. Greater variance is observed in 
concentration from outlying plates detected by ANOVA-like methods.
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x laboratory interaction effect), drug x dose interactions 
had the largest impact on the drug-associated cell viability, 
which it to be expected (Supplementary Figure 6). Again, 
we identified a subset of drug x dose x cell line interaction 
terms that were significant (Supplementary Table 6), 
suggesting that there may be some heterogeneity among 
the cell lines (likely due to genetic differences) affecting 
the drug response. This is important in that it suggests 
unique cell-line features may indicate efficacy of certain 
drugs, which is consistent with the goal of personalized 
medicine. The significant differences in cell viability 
across the cell lines generally appear in the intermediate 
concentration ranges (Supplementary Figure 7).

Re-analysis with a broader set of comparator 
drugs and cell lines

To investigate whether the use of an arbitrary drug 
as the comparator drug impacted our initial analyses in 
any way, we set out to identify a group of cell line and 
drug combinations that did not exhibit any dose-response 
or general drug effect. These combinations would then 
effectively act as a group of controls whose cell viabilities 
represent simple noise and technical variation when 
compared to the other cell line-drug combinations. These 
analyses would allow us to see if compelling drug or drug 
x cell line effects can be identified that rise above the noise 
and variation exhibited in the HTS experiment as a whole. 
As noted in the Methods section, we fit a three-parameter 
sigmoidal, a four-parameter sigmoidal, a linear, and a 
constant model to each of the cell lines for each drugs and 
dosages to characterize dose response curves. We then 

selected the drug-cell line pairs where the constant model 
fit the data the best based on the Akaike Information 
Criterion (AIC), since this would be indicative of no 
evidence of a drug or dose-dependent response. The set of 
drug x cell line combinations that suggested no evidence 
for a drug or dose-dependent response was then used as the 
comparator group in a re-analysis of the cell viability data. 
The re-analysis suggested that the laboratory in which 
the assays were done explained a minimal proportion of 
the variance (0.03%). However, drug effects explained 
41.2%, dose 5.24%, cell line 4.94%, and plates 3.23% 
of the variation in cell viability across the experiment 
(Supplementary Table 7). Interestingly, this re-analysis 
greatly reduced the number of statistically significant 
drug effects, suggesting that only a small subset of drugs 
studied may be exhibiting actual effects that rise above the 
“noise” in cell viability across the experimental setting as 
a whole (Supplementary Figures 8–11 and Supplementary 
Tables 7–10).

Comparing the results of models that accommodate 
plate-specific effects to those that do not 

To assess the impact that technically-deficient 
or outlying plates have on the interpretation of HTS 
experiments, we assessed the statistical significance of 
the effects on cell viability of each drug in the context of 
the entire experiment using our linear model. We used the 
drugs that did not exhibit evidence for a dose response 
relationship as a comparator group, as discussed in the 
previous section. When not accommodating any site, plate, 
and dose (since doses were plated in triplicates on each 

Figure 3C: Assessing the variation in CV that is explained by site, cell lines, dose, drug, and drug-site interaction.  To 
further assess the reproducibility of HTS, we examined the drug-site interaction terms and found that 19 of the significant drugs did not 
have a significant drug-site interaction term.  Nine of the 120 drugs are plotted; however, plots with all drugs are available in supplemental 
figures.



Oncotarget27795www.impactjournals.com/oncotarget

plate) effects in the model, we found 54 significant drugs 
with drug-effect p-values surpassed Bonferroni-adjusted 
significance thresholds (Supplementary Table 11). When 
the site, plate and dose effects were considered in the 
model, we found 44 drugs with drug effect p-values that 
surpassed Bonferroni-adjusted significance thresholds 
(Supplementary Table 11). Strikingly, only 28 of the 
44 drugs (64%) resulting from these analyses were in 
common, further confirming that experimental factors 
ultimately affect downstream analyses as well as the 
interpretation of analyses meant to identify drugs with 
pronounced effects (Supplementary Table 11).

Analysis of CCLE and GDSC data 

 We used ANOVA analyses on IC50 values provided 
in the CCLE and GDSC data sets along with our SBP and 
TGen data on the four cell lines and six common drugs 
they had in common. In these models, we randomly 
selected CCLE as the comparator laboratory, the drug 
Crizotinib as the comparator drug, and cell line A375 as 
the comparator cell line. Similar to the analysis comparing 
the raw SBP and TGen data, we found that laboratories 
were not significant predictors of IC50 values when we 
also accommodated drug, cell line, and laboratory effects 
in the model. We note, however, that we did observe 

some laboratory-specific effects for one of the six drugs, 
Nilotinib (Figure 4).

DISCUSSION

Although there has been a considerable amount of 
interest and development in HTS technologies, there have 
been few attempts at standardizing protocols and ensuring 
the reliability and reproducibility of the resulting data. 
Many sources of variation implicated in HTS studies, such 
as the laboratory used to pursue the experiment, technicians, 
reagents and version of reagents used, plating schemes, cell 
culture conditions and dosing ranges, will inevitably have 
an effect on the resulting data. However, properly recording 
and accommodating these factors in the analysis of HTS 
data can aide in not only an assessment of the quality of the 
data, but also the interpretation of the results.

We sought to quantify the sources of variability 
in an HTS setting in order to gauge the, reliability and 
reproducibility of the resulting data. We did this using 
HTS data from a study on melanoma cell lines and simple 
correlation analyses coupled with often-used ANOVA 
modeling methods. The methods we discussed and applied 
can be used with any HTS data set including many of 
those in the public domain, although many studies have 
either used methods like we have proposed or different 

Figure 4: ANOVA analysis on IC50 values from SBP, TGen, GDSC, and CCLE.  Site effects were generally minimal; 
however, site specific effects were observed in Nilotinib.
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methods for assessing the concordance between datasets 
[9] of all sorts (e.g., gene expression microarray, next 
generation sequencing, reverse phase protein arrays, etc.). 
Using the ANOVA setting, we, for example, identified 
evidence that certain plates used in the experiment were 
problematic and thus could undermine the reliability of the 
HTS experiment as whole if not accounted for properly. 

We chose not to construct dose-response curves 
(DRCs) for each cell line for each drug and then compare, 
e.g., IC50 values extracted from those curves across sites 
or among different conditions, since this would ultimately 
ignore variation introduced by different technical factors 
impacting dose effects on cell viability (e.g., plate effects) 
and hence the DRCs. In this context, once outlying 
plates have been identified, it is possible to reassess the 
reliability of the HTS data using the traditional methods 
while excluding those outlying plates (alternatively, 
one could obtain coefficients associated with significant 
experimental effects and weight them accordingly). 
Additionally, ANOVA methodology allows for the 
simultaneous analysis of all cell viability data across all 
drugs to identify true and very compelling signals that 
have been obtained in a HTS experiment. Although the 
specific plating scheme in our experiments (Figure 1) 
allowed for the simultaneous analysis of various factors, 
it could also lead to confounding effects between plate and 
dose because triplicate concentrations were constrained 
to individual plates (i.e., one of three concentrations 
sets were used for each plate: concentrations 1, 4, and 7; 
concentrations 2, 5, and 8; and concentrations 3, 6, and 9).

In terms of specific findings, we observed that 
laboratory effects only explained a small fraction (0.03%) 
of the cell viability variation in our HTS setting. This 
contrasts with the results of studies described in recent 
publications about the reliability of the data associated 
with two very large cancer cell line screens pursued by 
different groups at different sites [5, 6, 8, 9]. We also 
observed that the main source of variation in our study 
could be attributed to the drugs used–further indicating 
that in certain settings, HTS data may indeed be reliable. 
By considering site x drug interactions in our analyses, 
we identified drugs with reproducible effects. Our 
consideration of three-way interaction terms allowed us to 
identify some heterogeneity among the cell line response 
to drugs, suggesting that genetic differences among cell 
lines may explain why some cell lines are responsive 
to certain drugs. This is consistent with the notion that  
in vitro drug screening can shed light on the potential 
for personalized medicine [17]. We also find that the 
downstream analyses of drug association tests are greatly 
impacted by whether one accommodates or does not 
accommodate experimental and technical factors, such 
a plating scheme, in the analysis models. In this light, 
we found that many of the drugs identified without 
experimental factors were false positives. Similarly, we 
find that many drugs that were significantly associated 

with drug response were missed when the models did 
not accommodate experimental factors. Our experience 
suggests that interaction terms in ANOVA-like analysis 
settings should be considered in order to tease out 
important and compelling drug associations that would 
otherwise go undetected due to the masking of particular 
drug effects by “noise.” 

Ultimately, assessing the variability, reliability and 
reproducibility of HTS data by designing the study to 
contrast different experimental conditions could add to the 
overall experimental costs. As a result, alternative methods 
that can account for sources of variation are needed. Our 
analysis at the very least highlights the importance of 
using consistent dosing and plating schemes that include 
specific controls, which would allow researchers to not 
only measure and test for the impact of experimental 
factors on the outcomes, but also adjust for these specific 
experimental effects when making claims about, e.g., 
drug and cell-line specific effects. Thus, ANOVA-like 
methods can accommodate different experimental factors 
that may influence the HTS assays in pronounced ways 
and also reveal compelling signals attributable to drugs 
and experimental compounds. Although our analysis was 
performed only within the context of melanoma, and, 
importantly, only within the context of four melanoma cell 
lines and 120 drugs, our overall ANOVA-based approach 
can be used to reassess the quality of publicly available 
data as well as additional HTS data. 

MATERIALS AND METHODS

Data

 We initially performed a nine-concentration (i.e., 
dose) HTS study (drug concentrations: 0.02, 0.04, 0.1, 0.2, 
0.4, 1.0, 2.0, 4.0, and 10.0 μM) on 40 melanoma cell lines 
across 120 drugs (Table 1) at Sanford Burnham Prebys 
Medical Discovery Institute (SBP). We used 384-well 
plates with three concentrations of a drug assigned to each 
plate across all 120 drugs in triplicate (Figure 1). Drugs 
were spotted on 384-well clear bottom tissue culture treated 
plates (Greiner Bio-One, #781098) using an Echo Liquid 
Handler (Labcyte Inc., Sunnyvale, CA) such that addition of 
25 µLs of cells (100 k cells/mL in RPMI + 10% FBS +Pen./ 
Strep./ Glut., Omega Scientific, Tarzana, CA) resulted 
in the above described final drug concentrations and  
2.5 k cells/well. Upon plating, the cells were gently spun 
down at 1 k rpm for one minute and incubated with drugs 
for 96 hours at 37oC in a standard tissue culture incubator. 
After this time course, plates were allowed to equilibrate to 
room temperature for 30 minutes before 10 µLs per well 
of freshly prepared CellTiterGlo reagent (G7571, Promega 
Corp., Madison WI) were added. Samples were incubated 
for ten minutes with gentle agitation (100 rpm) before 
luminescence was read on a BioTek Synergy2 plate reader 
using Gen5 software (BioTek, Winooski, VT).
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Each plate was assayed in triplicate and included 
24 vehicle only DMSO controls. In total, nine plates 
were used for each cell line. For each cell line, drug, 
and drug concentration combination, cell viability (CV) 
measures were obtained post drug administration and were 
normalized to the plate-specific average DMSO cell:

Drug
norm

DMSO

100* CellCount
CV

CellCount
=

  We also pursued an independent three-concentration 
HTS study (drug concentrations: 0.1, 1.0, and 10.0 μM) at 
SBP across 30 melanoma cell lines (29 in common with 
the nine-point screen) on all 120 drugs as described above. 
Finally, we performed the primary nine-concentration HTS 
study across all 120 drugs for four melanoma cell lines 
in common with the initial nine-point SBP screen (four 
screened cell lines: UACC-0257, MeWo, SK-Mel-2, and 
A375) at the Translational Genomics Research Institute 
(TGen). For the TGen HTS study, the experimental 
protocols were similar to the SBP screen, with minor 
differences. Specifically, the compounds were pre-spotted 
to white, solid-bottom 384-well assay plates (Greiner Bio-
One) using ATS (Biosero, San Diego, CA). Additionally, 
prior to measuring the luminescence using an Analyst GT 
plate reader (Molecular Devices, Sunnyvale, CA), 25 uL 
CellTiterGlo reagent (G7571, Promega Corp., Madison WI) 
was added to assay plates and incubated at room temperature 
for one hour (as opposed to ten minutes at SBP). 

MeWo and A-375 cell lines were obtained directly 
from American Type Culture Collection, all SK- cell lines 
were received directly from Memorial Sloan Kettering 
Cancer Center, TGen generated all UACC- cell lines, and 
all were of low passage number. Cells were maintained 
according to the manufacturer's or collaborator’s 
instructions: A-375 cells are grown using DMEM 
medium, MeWo and Sk-Mel-2 cells are grown using 
EMEM medium, and UACC-0257 cells are grown using 
RPMI1640 medium. All media have 10% FBS and 1%AA 
added to final growth media. All cell lines were banked at 
low passages in multiple aliquots as liquid nitrogen stocks 
to reduce risk of phenotypic drift. All cells were cultured 
for less than three months before reinitiating culture from 
the frozen stock. All cells were routinely inspected for 
identity by morphology and growth curve analysis and 
validated to be mycoplasma free. All cell lines were free 
of contaminants.

Data analysis 

We assessed the variability of the HTS data by first 
examining the correlations between measures obtained 
at matching doses using the two SBP screens (i.e., nine-
concentration and three-concentration screens) and then 
across the SBP and TGen screens (i.e., the two nine-
concentration screens). We calculated the Spearman 
correlation of the CVnorm between the data obtained from 

each experimental pair setting at each dose (i.e., single 
concentration pairs) and the correlation coefficient across 
all available doses (i.e., all three-concentration doses when 
comparing the two SBP screens or all nine-concentration 
doses when comparing SBP and TGen screens). Since 
the Spearman correlation is robust to outliers, is non-
parametric, and does not necessarily assume linear 
relationships, we chose use it as implemented in base stats 
package [18] in R. We assessed the normality of the data 
using Shapiro-Wilk test in the base stat package [11] for R

For a more comprehensive assessment of the assays’ 
variability and reliability on the four common cell lines 
across institutes, we used flexible linear models and 
ANOVA (also within the base stats [11] package in R) 
to simultaneously assess drug effects (across all drugs) 
as well as all other experimental (e.g., plate and lab) and 
biological (e.g., drug, dose, and cell line) factor effects 
by creating (0, 1) dummy variables for each factor (e.g., 
we had 120–1 = 119 dummy variables for the drugs, 
9–1 = 8 for doses, 4–1 = 3 for cell lines, 72–1 = 71 for 
plates, and one for site). After combining the lab, plate, 
drug, dose, and cell line factors, there were a total of 202 
factor effects. Notably, we performed a multi-factorial 
analysis in an unbalanced experimental design. Under 
this approach, ANOVA in the context of linear regression 
models was used to assess the proportion of variation that 
can be attributed to each factor (e.g., laboratory, plate, 
drug, dose, and cell line). Interaction terms between 
the factors were also used to assess the non-additive 
influence and combinations of different factors. We then 
fit dose-response curves (DRCs) to each of the SBP and 
TGen nine-concentration HTS experiments using four 
separate models: a four-parameter sigmoidal model, a 
three-parameter sigmoidal model, a linear model, and a 
constant model (i.e., no dose-response effect). We fit these 
DRCs using the nplr [19]  package in R. We used the 
Akaike Information Criterion [20] (AIC) from the base 
stats [11] package in R to identify the “best” model for 
each cell line and drug combination. The AIC provides 
an assessment of model performance while considering 
the number of parameters used for the model. Thus, this 
approach allowed us to assess the fit of each model while 
adjusting for the number of parameters assumed within 
those models. We did this to identify individual drugs that 
exhibited no evidence of a dose-response relationship. The 
drugs and cell lines that exhibited no evidence of a dose 
response effect were then treated as a set of “controls” 
for the other drugs because the variation they exhibited 
across the different doses reflect noise-induced and 
technical variation. We used this set of control drug-
cell line combinations in re-analysis with the ANOVA 
model, coding the controls as the baseline drug (i.e. for 
the “controls”, binary variables for each drug were set to 
0 in the model). To evaluate the impact of controlling for 
plate-specific effects, we performed drug association tests 
using linear models with interaction terms. We compared 
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models that included and excluded plate effects. The 
significance of each drug’s effects in the context of the 
entire experiment was determined based on a Bonferroni-
adjusted [21] significance threshold.

Because we were unable to access the raw 
experimental data for the Cancer Cell Line Encyclopedia 
(CCLE) data, we explored the consistency of the IC50 
values provided from the CCLE [5]  repository along 
with IC50 values from the Genomics of Drug Sensitivity 
in Cancer [6]  (GDSC) data repository. We also computed 
the IC50 values from our SBP and TGen data using three-
parameter sigmoidal curve fits. The four cell lines in 
common between the SBP and TGen data sets were also 
available for the CCLE and GDSC data, but only six drugs 
were in common. Further, replicates were only available 
in the GDSC dataset, plating schemes used between the 
sites were inconsistent, and there were differences in 
dose-concentrations between same cell line and drug 
combinations from the various datasets. Nevertheless, we 
explored the variation in the HTS data using information 
on the different sites (n = 4), cell lines (n = 4), and drugs 
(n = 6). All analyses were performed in R and all figures 
were generated using the graphics11 package in R. 

ACKNOWLEDGMENTS

We thank the Stand Up To Cancer organization and 
the AACR for their support.

CONFLICTS OF INTEREST

None to report.

GRANT SUPPORT

Research supported by a Stand Up To Cancer – 
Melanoma Research Alliance Melanoma Dream Team 
Translational Cancer Research Grant. Stand Up To Cancer 
is a program of the Entertainment Industry Foundation 
administered by the American Association for Cancer 
Research. Dr. Schork and Mr. Ding are also supported 
by NIH grants: U19 AG023122-09; R01 DA030976-05; 
R01 MH094483-03; R01 MH100351-02; R21 AG045789-
01A1; UL1TR001442-01 and U24AG051129-01, in 
addition to grants from Janssen, Human Longevity, Inc., 
and the Tanner Project Foundation.

REFERENCES

 1. Taylor DL. A personal perspective on high-content screening 
(HCS): from the beginning. J Biomol Screen. 2010; 15:720–
5. doi: 10.1177/1087057110374995.

 2. Xiaolan Y, Linton JM, Schork NJ, Buck LB, Petrascheck M. 
A pharmacological network for lifespan extension in 
Caenorhabditis elegans. Aging Cell. 2014; 13:206–15. doi: 
10.1111/acel.12163.

 3. Eduati F, Mangravite LM, Wang T, Tang H, Bare JC, 
Huang R, Norman T, Kellen M, Menden MP, Yang J, 
Zhan X, Zhong R, Xiao G, et al. Prediction of human 
population responses to toxic compounds by a collaborative 
competition. Nat Biotechnol. 2015; 33:933–40. doi: 
10.1038/nbt.3299.

 4. Shoemaker, R. The NCI60 human tumor cell line anticancer 
drug screen. Nat Rev Cancer. 2006; 6:813–23. doi: 10.1038/
nrc1951.

 5. Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, 
Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483:603–7. doi: 
10.1038/nature11003.

 6. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, 
Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, 
Ramaswamy S, Futreal PA, Haber DA, et al. Genomics 
of Drug Sensitivity in Cancer (GDSC): a resource for 
therapeutic biomarker discovery in cancer cells. Nucleic 
Acids Res. 2013; 41:D955–61. doi: 10.1093/nar/gks1111

 7. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, 
Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, 
Reich M, Hieronymus H, Wei G, et al. The Connectivity 
Map: using gene-expression signatures to connect small 
molecules, genes, and disease. Science. 2006; 313:1929–35. 
doi: 10.1126/science.1132939.

 8. Krogran NJ, Lippman S, Agard DA, Ashworth A, and 
Ideker T. The Cancer Cell Map Initiative: Defining the 
Hallmark Networks of Cancer. Mol Cell. 2015; 58:690–8. 
doi: 10.1016/j.molcel.2015.05.008.

 9. Cancer Cell Line Encyclopedia Consortium, Genomics of 
Drug Sensitivity in Cancer Consortium. Pharmacogenomic 
agreement between two cancer cell line data sets. Nature. 
2015; 528:84–7. 10.1038/nature15736.

10. Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, 
Beck AH, Aerts HJ, Quackenbush J. Inconsistency in large 
pharmacogenomic studies. Nature. 2013; 504:389–93. doi: 
10.1038/nature12831.

11. Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, 
Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483:603–7. doi: 
10.1038/nature11003.

12. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, 
Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, 
Ramaswamy S, Futreal PA, Haber DA, et al. Genomics 
of Drug Sensitivity in Cancer (GDSC): a resource for 
therapeutic biomarker discovery in cancer cells. Nucleic 
Acids Res. 2013; 41:D955–61. doi: 10.1093/nar/gks1111.

13. Safikhani Z, Smirnov P, Freeman M, El-Hachem N, She A, 
Rene Q, Goldenberg A, Birkbak NJ, Hatzis C, Shi L, Beck AH, 
Aerts HJWL, Quackenbush J, et al. Revisiting Inconsitency in 



Oncotarget27799www.impactjournals.com/oncotarget

Large Pharamcogenomic Studies. F1000 Res. 2016. 5:2333. 
doi: 10.12688/f1000research.9611.1

14. Haverty PM, Lin E, Tan J, Yu Y, Lam B, Lianoglou S, 
Neve RM, Martin S, Settleman J, Yauch RL, Bourgon R. 
Reproducible Pharmacogenomic Profiling of Cancer Cell 
Line Panels. Nature. 2016; 533:333–7. doi: 10.1038/
nature17987.

15. LoRusso PM, Boerner SA, Pilat MJ, Forman KM, 
Zuccaro CY, Kiefer JA, Liang WS, Hunsberger S, 
Redman BG, Markovic SN, Sekulic A, Bryce AH, Joseph RW, 
et al. Pilot Trial of Selecting Molecularly Guided Therapy 
for Patients with Non-V600 BRAF-Mutant Metastatic 
Melanoma: Experience of the SU2C/MRA Melanoma 
Dream Team. Mol Cancer Ther. 2015; 14:1962–71. doi: 
10.1158/1535–7 163.MCT-15–0 153.

16. Angrist JD, Jörn-Steffen P. Mostly Harmless Econometrics: 
An Empiricist’s Companion. Princeton: Princeton 
University Press. 2009. ISBN-10: 0691120358; ISBN-13: 
978–0691120355.

17. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, 
Lockerman EL, Frias RL, Gainor JF, Amzallag A, 
Greninger P, Lee D, Kalsy A, Gomez-Caraballo M, et al. 
Patient-derived models of acquired resistance can identify 
effective drug combinations for cancer. Science. 2014; 
346:1480–6. doi: 10.1126/science.1254721

18. R Core Team. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
Austria. URL https://www.R-project.org/. 2015.

19. Frederic Commo, Brian M. Bot. nplr: N-Parameter Logistic 
Regression. R package version 0.1–4. http://CRAN.R-
project.org/package=nplr. 2015.

20. Akaike H. A new look at the statistical model identification. 
IEEE Transactions on Automatic Control. 1974; 19:716–23. 
doi: 10.1109/TAC.1974.1100705.

21. Bonferroni CE. Teoria statistica delle classi e calcolo delle 
probabilità. Pubblicazioni del R Istituto Superiore di Scienze 
Economiche e Commerciali di Firenze. 1936; 8:3–62.


